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IMPLICATION-BASED NEURO-FUZZY
ARCHITECTURES

DanuTA RUTKOWSKA*, ROBERT NOWICKI*

This paper presents connectionist multi-layer architectures of neuro-fuzzy sys-
tems based on various fuzzy implications. The well-known Mamdani approach
(constructive) and the logical approach (destructive) are considered. Two kinds
of architectures, a simpler and a more general one, are distinguished. Examples
of application to classification and control problems are provided.
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1. Introduction

A growing interest in the fusion of neural networks and fuzzy systems takes advantage
of merits of the both methods and leads to various approaches of combining them
into a form of neuro-fuzzy systems. Different neuro-fuzzy systems can be created
using various types of fuzzy implications which correspond to fuzzy IF-THEN rules.
Specific architectures of the systems can be found in (Rutkowska, 1997; Rutkowska et
al., 1997; Wang, 1994). However, they are confined to Mamdani’s and Larsen’s types
of fuzzy inference, most often applied in fuzzy controllers. In this paper, we consider
neuro-fuzzy systems based on the following implications: Kleene-Dienes, Lukasiewicz,
Reichenbach, Zadeh, Willmott, Goguen, Godel, Sharp, Fodor, Yager (Cordon et al.,
1997a; Cordon et al., 1997b; Driankov et al., 1993), and compare them with the well-
known systems which employ Mamdani’s or Larsen’s rules of inference. The system
architectures are connectionist and multi-layer, like those of artificial neural networks
(Zurada, 1992). These systems can be trained using the idea incorporated into the
back-propagation algorithm, commonly used to train neural networks. Applications
of the systems to classification and control problems are also illustrated.

Two main approaches to the inference of fuzzy (or neuro-fuzzy) systems can be
distinguished: the Mamdani (constructive) approach and the logical (destructive)
approach (Czogata and Leski, 1997; Czogala et al., 1997a; Filev and Yager, 1995; No-
wicki and Rutkowska, 1999; Rutkowska and Nowicki, 1999; Yager and Filev, 1994).
The former is well-known and commonly used in approximate (fuzzy) reasoning. It is
based on Mamdani’s or Larsen’s types of fuzzy inference. The latter is not so popular,
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however it has also been studied in the literature mentioned above. This paper refers
mostly to the latter approach. It should be emphasised that although the names
constructive and destructive have been introduced in (Yager and Filev, 1994) and
used by other authors, the name logical seems more adequate, taking into account
the implication which is employed in the fuzzy inference.

We consider NOCFS and OCFS neuro-fuzzy systems. The former stand for non-
overlapping consequent fuzzy sets and the latter stand for overlapping consequent
fuzzy sets, and both refer to the fuzzy sets in the consequent part of fuzzy IF-THEN
rules. These two kinds of neuro-fuzzy systems were introduced in (Nowicki and Rut-
kowska, 2000a) and studied in (Rutkowska and Nowicki, 2000; Rutkowska et al.,
2000). The OCFS systems are extensions of the NOCFS ones. It is worth noticing
that most of the neuro-fuzzy system research concern the NOCFS systems, which
can be treated as special cases of the more general OCFS systems, presented in this
paper.

The paper pertains to neuro-fuzzy architectures proposed in (Nowicki, 1999),
and published in conference proceedings (Nowicki and Rutkowska, 1999; 2000a; 2000b;
2000c; Rutkowska and Nowicki, 1999; 2000; Rutkowska et al., 1999; 2000). The results
outlined there have been collected, supplemented, compared, and generalised here in
the framework of the implication-based neuro-fuzzy architectures. More computer
simulations illustrating the systems performance have been carried out. Conclusions
drawn from these experiments, as well as other important remarks are included.

2. Implication-Based Fuzzy Systems

In this section, we present fuzzy logic systems (Czogala and Leski, 2000; Driankov et
al., 1993; Rutkowska et al., 1997; Wang, 1994). The inference process performed by
them is described. Various fuzzy implications used by the inference engine, the main
part of a fuzzy system, are considered. Different aggregation methods, with reference
to the Mamdani (constructive) and logical (destructive) approaches, are depicted.
The so-called ‘pure’ fuzzy systems and systems with a fuzzifier and a defuzzifier are
distinguished.

2.1. Fuzzy Inference

Fuzzy systems are knowledge-based systems. They make a fuzzy inference based on
a collection of fuzzy IF-THEN rules, called the rule base, expressed as follows:

RF. IF x is A¥ THEN y is B, (1)

where x =[z},...,2,]7 € X CR™ and y € Y CR are linguistic variables, A% =
AF x...x Ak and B* are fuzzy sets characterised by membership functions p4x (x),
gk (), respectively, k=1,...,N. If z;,...,%, are independent variables, the rule
base (1) takes the form

Rk: IF z; is A* AND...AND =z, is 4 THEN gy is B*Z. (2
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Fuzzy IF-THEN rules (1) or (2) correspond to fuzzy relations A* — B¥, which
are often called fuzzy implications, in spite of the fact that they are not always
implications in a logical sense.

A fuzzy system inference determines a mapping from an input fuzzy set A’ C X
to an output fuzzy set B’ C Y, using the rule base (1) or (2). Each individual
rule of the rule base conducts a mapping from the fuzzy set A’ C X to a fuzzy set
B* C Y. Then the fuzzy set B’ is obtained by an aggregation of the fuzzy sets B*, for
k=1,...,N. This approach is called the individual rule of inference or FITA, which
stands for First Inference Then Aggregate. Another approach is called the composition
based inference, or FATI, which stands for First Aggregate Then Inference (Czoga-
ta and Leski, 2000). The latter means that the aggregated rule base is used in the
inference process.

The fuzzy sets B*, for k = 1,...,N, inferred by the individual rules R*, are
characterised by the following membership functions:

e () = sup {ar () % s () } ®)
xeX

where pa(x) and par_,pgr(X,y) are the membership functions of the input fuzzy set

. . T
A’ and the fuzzy relation A¥ — B* respectively, and % can be any T-norm operator.
Formula (3) constitutes a well-known expression, called the sup-star composition,
which corresponds to the compositional rule of inference, expressed as follows:

B* = A'o (A% » BY). 4)
It was introduced by Zadeh (1973).

If the input fuzzy set A’ is a fuzzy singleton, which means that the membership
function of this fuzzy set equals 1 for x = X and is zero for x # X, where x =
[Z1,...,%,)T € X C R", then (3) takes the following form:

pge(y) = parpr (X,9) - (5)

2.2. Fuzzy Implications

As seen in Section 2.1, the result of a fuzzy system inference depends on the fuzzy
relation A* — B*. Most often the input fuzzy set is a fuzzy singleton. In this case
a membership function of the output fuzzy set inferred by an individual IF-THEN
rule equals a membership function of the fuzzy relation, for x = X, according to (5).
Thus, it seems to be very important what kind of fuzzy relation (fuzzy implication)
is employed in a fuzzy system.

There are many fuzzy implication operators known in the literature (Cordon et
al., 1997a; 1997b). However, the ones most often applied in fuzzy systems, especially
in fuzzy controllers, are Mamdani’s and Larsen’s types of inference, based on the
minimum and product operators, respectively (see Table 1). As we have mentioned
before, Mamdani and Larsen’s implications are not implications in a logical sense.
They should be interpreted rather as a conjunction of antecedent and consequent
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parts of fuzzy IF-THEN rules. They correspond to the 7-norm operators (minimum
and product). Other implications, listed in Table 1, can be interpreted in the spirit of
classical logical implications, but they are expressed by more sophisticated formulae
than Mamdani and Larsen’s ones. The Kleene-Dienes implication, also named the
Dienes-Rescher, Boolean or binary implication, represents a straighforward fuzzy in-
terpretation of the implication in classical logic. Other fuzzy implications named after
Yukasiewicz, Reichenbach, Fodor, Sharp, Goguen, Gédel, Yager, Zadeh, Willmott, are
inserted in this table as examples of genuine fuzzy implications.

Table 1. Fuzzy implications.

Name | Bar_ gk (%,Y)
Mamdani min [pak (x), pgk (3)]
Larsen Bax (x) ppr (y)

Kleene-Dienes | max [1 — pgx (x), ppr (y)]

Lukasiewicz | min [1,1— p 4k (x) + ppx (y)]

Reichenbach |1 — par (X) + par (%) - ppr (y)

1 if  par (%) < ppe(y)

Fodor {
max [1 — par (%), ppe ()] i par (%) > ppe ()

1 i pge (%) < ppe (v)
0 if gk (X)> pge (y)

Sharp

C))

1 if par (%) < ppe (y)
ppe (y) i par (%) > pps (y)

Godel

a 1 if pae(x)=0"
oguen

& min [1 M)‘] if par(x)>0
Yager {

pps ()P4 Hf g (x) >0
Zadeh max [ minfp 4x (%), ppe ()], 1 = pax (x)]
min | max{l - ax (%), w5e (V)]
max [p 40 (%), 1 = p e (9), min[1 = o (), 0 ()]

Willmott

2.3. Aggregation Methods

Usually, when Mamdani’s or Larsen’s type of inference is applied, a union operation
(S-norm) is employed as the aggregation. It is called Mamdani’s combination. If we
apply the genuine fuzzy implications (see Table 1), the intersection (T-norm) is a rea-
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sonable operation for the aggregation. This method is called the G&del combination
(Czogala and Eeski, 2000). The Mamdani combination corresponds to Mamdani’s
(constructive) approach and the Godel combination corresponds to the logical (de-
structive) approach to fuzzy inference.

With Mamdani’s approach the aggregated output fuzzy set B’ C Y is deter-
mined by the formulae:

N —
B'=|JB* (6)
k=1
and

N ,
pe(y) = S ppe(v), (7)

where S is an S-norm operator (a generalized form for more than two arguments),
usually chosen as the maximum operator.

Under the logical approach, the aggregation is realised as follows:

N —
B'=(B* (8)
k=1
and

po )= T s (), ©

where T is a T-norm operator (a generalized form for more than two arguments),
usually chosen as the minimum or the product operator.

This approach corresponds to the FITA type of inference. The fuzzy sets inferred
by individual IF-THEN rules are aggregated. When the FATI type of inference is
applied, individual fuzzy IF-THEN rules are aggregated first, which means that the
output fuzzy set B’ is inferred, according to the compositional rule of inference, in
the following way:

B' = A' o %R, (10)

where the method of the rule aggregation can be realised (under Mamdani’s approach)
by the union operation:

N
®=|JR*. (11)
k=1
In this case, the membership function of the fuzzy set B’ is expressed as follows:
T
ppe (y) = sup {,UA' (x) * 2%, Hars g (x,y)} - (12)

It is easy to show (Lee, 1990, Rutkowska et al., 1997) that in Mamdani’s approach
(Mamdani’s or Larsen’s types of inference) the FITA and FATI infer the same result
(the output fuzzy set B').
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2.4. Fuzzy Systems with a Fuzzifier and a Defuzzifier

The so-called ‘pure’ fuzzy systems perform the inference, according to formula (3), |
based on fuzzy implications (fuzzy relations) which correspond to IF-THEN rules
in the form (1) or (2). The inference with aggregation, under the FITA or FATI
approaches, determines an output fuzzy set B’ given an input fuzzy set A'.

In order to use fuzzy systems in the applications where inputs and outputs are
not fuzzy sets but real-valued variables, a fuzzifier and a defuzzifier is added to the
system. The fuzzifier maps crisp points in X to fuzzy sets in X. As mentioned
in Section 2.1, the most commonly employed fuzzifier is the singleton fuzzifier. The
defuzzifier maps fuzzy sets in Y to crisp points in Y. There are many defuzzification
methods (Driankov et al., 1993). In this paper, we apply the method called the centre
of area (COA). The following formula gives a discrete version of this method:

J* e (TF)

M=z

k

N ?
> up (7%)
k=1

Il
-

y= (13)

where ¢ is the crisp output value of the system, and g*, for k =1,...,N, are the
points in Y such that

ppe (@) = max {up(v)}- (14)

We usually assume that

ppe(F*) = 1. (15)

The points §* are called the centres of the membership functions pgx(y), k =
1,...,N.

As a matter of fact, (13) is a special case of the discrete version of the COA
defuzzification method, where the discrete points in Y are the centres of the mem-
bership functions of fuzzy sets B*. It is easy to show that this case of the COA is
the same as the centre average (CA) defuzzification method:

il k k
g ups(7°)
k=1

¥= (16)

N
’El ngx (%)

for k=1,..., N, if Mamdani’s approach is employed and the aggregation is defined
by (6), (7) with the maximum operator as the S-norm.
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3. Neuro-Fuzzy Architectures

Fuzzy systems with fuzzifiers and defuzzifier, described in Section 2 can be repre-
sented in the form of connectionist multi-layer architectures, similar to artificial neu-
ral networks (Zurada, 1992). This kind of fuzzy system representations, called the
neuro-fuzzy architectures, is very helpful from the learning point of view. Neuro-fuzzy
systems in the form of multi-layer networks can be trained with the use of algorithms,
analogous to the well-known back-propagation, commonly applied to neural networks.
The idea of these algorithms comes from the steepest-descent optimisation technique.
Special software which realises this method can be employed in order to train multi-
layer neural networks or neuro-fuzzy architectures. An example of this software is the
FLiNN programme (Pilinski, 1997a). Therefore, various neuro-fuzzy architectures are
proposed in this section.

3.1. General Multi-Layer Architectures

Let us consider a fuzzy system, introduced in Section 2, with a singleton fuzzifier and
a discrete form of the COA defuzzifier, given by (13), which depicts a crisp output
of the system while the crisp input is %. For the singleton fuzzifier, (5) describes the
inference performed by a single rule RF in the form (1) or (2), k = 1,...,N. The
rule corresponds to the fuzzy relation (implication) A* — B*. Thus, from (13), (7),
(9) and (5), we obtain the following description of the fuzzy system:

N
L 0N (%07
j== : (17)
Ak (i7 gk)
k=1
where
o ok 5 2 ok
A (%,5%) = jgl,uA:‘—mi (%,7%) (18)
in the case of Mamdani’s (constructive) approach, and
= ok Al < ok
X (%,7%) = jZIlLAi—»BJ' (x,7%) (19)

in the case of the logical (destructive) approach.

It is easy to notice that based on (17)—(19) we can represent the fuzzy system
described by these expressions in the form of the multi-layer, connectionist networks
depicted in Figs. 1 and 2, respectively. Figure 1 illustrates the neuro-fuzzy archi-
tecture in the case of Mamdani’s approach and Fig. 2 shows a similar architecture
in the case of the logical approach. These two architectures differ in the third layer,
where there are elements which implement an S-norm operator in the architecture
presented in Fig. 1 and a T-norm operator in the architecture depicted in Fig. 2.
This layer is called the aggregation layer. The other layers are the same in both the
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.ﬂAl(i) . ] .uyl(;"'k)v . ﬂa'(vk)

antecedent fuzzy
set layer

aggregation defuzzification layer

layer

Fig. 1. General architecture of implication-based neuro-fuzzy systems
in the case of Mamdani’s (constructive) approach.

® w6

oy

aggregation defuzzification layer
layer

antecedent fuzzy inference layer
set layer

Flg 2. General architecture of implication-based neuro-fuzzy systems
in the case of the logical (destructive) approach.
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neuro-fuzzy architectures. The first one contains the elements which realise the mem-
bership functions p4x(x) of the fuzzy sets A*, k=1,..., N. These fuzzy sets belong
to antecedent parts of IF-THEN rules (1) or (2). Therefore, this layer is called the
antecedent fuzzy set layer. The membership functions of these fuzzy sets can be e.g.
Gaussian membership functions, as shown in Figs. 1 and 2. The second layer is called
the inference layer. It performs the inference based on the fuzzy relations (implica-
tions) A¥ — B* which correspond to the IF-THEN rules. The last layer realises the
defuzzification, according to (13). Thus, this layer is called the defuzzification layer.
There are two typical neurons (Zurada, 1992) in this layer and the element which
performs division. The weights of the first neuron are the centres of the membership
functions ppx(y), cf. (14). The weights of the second neuron equal 1. The centres of
the membership functions pgs(y), as well as the centres and widths of the member-
ship functions px(x), can be trained in much the same way as weights in artificial
neural networks. Figures 1 and 2 present general architectures of implication-based
neuro-fuzzy systems.

3.2. NOCFS Architectures in Mamdani’s Approach

The inference layer in the general neuro-fuzzy architectures, introduced in Section 3.1,
contains elements which perform fuzzy relations (implications). For a particular type
of fuzzy relation A¥ — B*¥ k=1,..., N, we obtain a special case of the neuro-fuzzy
architecture which corresponds to this relation. Examples of the fuzzy implications
are listed in Table 1.

In order to find a special case of the system description (17) for a particular fuzzy
relation, let us start from (18) and (19). Let us notice that the S-norm in (18) can
be expressed as follows:

. N N
J,Elﬂ‘Aj—)Bf ()—C, gk) = S{#‘A"—)Bk (ia gk) 7j§1/J‘Aj—>Bj (ia ﬂk) } (20)

Jk
Let us consider Mamdani’s (constructive) approach to fuzzy inference with Mam-

dani’s (minimum operator) or Larsen’s (product operator) types of inference, cf. the
first two rows of Table 1. In the case of Mamdani’s implication (relation), we have

paips (%,§%) = min [pa (%), uss (7°)] (21)
and in the case of Larsen’s implication (relation), we get

paisps (X,0°) = pas (®)pps (7°) (22)
for j,k=1,...,N.

Let us assume that (15) is fulfilled. This means that pp;(§*) = 1 for j = k.
Therefore, from (18) and (20), we obtain

N
Ak (i,ﬂk) = S{MM (%) ,jflliAier (%, Z7k) }7 (23)
i#k
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where 45, pi(X,7%) is defined by (21) and (22) for Mamdani’s and Larsen’s impli-
cations, respectively.

Let us notice that if

g (@) =0 for j#k, (24)

then (23) takes the form

Ae(%,75) = par (%) (25)

and from (17) we obtain

N
> 7 par (%)
g="5 (26)

N
kgl pak(X)

In Section 2.4 we have seen that in Mamdani’s approach with the maximum
operator as the S-norm aggregation, the COA defuzzification (13) becomes a CA de-
fuzzification method (16). Thus, it is worth showing that from the CA defuzzification,
defined by (16), and from (5), (21) and (22), we obtain the same result as (26).

Formula (26) describes the fuzzy system based on Mamdani’s or Larsen’s impli-
cations if the assumptions (15) and (24) are fulfilled. The former is easy to fulfil.
It requires the maximal values of the membership functions pg«(y), k=1,..., N,
to be equal to 1, which means that fuzzy sets B* must be normal. The latter as-
sumption requires that B*’s cannot overlap. Figure 3 shows non-overlapping fuzzy
sets. Of course, a similar illustration can be given, e.g. for triangular membership
functions. Since the fuzzy sets B*, k = 1,..., N, belong to the consequent parts
of the IF-THEN rules (1) or (2), we call them non-overlapping consequent fuzzy sets
(NOCFS).

i ) T

d - . ™ 5 s, i

Fig. 3. Non-overlapping consequent fuzzy sets.

The neuro-fuzzy architecture which corresponds to the system description (26)
is depicted in Fig. 4. It is worth noticing that this architecture can be treated as a
normalized version of the RBF (radial basis function) network (Moody and Darken,
1989). '
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Fig. 4. NOCFS architecture based on Mamdani’s or Larsen’s implications.

3.3. NOCFS Architectures in the Logical Approach

In this section we present NOCFS architectures of the systems based on fuzzy im-
plications used in the logical (destructive) approach to fuzzy inference. We consider
implication-based neuro-fuzzy systems which employ other fuzzy implications, listed
in Table 1, except the Mamdani and Larsen fuzzy relations. We assume that the
conditions (15) and (24) are fulfilled and hence we apply non-overlapping consequent
fuzzy sets (illustrated in Fig. 3).

In much the same way as in Section 3.2, the T-norm in (19) can be written as

oo (5) =T s (5,54) T s (55°) b (27
jzlﬂAJﬂBi xYy) = BakBr \X, Y ,j:lﬂAa—uaJ X,y . (27)
J#k

For the Kleene-Dienes implication, we get

paiopi (%,§%) = max [1 - pai (%), s (5°)] - (28)

For the Lukasiewicz implication, we have

paispi (%,9%) =min [1, 1 - pas (X) + pes (57)] (29)
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For the Reichenbach implication, it follows that

paisps (%,7%) = 1= pai (%) + pas (X)pps (7°)- (30)
We can easily write similar expressions for other implications listed in Table 1.

Let us notice that for the Kleene-Dienes, Lukasiewicz, Reichenbach and Fodor
implication, whenever (15) is fulfilled, then we get pax_px(X,7%) = 1. If (24) is
fulfilled, then (28)-(30) become p4i_,p:i(X,§%) = 1 — pai(X). The same result is
obtained for the Fodor implication, since in this case (cf. Table 1) we have

paiop (X,7%) = ! . .if pas (%) =0,
1—pas () if pgi (R) >0.
Therefore, from (17), (19) and (27), we get the following formula which describes the

NOCFS systems based on the Kleene-Dienes, Lukasiewicz, Reichenbach and Fodor
implications:

N N
YT (- pas (%)
=1 Tk
7=~ (31)
£ 1 (1- s )
k=1 Tk

Figure 5 presents the NOCFS architecture of the systems described by (31).

Fig. 5. NOCFS architecture based on binary, Eukasiewicz or stochastic implications.
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Similarly, we can obtain formulae which describe the NOCFS systems based on
other fuzzy implications.

Let us notice that for the Sharp, Goguen, Gédel and Yager implications (cf. Ta-
ble 1), if the assumption (15) is fulfilled, then px_,gx(X,7*) = 1. If the assumption
(24) is fulfilled, then

pai g (%,§%) = {

From (17), (19), (27) and (32), we obtain the following formula which describes the
NOCFS systems based on the Sharp, Goguen, Gédel or Yager implications:

N N
S5 T 6 (s ()
k=1 -

1 if HAi (i) = 07

0 if pas (X) > 0. (32)

[N

_ #k
I=—x : (33)
> T 6 (pai (X))
k=1 Jj=1
J#£k
where
1if a=0
8(a) = ’ . 34
(@) { 0 if a>0, (34)
for a € [0,1].

Figure 6 presents the connectionist architecture of the system described by (33).
The multi-layer architectures illustrated in Figs. 5 and 6 differ in the second layer.
In Fig. 5 this layer contains neg elements which realize the complement operations of
fuzzy sets A7, j = 1,...,N, defined by 1 — p,;(X), where u,; is the membership
function of the fuzzy set A7. In Fig. 6 the second layer contains the elements which
perform the operation defined by (34). The former is the architecture of the NOCFS
neuro-fuzzy systems based on the Kleene-Dienes, Lukasiewicz or Reichenbach impli-
cations. The latter is the architecture of the NOCFS neuro-fuzzy systems based on
the Sharp, Goguen, G6del or Yager implications.

Now, let us consider Zadeh and Wilmott’s fuzzy implications (cf. Table 1). In
this case, if the assumption (15) is fulfilled, it is easy to show that pax_,gr (X, g%) =
max[p gk (X),1 — par(X)]. If the assumption (24) is fulfilled, then pai_,p;(X,7%) =
1 — pai(X). Therefore, from (17), (19) and (27), we obtain the following formula
which describes the NOCFS systems based on Zadeh’s or Wilmott’s implication:

N N
z?’“T{ max (par(),1 = par (X)), T (1= pai (%)) }
b=t g
i=— z (3)
> T{ max (pax (%), 1 — par (X)), T (1— pas (?—{))}
k=1 itk

Figure 7 presents the multi-layer, connectionist architectures of the NOCFS
neuro-fuzzy systems based on Zadeh’s or Wilmott’s implication, described by (35).
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The second layer in this architecture is the same as the second layer in the neuro-fuzzy
architecture illustrated in Fig. 5. Another layer (the third one), with elements which
perform the maximum operation, is added to this architecture.

i
i

i i
i njm
i

.1‘}*
:'];gi i :
.

B

T

e
]m}. ,
-
.!]131 ‘ﬁ]
s

Fig. 7. NOCFS architecture based on Zadeh’s or Willmott’s implication.
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3.4. OCFS Architectures in Mamdani’s Approach

In Section 3.2 the neuro-fuzzy architectures with NOCFS have been presented. We
can apply these architectures if the assumptions (15) and (24) are fulfilled, especially
the latter. Now let us assume that (24) is not fulfilled, which means that we allow
the consequent fuzzy sets B*, k = 1,...,N, to overlap. Figure8 illustrates the
overlapping fuzzy sets. Analogously to the NOCFS, we call the fuzzy sets B* which
can overlap the overlapping consequent fuzzy sets (OCFS).

/UBI:()’

Fig. 8. Overlapping consequent fuzzy sets.

As in Section 3.2, let us consider Mamdani’s (constructive) approach with Mam-
dani’s (minimum operator) or Larsen’s (product operator) types of inference. If the
assumption (24) is not fulfilled, the system is described by (17) and (23), where
pai_pi(X,9"*) is defined by (21) or (22), respectively, for Mamdani’s or Larsen’s
types of inference.

Write

pik = upi (7°) (36)
Thus, the system description is expressed by (17), where

Ak (}“c, gk) = S{uAk (i)’jgl min [/.LAJ‘ (i),pj,k] } (37)
J#k

for the OCFS system based on Mamdani’s implication, and

N
M (%,9%) =S {um (%), 5 pas (i)pj,k} (38)
J#k

for the OCFS system based on Larsen’s implication.

Figures 9 and 10 present neuro-fuzzy architectures which correspond to the sys-
tem descriptions (17) with (37) and (17) with (38), respectively.

It is easy to notice that if pjr = 0, 5,k = 1,..., N, then (37) and (38) take
the form of the expression (25) and in this case the neuro-fuzzy system is described

by (26). Thus, the OCFS system reduces to the NOCF system presented in Section 3.2
and illustrated in Fig. 4.
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Fig. 10. OCFS architecture based on Larsen’s implication.
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3.5. OCFS Architectures in the Logical Approach

In this section, we present OQCFS systems based on the implications listed in Table 1,
but not Mamdani’s and Larsen’s types of inference. Similarly to Section 3.4, let us
assume that the condition (24) is not fulfilled. The neuro-fuzzy systems are described
by formula (17) with (19) and (27). As we noticed in Section 3.4, pax_, g+ (X, %) =1
for the Kleene-Dienes, Lukasiewicz, Reichenbach and Fodor implications, as well as
in the case of Sharp, Goguen, Godel and Yager implications. Therefore, for these
implications, from (19) and (27), we have
N
Ak (iagk) = ,ZINAJ'—}Bj (ia 'l_k) . (39)
ik

It is easy to show, as in Section 3.3, that for Zadeh and Wilmott’s fuzzy impli-
cations 4k, g (X, 7%) = max[uax (%), 1 — pax (X)]. Therefore, in this case, from (19)
and (27), we obtain :

X (%,7%) = T{ max [p g (X),1— par (%) ], ﬁlmf—»m (%,7*) } (40)
o

From (17), (39), (28) and (36), we get the following description of the OCFS
neuro-fuzzy system based on the Kleene-Dienes implication:

N N —
gk le max [1 — pai (%), 0j k]
k=1 -
B J#k
PR (41)
> T max[1— pgs(X),pjk)
k=1 7=1
J#k

From (17), (39), (29) and (36), we have the following description of the OCFS
neuro-fuzzy system based on the Lukasiewicz implication:

N N
gk j:fl min [1,1 ~ p4i (%) + pji]
k=1 i
_ i#k
gt _ (42)
S T min [1,1 - pas (%) + i)
k=1 J;’];
T2k

From (17), (39), (30) and (36), we get the following description of the OCFS
neuro-fuzzy system based on the Reichenbach implication:

N " N _ _
PR N (1= pas (X) + pas (X)pj.x)
=1 -
_ i#k
R (43)
PR (1= pas (%) + pas (X)psin)
T j#k
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The description of the QCFS system based on the Fodor implication can be
obtained from (17), (39), (36) and the following expression (cf. Table 1):

1 if pas (%) < ppi (7°), (44)

. (X T =
paiogi (X,9") { max [1 — pas (%), pps (55)] if pas () > pes (7°) .

It is easy to show that (44) can be replaced by
paips (%,§%) = min [1,max [1 — pas (%), ups (5°)]
+ p(pas (%), nps ()], (45)

where

1if a<b
,b) = -7 46
plab) {Oifa>b. (46)
Thus, from (17), (39), (36) and (45), the OCF'S system based on the Fodor implication

is described by

3 7 T min [1,max(l — uas (), el + (s (), p30)]

k=1
(47)

1

N .
LZI itk min [1, max[l — p4i(X),pj k] + p(pai (i)apj,k)]
B

kxw

@I

From (17), (39), (36) and the following expression (cf. Table1):

e 1 pas (R) < s (5)
faimp (x’y)"{ 0 i pas (®) > ums (7)), “8)

we obtain the description of the OCFS system based on the Sharp implication

N k N
> 7 T p(as (%), pi)
_ - j#k
Y="~N "~ (49)
> T p(nas (%), pik)
=1 J=1
J#k

In much the same way, from (17), (39) and (36), we get the following description
of the OCFS system based on the Goguen implication (cf. Table 1):

N N .
5> T min [1, p‘”’k)_(]
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If pai(X) =0, then min[l,p; /i (X)] =1 in (50).
For the Godel fuzzy implication (cf. Table 1), we have the following expression:

ok 1 it pas (%) < pps (5F)
k A > MB ]
Haispi (X Y7 ) = _ . - - (51)
- (B7) { pei (7%) i pas (%) > pei (7°),
which can be replaced, analogously to the case of the Fodor implication, by
paispi (%,3°) = min [1, upi (5%) + p(pas (%), pes @) (52)

Thus, from (17), (39), (36) and (52), the description of the OCFS system based on
the Gdédel implication is expressed as follows:

N
kzl JZ:“ min {1, Pik +p(pas (%), pie)]
_ = J#k
j= (53)
>. T min [1 p],k+p(,U'AJ( ) Dik )]
T

For the OCFS system based on the Yager implication (cf. Table 1), from (17),
(39) and (36), we obtain the following equation which describes the system:

E g* T (pJ k)u’”( %)
J?”v
N N :
Z (pj, ) Had (%)
k= Hﬁk

QEI

(54)

Now let us consider the OCFS neuro-fuzzy systems based on Zadeh and Wilmott
implications. The descriptions of these systems can be determined from (17), (40),
(36), and the following expressions (cf. Table 1):

pai—psi (X,7°) = max [minfuas (%), pps (7)), 1 = pas ()] (55)
for the Zadeh implication, and

fhai—pi (%,5%) -—mln[max [1— pas (%), ppi (¥ k)],
max [pas (%), 1 — pps (%),

min [ = a5 (%), s (7] (56)

for the Wilmott implication. Therefore, the descriptions of these systems are given
by (17), where

A (%,7%) = T{max [ax (%), 1 — par ()],

N
I max [minlins (0, pial L - ()} 67
J#k
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for systems based on the Zadeh implication, and

Ae(%,7%) = T{ max [par (%), 1 — pax (X)),

]\r

.Tl min [max[l — 1145 (X), Dj k]
J:

Ik

max [p 45 (X),1 — pjr,minfl — py; (i),Pj,k]]] } (58)

for systems based on the Wilmott implication.

The multi-layer connectionst architectures of the systems presented in this sec-
tion have the form of the architecture illustrated in Fig. 2. The first layer (antecedent
fuzzy set layer), the aggregation layer and the last (defuzzification) layer are the same
in each architecture. The inference layer is different in each of them. It is easy to con-
struct this layer for each system considered in this section, based on the expressions
which depict g4, pi(X,7*) for the corresponding fuzzy implication. Examples of
these architectures can be found in (Nowicki, 1999; Nowicki and Rutkowska, 2000b;
2000c; Rutkowska and Nowicki, 2000). The inference layers may contain elements
which perform the complement operation (cf. Section 3.2), minimum and/or maxi-
mum operation, power operation (for the system based on the Yager implication), the
operator defined by (46), and others.

Let us notice that, similarly to the systems under Mamdani’s approach, if p;; =
0, for j,k =1,...,N, then the OCFS systems presented here reduce to the NOCF
systems under the logical approach described in Section 3.3.

4. Learning Methods

The multi-layer connectionist architectures of the neuro-fuzzy systems presented in
Section 3 can be trained similarly to the neural network learning, as mentioned at the
beginning of this section. The learning algorithms of special types of the neuro-fuzzy
systems described in Section 3 are presented in (Rutkowska, 1997; Rutkowska et al.,
1997; Wang, 1994). These algorithms employ the idea of the steepest-descent opti-
misation technique, analogously to the back-propagation method which is commonly
used in order to train artificial neural networks. The FLiNN programme (Pilifiski,
1997a) is an example of the software which performs training of the neuro-fuzzy sys-
tems with the use of this method. It is worth emphasizing that this kind of software
does not require mathematical formulae of the recursions which depict the learning
algorithm for particular neuro-fuzzy systems. The FLINN programme realizes the
back-propagation learning algorithm for a given neuro-fuzzy multi-layer architecture.
This means that this programme can propagate the output error from the last layer of
the network to previous layers, and tune the parameters, i.e. the centres and widths
of the membership functions, to minimize the output error of the system. It is very
important that this programme can realize the learning of the system based on the
architecture, i.e. the elements of particular layers and the connections between them.
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For some neuro-fuzzy systems it is very difficult to determine a mathematical formula
of the learning algorithm. It is much easier to construct a connectionist architecture
and to apply the FLiNN programme in order to train the system. For the details
concerning the FLINN software, one can refer to (Piliniski, 1997a; 1997b).

The idea of the back-propagation algorithm (Zurada, 1992), employed to tune
the parameter o, is expressed by the recursion

aQ (%,d;1)
T e ()

where 7 specifies the speed of learning, @ denotes a measure of the error, % is the
input value and d signifies the desired output value. The error is defined by

1

Qx.d) = 5[5 (®) - d]’, (60)

where 7 is the output value. If we apply this method to the connectionist multi-layer
architectures, each elements of these networks propagates the error from the output
to the inputs. According to (59), it is necessary to compute the derivative. For
the elements of the architectures which implement nondifferentiable functions, such
as ‘minimum’, ‘maximum’ or ‘power’, special methods of computing the derivative of
nondifferentiable functions are employed. Pairs of the input and desired output values,
(%,d;t), t =0,1,2,...,M, form a learning sequence. Usually, a similar sequence of
data is used to test the system after the training process.

o(t+1)=o0(t) (59)

The learning algorithm can be supported by other methods, such as competitive
learning, clustering algorithms or genetic algorithms. The more elements the neuro-
fuzzy architecture contains, the longer and more difficult the training process is.
Therefore, additional methods which support the learning process are very helpful
in some applications.

5. Applications

Neuro-fuzzy systems are usually applied to control and classification tasks. In this
section, we present results of application of the systems described in Section 3 and
trained using methods delineated in Section 4 to this kind of problems.

5.1. Classification

At first, we have chosen a very simple but illustrative example of classification (No-
wicki, 1999; Nowicki and Rutkowska, 1999; 2000b; Rutkowska and Nowicki, 2000;
Rutkowska et al., 1999). The task is to classify the points located in the square area
to three different classes: two semi-rings and the area of the square beyond the semi-
rings. The points which belong to the region of the first semi-ring should be assigned
number 1. The points included in the second semi-ring ought to be assigned to value
—1. The points located in the square area but beyond the regions of both the semi-
rings should be associated with number 0. In order to perform the classification task,
a learning sequence of 1089 points, evenly placed on the square area, with properly
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associated numbers 1, —1 or 0, was created. The neuro-fuzzy systems applied ten
rules in the form (1). Five of them referred to the first semi-ring class (the centres
of the consequent fuzzy sets equaled 1) and five to the second semi-ring class (the
centres of the consequent fuzzy sets equaled —1). The two coordinate values of
the points in the square area were fed to the inputs of the systems. The output
represents the number of the class which corresponds to a classified point. After
the learning process, the systems were tested on the sequence of 4225 points, evenly
placed in the square area. The results of the classification, performed by different
neuro-fuzzy systems presented in this paper, are reported in Fig. 11. As we see, the
worst effect of the classification was obtained for the systems which employ Mamdani’s
approach to fuzzy inference, i.e. NOCFS and OCFS systems based on Mamdani and
Larsen’s implications (see Figs. 11(a), (e) and (f)). The NOCFS systems which applied
Mamdani and Larsen’s relations correctly classified the points located in the area of
the two semi-rings but the points placed beyond these regions were classified to the
nearest semi-ring. This is illustrated in Fig. 11(a). This system requires more rules,
and some of them should refer to the third class (the area beyond the semi-rings) in
order to perform a good classification. The NOCFS neuro-fuzzy systems based on
the logical approach to fuzzy inference perform much better in the case of ten rules
associated with two semi-ring classes. These systems can recognize the third class.
This result is illustrated in Fig. 11(b), (c) and (d). The OCFS systems employed the
rules with different consequent fuzzy sets. The centres of the fuzzy sets were trained,
so these rules did not refer strictly to the semi-ring classes. Figures 11(g)—(o) present
better results than Figs. 11(e) and (f), which means that the systems based on the
logical approach perform better in this application than those based on Mamdani’s
approach.

We have also applied neuro-fuzzy systems to the well-known Iris classification
task. There are three species of the iris flowers: Setosa, Versicolor and Virginica.
Fisher’s iris data (Fisher, 1936) were used. Each of the data vectors was composed of
four components which corresponded to four features of the iris flower: sepal length,
sepal width, petal length and petal width. There were 150 data vectors, 50 for each
of the iris species. The task was to classify the data to the proper class of the three
iris species. The NOCFS neuro-fuzzy systems were applied to solve the classification
problem. Table 2 presents results of the classification for the systems constructed
based on two and three fuzzy IF-THEN rules. The table shows that the results are
better for the systems which employ the logical approach to fuzzy inference. The first
row refers to the NOCFS neuro-fuzzy systems based on Mamdani and Larsen’s fuzzy
implications (relations), i.e. the systems with Mamdani’s approach. The percentage
of the correct classifications is lower than in the case of the logical approach, i.e.
the systems based on the Kleene-Dienes, t.ukasiewicz, Reichenbach, Fodor implica-
tions (the second row in the table), the systems based on the Sharp, Goguen, Gédel,
Yager implications (the third row), and the systems based on Zadeh and Wilmott’s
implications (the last row).

The next examples of classification concern medical diagnosis. We have applied
neuro-fuzzy systems to the problems of diagnosing a tumor of the mucous membrane
of uterus and breast cancer. The data for the former case were received from a hospital
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Fig. 11. Results of the semi-ring classification problem obtained using NOCFS sys-
tems based on: (a) Mamdani, Larsen, (b) Kleene-Dienes, FLukasiewicz, Re-
ichenbach, Fodor, (c) Sharp, Goguen, Gédel, Yager, (d) Zadeh, Wilmott
implications, and OCFS systems based on: (e) Larsen, (f) Mamdani,
(g) Kleene-Dienes, (h) Lukasiewicz, (i) Reichenbach, (j) Fodor, (k) Sharp,
(1) Goguen, (m) Gédel, (n) Yager, (o) Zadeh, (p) Wilmott implications.

Table 2. Results of the iris classification.

NOCFS systems l for 2 rules | for 3 rules
Mamdani, Larsen 66.67% 97.33%
Kleene-Dienes, Lukasiewicz, Reichenbach, Fodor | 97.33% 98.00%
Sharp, Goguen, Gédel, Yager 67.33% 98.00%
Zadeh, Wilmott 97.33% 98.00%

in Czestochowa, Poland (Rutkowska, 1997; 1998). The training sequence contained
54 and the testing sequence 11 data records of women. Each record collected 9
attributes: the period of time after the menopause, body mass index, luteinizing
hormone, follicle-stimulating hormone, prolactin, estrone, estradiol, aromatase and
estrogenic receptor. The data for the latter case were provided by the University
of Wisconsin Hospitals and availaible from the Internet (Mertez and Murphy, 2000;
Wolberg and Mangasarian, 1990). From this database we got 487 different values of 10
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attributes: clump thickness, uniformity of cell size, uniformity of cell shape, marginal
adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli,
mitoses and the diagnosis. The data were split into learning and testing sequences
of 387 and 100 records, respectively. In both the cases the attributes were treated
as inputs to the neuro-fuzzy systems, and the diagnosis as the output. In the former
example we obtained 100% correct answers inferred by all the neuro-fuzzy systems
(Nowicki and Rutkowska, 2000a; 2000c; Rutkowska and Nowicki, 2000), whereas in
the latter example the percentage of the correct system responses ranged from 97,87%
to 98,72%, depending on the kind of the neuro-fuzzy system employed.

5.2. Control

Fuzzy and neuro-fuzzy systems constructed using Mamdani’s approach have been
mostly applied as fuzzy and neuro-fuzzy controllers (see e.g. Wang, 1994). Therefore,
we have checked the performance of the neuro-fuzzy systems, presented in this paper,
when applied to control problems. Well-known examples of control of the truck backer-
upper and the inverted pendulum were choosen (see e.g. Rutkowska, 1997; Rutkowska
et al., 1997; Wang, 1994). Figure 12 illustrates the trajectories of the truck controlled
by different neuro-fuzzy systems.

Fig. 12. Results for the truck backer-upper control problem obtained using NOCFS
systems based on: (a) Mamdani, Larsen, (b) Kleene-Dienes, Lukasiewicz,
Reichenbach, Fodor, (c) Sharp, Goguen, Gédel, Yager, (d) Zadeh, Wilmott
implications, and OCFS systems based on: (e) Larsen, (f) Mamdani,
(g) Kleene-Dienes, (h) Lukasiewicz, (i) Reichenbach, (j) Fodor, (k) Sharp,
(1) Goguen, (m) Godel, (n) Yager, (o) Zadeh, (p) Wilmott implications.



Implication-based neuro-fuzzy architectures 699

As can be seen from Fig. 12, only the systems based on the Goguen fuzzy impli-
cation cannot successfully control the truck. Some of the OCFS systems work worse
than their NOCF counterparts. This is not because of limited capabilities of these
systems. The OCFS neuro-fuzzy architectures contain more elements, so it is more
difficult to tune their parameters during the learning process.

6. Conclusions

The paper presents neuro-fuzzy systems built as multi-layer connectionist networks.
This kind of architectures can be trained to tune the parameters of the membership
functions using the software, such as the FLiNN programme (Piliniski, 1997a). Con-
sequently, the learning algorithm which incorporates the idea of back-propagation is
realised for each neuro-fuzzy system using its architecture. The main advantage is that
this method does not require mathematical forms of the recursions which describe the
algorithm of tuning system parameters. Thus, we can change the architectures and
the programme can easily perform the learning algorithm. Even if the architectures
contain many elements, they can be trained in this way. Let us notice that in many
cases it is difficult to determine the mathematical recursions of the back-propagation
learning, especially for nondifferentiable functions.

The most popular and commonly used Mamdani’s approach to fuzzy inference
is compared in this paper with the logical approach. The neuro-fuzzy systems con-
structed using both the approaches have been applied to classification and control
problems. Tt seems that the Mamdani’s approach is more suitable for control tasks,
while the logical approach performs better in classification tasks. However, both the
approaches can be employed in both the applications.

Looking at the results of the applications of the systems based on different fuzzy
implications, we observe a difference in their performance. More detailed information
about the performance of various neuro-fuzzy systems can be found in (Rutkowska,
et al., 2000). Let us notice that the systems based on some implications do not per-
form well for Gaussian membership functions. In these cases triangular membership
functions should be applied.

The NOCFS and OCF'S systems have been considered in this paper. The former
ones are a special case of the latter ones. Thus, those of the NOCFS neuro-fuzzy
systems are simpler than the architectures of the OCFS systems. The most commonly
applied neuro-fuzzy systems based on the Mamdani or. the Larsen’s fuzzy relation
(Rutkowska, 1997; Rutkowska et al., 1997; Wang, 1994) are NOCFS systems, with
the Mamdani’s approach.

In (Czogala and Eeski, 2001) a specific type of the equivalence of inference results
using a special type of fuzzy implication and the Mamdani/Larsen relation is studied.
The authors conclud that the inference algorithms based on conjuctive operators
(Mamdani, Larsen) in some cases seem to be faster, simpler and more exact than
the inference based on fuzzy implications (logical approach), but the latter type of
inference is sounder from the logical point of view.
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