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A NEURO-FUZZY SYSTEM BASED ON LOGICAL
INTERPRETATION OF IF-THEN RULES

JACEK LESKI*, NorBERT HENZEL*

Several important fuzzy implications and their properties are described on the
basis of an axiomatic approach to the definition of the fuzzy implications. Then
the idea of approximate reasoning using the generalized modus ponens and fuzzy
implications is considered. The elimination of the non-informative part of the
final fuzzy set before defuzzification plays the key role in this paper. After
reviewing well-known fuzzy systems, a new artificial neural network based on
logical interpretation of if-then rules (ANBLIR) is introduced. Moreover, this
system automatically generates rules from numerical data. Applications of AN-
BLIR to pattern recognition on numerical examples using benchmark databases
are indicated.

Keywords: neuro-fuzzy systems, soft computing, fuzzy implications, approxi-
mate reasoning

1. Introduction

Investigation of inference processes when premises and/or conclusions in if-then rules
are fuzzy is still a subject of many papers (Cao and Kandel, 1989; Czogata and
Kowalczyk, 1996; Cordon et al., 1997; Fodor, 1991; Fodor and Roubens, 1994; Kerre,
1992; Maeda, 1996; Mizumoto and Zimmermann, 1982; Trillas and Valverde, 1985;
Weber, 1983). In such processes, a sound and proper choice of logical operators
plays an essential role. The theoretical (mathematical) and practical (computational)
behavior of logical operators in inference processes has to be known before such a
choice is made. Both types of the above mentioned knowledge related to well-known
families of triangular norms and implications can also be found in the literature (Fo-
dor, 1991; Fodor and Roubens, 1994; Weber, 1983).

Some selected logical operators and fuzzy implications were also investigated with
respect to their behavior in the inference processes. The fuzzy if-then rules have on
the one hand a conjunction interpretation and, on the other hand the interpretation in
terms of classical logical implications. The inference algorithms based on the conjunc-
tive implication interpretation of if-then rules were simpler and faster with relation
to algorithms used for the logical interpretation of such rules. Additionally, applying
the conjunctive implication interpretation of if-then rules leads to intuitively better
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inference results. In the paper, we present an inference with specific defuzzification
that leads to simpler, faster and intuitively acceptable results. An artificial neural
network that automatically generates this kind of fuzzy if-then rules is also described.

In the literature, several methods of automatic fuzzy rule generation from given
numerical data have been described (Cho and Wang, 1996; Horikawa et al., 1992; Jang
and Sun, 1995; Kosko, 1987; Mitra and Pal, 1995; Wang and Mendel, 1992). The fact
that there is a functional equivalence between radial basis function networks (RBFNs)
and fuzzy systems was used by Jang and Sun (1993) to construct a Sugeno type of
adaptive network based fuzzy inference system (ANFIS) which is trained by the back
propagation algorithm. Another type of fuzzy system with moving fuzzy sets in the
consequents of if-then rules was proposed in (Eeski and Czogala, 1997).

The aim of this paper is a theoretical description and presentation of a new ar-
tificial neural network structure based on logical interpretation of if-then rules (AN-
BLIR). The novelty of the system lies in the introduction of a logical interpretation
of fuzzy if-then rules with moving fuzzy sets in the rules’ consequents. The described
system is applied to benchmark pattern recognition problems.

2. An Approach to Axiomatic Definition of Fuzzy Implications

We start our considerations applying an axiomatic approach (formulated by Fodor
(Fodor, 1991; 1995; Fodor and Roubens, 1994)) to the definition of a fuzzy implication,
which considers the implication as connective and seems to possess its most general
and characteristic properties.

Definition 1. The fuzzy implication is a function I : [0,1]> — [0,1] satisfying the
following conditions:

I1. If z <z then I(z,y) > I(z,y) for all z,y,2 €[0,1],
I2. If y <z then I(z,y) <I(z,z) forall z,y,z € [0,1],
I3. I(0,y) =1 (falsiness implies anything) for all y € [0, 1],
I4. I(z,1) =1 (anything implies tautology) for all z € [0,1],
15. I(1,0) =0 (Booleanity).
Assuming that a strong negation N : [0,1] — [0,1] is a strictly decreasing

continuous function, N(0) =1, N(1) =0, N(N(z)) =z for all z € [0,1], the N -
reciprocal of I defined by

a;,yEV[O’l]IN (l', y) = I(N (’y) , N (1‘)) (1)

is also considered to be a fuzzy implication.
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Now let us recall further properties, in terms of the function I, which could also
be important in some applications:

16. I(1,z) =z (tautology cannot justify anything) for all z € [0,1],
17. I(z,I(y,2))=1(y,I(z,z)) (exchange principle) for all z,y,z € [0,1],
I8. z <y iff I(z,y) =1 (implication defines ordering) for all z,y € [0, 1],
19. I(z,0) = N (z) for all z € [0,1] is a strong negation,
110. I (z,y) >y for all z,y € [0,1],
I11. I (z,z) = 1 (identity principle) for all z € [0,1],
112. I(z,y) = I(N (y),N (z)) with a strong negation N for all z,y € [0,1],
113. T is a continuous function.
The most important fuzzy implications representing the classes of fuzzy implica-

tions discussed above are summarized in Table 1.

Table 1. Selected fuzzy implications.

Implication Name Implication Form

Lukasiewicz min{l -z +y,1)

Fodor { L Ty
max (1 —z,y), >y

Reichenbach l—z+zy

Kleene-Dienes max (1 — z,y)

Zadeh max [1 — z, min (z,y) |

3. Approximate Reasoning Using Fuzzy Implications and Gen-
eralized Modus Ponens

Fuzzy implications are mostly used as a way of interpretation of the if-then rules with
fuzzy antecedents and/or fuzzy consequents. Such rules constitute a convenient form
of expressing pieces of knowledge and a set of if-then rules forms a fuzzy rule base.
Let us consider the canonical form of a fuzzy if-then rule R(®), which includes other
types of fuzzy rules and fuzzy propositions as special cases, in the (MISO) form:

R®: if X, is AP and ... and X, is AP then Y is B®, (2)
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where X; and Y stand for the linguistic variables of the antecedent and the conse-
quent and Agk),B(k) are fuzzy sets in the universes of discourse X; C R, Y C R,
respectively.

Such a linguistic form of fuzzy if-then rule can also be expressed as a fuzzy
relation

R®) — (Agw s oex AW = B(’“)) - (_4(@ — B(’“)), 3)
where A(’“) = AYC) X+ X A%k) is the fuzzy relation in X = X; x - -+ x X,, defined by
(4 x - x AD) (1, 20) = AP (@1) 37+ 41 AP (@) = AW (2),  (9)

and *7 denotes the respective t-norm T' (Weber, 1983).

Fuzzy if-then rules may be interpreted in two ways: as a conjunction of the
antecedent and the consequent (Mamdani combination) or as a fuzzy implication
(Czogala and Kowalczyk, 1996; Dubois and Prade, 1991; 1996; Weber, 1983; Yager,
1996). In this paper, we mainly exploit the second interpretation.

Approximate reasoning is usually executed in a fuzzy inference system which
performs a mapping from an input fuzzy set A’ in X to afuzzy set B' in Y via a fuzzy
rule base. Two methods of approximate reasoning can be used: a composition based
inference (first aggregate then inference—FATI) and individual rule based inference
(first inference then aggregate—FITA).

In the composition based inference, a finite number of rules £k = 1,...,K are
aggregated via intersection or average operations, i.e.:
K
= (k)
R=(, E®, (5)
k=1

where ﬂT’E denotes the symbol of the aggregation operation using ¢-norm T or aver-
ages (e.g., a normalized arithmetic sum) for aggregation of the respective membership

functions:
*T *T
+ +

Taking into account an arbitrary input fuzzy set A’ in X and using the generalized
modus ponens we obtain the output of the fuzzy inference (FATI):

R(z,y) = R (z,y) R (z,y). (6)

K K
IEY: Y. (kY _ a7 (k) (k)
B'=AoR=4o() R _Aoﬂw(é — B ) (7)
k=1 k=1
or, in terms of membership functions,
K

Ar

B'(y) = sup [A' (2) * R(z,y)] = sup |A' @)+ | ' | BW (z,9)], (8)
z€X z€X K

k=1
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where Ar,*r denote t-norms T,T" for aggregation and composition, respectively.
The symbol £ denotes the normalized arithmetic sum as aggregation.

In an individual rule based inference (FITA) each rule in the fuzzy rule base
determines an output fuzzy set and after that an aggregation via intersection or an
average operation is performed. So the output fuzzy set is expressed by means of the
formulas:

K

ol lae @@=} .
k=1
or p
Ar |
') = | | s[4 @) e B @ )] (10)
Z EASE S
k=1

It can be proved that B’ is more specified than B, i.e.
B'CB" or Y B'(y)<B"(y). (11)
yey
This means that the consequent B’ is equal to or contained in the intersection of fuzzy

inference results—B"’. For simplicity of calculation, the consequent B’ is replaced
by B’ while supposing that the differences are not too excessive.

If the input fuzzy sets Aj,..., Al or (4') are singletons in Zi9,...,Zno Or (Z4),
the consequent B’ is equal to B" (B'(y) = B"(y)). In this case we obtain
- K A
Vs
By)=B") = | "= | [A® (@) 7 BY] (12)
| &
or, with a logical interpretation of the fuzzy implication,
- K
\r
By)=B"()=| = | 1(4® (@),BY). (13)
>
L k=1 J

4. Fundamentals of Fuzzy Systems

Assume that m numbers of n-input and one-output (MISO) fuzzy if-then rules are
given. The k-th rule in which the consequent is represented by a linguistic variable
Y may be written in the following form: '

R® . if X is A and ... and X, is A®) then Y is B®) (14)
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or, in a pseudo-vector notation,
R® . if X is A® then ¥ = BW, (15)
where

X =[Xi Xz ... Xa]. ' (16)

X1, Xs,..., X, and Y are linguistic variables which may be interpreted as the inputs
of a fuzzy system and the output of that system. Agk), cey ASf) represent the linguistic
values of the linguistic variables X, Xs,..., X, and B®) is the linguistic value of -
the linguistic variable Y.

A collection of the above rules for kK = 1,2,... K forms a rule base which may
be activated (fired) under the singleton inputs:

X, is z10 and ... and X, is Zno (17
or
X is z. (18)

It can easily be concluded from (13) that for such a type of reasoning the inferred
value of the k-th rule output for crisp inputs (singletons) may be written for the logical
implication interpretation in the form

B'(y) = Ri(zo) => B® (y) = I(Rx(zo), B¥ (1)) (19)
and for the conjunctive implication interpretation as

B'(y) = Ri(zo) *r B® (y) = 7 (Ri(z0), BY v)), (20)

where ‘==’ stands for the fuzzy implication and
Ri(zy) = AW (z10) and ... and A®) (z,0) = AP (zp) (21)

denotes the degree of activation (the firing strength) of the k-th rule with respect
to the minimum (A) or the product (-). The latter represents an explicit connective
(AND) of the predicates X; is Agk); k =1,2,...,n in the antecedent of an if-then
rule.

A crisp value of the output can be obtained using the Modified Center of Gravity
(MCOG) as defuzzification (Czogala and Eeski, 1998):

[ z[B(z) — a] dz
J[B(z) —a] dz ’

where a is constant. The subtraction of a € [0,min, B (z)] eliminates the non-
informative part of the membership function B(z) and leads to better inference
results in the case of a logical interpretation of the implication. For a = 0 we get

MCOG[B(z)] =

(22)



A neuro-fuzzy system based on logical interpretation of if-then rules 709

the well-known COG defuzzification. A final crisp value of the system output for the
sum as aggregation and MCOG defuzzification can be evaluated from

/ylé1 {¥ [Re(z0), B®) (y)] — ax} dy

Yo = e
[ & (¥ [Ralo), BOW)] - )} dy

k=1

K
[y 2 EOW - ada
= ; (23)
> [B'®)(y) — ax] dy

k=1
where ¥ stands for the fuzzy implication I or ¢-norm T for the logical or conjunctive
implication interpretations, respectively. A method of determining the values a will
be described later. Now we set B*(¥) := B'(¥) _ o The membership functions of

the fuzzy sets B*(*) can be represented by the parameterized functions

B . fk) [Area ( B*(k)) ,ycm] , (24)
where
B*®) (y) d
y(k) — Jy : (y)dy (25)
[ B*®)(y) dy
is the center of gravity (COG) of the fuzzy set B*(¥),
Consequently, the final output value can be written down in the form
K
y(®) Area (B*(k))
Yo = kZIK ; (26)
> Area (B*(R))
k=1

where B*() is the resulting conclusion for the k-th rule before aggregation.

Note that fuzzy systems with Larsen’s product as the conjunctive ‘fuzzy impli-
cation’ of the if-then rules and symmetric triangle (isosceles triangle) membership
functions for consequents B*(*) can be calculated using the well-known formula

(27)

where w(*) is the width of the triangle base for the k-th rule. It should be noted
that the factor w(*¥)/2 may be interpreted as a respective weight of the k-th rule or
its certainty factor.
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Another important fuzzy system is the so called Takagi-Sugeno-Kang system.
Assume that m numbers of n-input and one-output (MISO) fuzzy implicative rules
or fuzzy conditional statements are given. The k-th rule can be written in the form

R®: if Xy is AP and ... and X, is A®) then ¥ = f® (Xy,...,X,) (28)
or, in a pseudo-vector notation,
R® . if X is A® then ¥ = f® (X). (29)

A crisp value of the output for Larsen’s fuzzy relation (product) and aggregation
(normalized sum) can be evaluated from (Cho and Wang, 1996)

K
> Ak (zo) f®) (zp)
k=1

Yo = = : (30)
A (2o)
k=1
Taking into account that
F® (z0) = i, (31)

where pék) is a crisply defined constant in the consequent of the k-th rule. Such

a model is called the zeroth-order Sugeno fuzzy model. A more general first-order
Sugeno fuzzy model is of the form

£ (o) = P8 + pF w0 + -+ PP g, (32)
where p((]k),pgk), ceey pslk) are all constant.
In vector notation it takes the form
F® (zo) = p™M "z, (33)
where
1
4[ } (59
Zo

denotes the extended input vector. Notice that in both the models the consequent is
crisp.

In (26) the value describing the location of COGs for consequent fuzzy sets in
if-then rules is constant and equals y(*) for the k-th rule. A natural extension of the
situation described above is the assumption that the location of the consequent fuzzy
set is a linear combination of all inputs for the k-th rule:

y® (zg) = p™ 7y, (35)
Hence we get the final output value in the form

K
kz—:l Area (B*(®)) p(WT g
Yo = — ) ' (36)

Area (B*(k))
k=1

where B*(%) is the conclusion for the k-th rule before aggregation.
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5. Fuzzy System with Logical Interpretation of If-Then Rules
(ANBLIR)

We assume that the premises of the if-then rules Agk), .. ,Asf) have Gaussian mem-

bership functions:
2
(k)™
AW (zj0) = exp ~—---——(

J 9 (s§k))2

where ¢®) and sg-k) for j=1,2,...,n and k=1,2,...,K are parameters. On the
basis of (21) and for the explicit connective AND taken as the product we get

, (37)

A (z5) = TT A9 (z0). (39)
j=1

On the basis of (37), we get

&Y
n | Zjo — ¢;
Ry(zg) =exp |- (—k)“'z')— : (39)
=1 2 (sg )
Additionally, we assume that the consequents B*) of the k-th if-then rule have
symmetric triangle (isosceles triangle) membership functions with the width of the

triangle base w(*). For computing the system output we must calculate Area (B*(®).
From (19) and (23), we have

B*®(y) = I [Ri(z,), BV - on. ' (40)
For an implication satisfying 19 we assume that
ar =1 — Ri(zg). (41)

For example, if we use the Reichenbach implication, we get
*)

y
Area (B*(k)) =2 / {I [Rk(.ilo)»B(k)] —ak}dy
y(B) ) /2
)
=2 / [1 — Ri(zo) + Ri(zo)B® — 1+ Rk@o)} dy
y(¥) —w(k) /2
()
2(y—y")
g0 (k) /2

wk
= TRk(.@Zo) =g [Rk(ﬁo)a'w(k)] . (42)
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This situation is graphically illustrated in Fig. 1.

B™M(y), B™M(y), B*(y)

informative part of BM'(y) .
.- By

1-R,(X,)

Ry (X,)

0 y¥ y

wik

F 3
v

Fig. 1. Informative and non-informative parts for the resulting conclusion
before the aggregation using the Reichenbach fuzzy implication.

The respective formulas for g [Rk (zg), w(’“)] for other implications are presented
in Table 2 (for simplicity, the abbreviated forms are used: R £ Ry(z,), w £ w)).
If we use the symbols from the table, then (36) takes the form

B _
Py [Ri(z0), w®] p™Tgg

Yo = (43)

K

kE 9 [Ri(zo), w™]
=1

For n inputs and K if-then rules we have to determine the following unknown pa-
rameters:

. cgk),sg-k), J=12,...,n; k=1,2,..., K,i.e., the parameters of the membership
functions of the input sets,

. pﬁk), j=01,...,n k =12,...,K, iLe., the parameters determining the
location of the output sets,

e wk) k=12 ... K, ie., the parameters of the output sets.

Obviously, in real problems, the number of if-then rules is unknown. Let us
observe that (39) and (43) describe a radial-like neural network. The unknown pa-
rameters (except the number of rules K) are estimated by means of a gradient method
performing the steepest descent on a surface in the parameter space. Therefore the
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Table 2. Some derivatives required for selected implications.

Implication g (R,w)

Yukasiewicz % (2R - R2)

(1—2R+R2) if R>
Fodor

e |

> (2R - R?) if R<

R O

Reichenbach -1;)— R

Kleene-Dienes % R?

Zadeh

|
N~ N

so-called learning set is necessary, i.e., a set of inputs for which the output values
are known {z,(%),t0(1)}, ¢ = 1,2,...,N. The measure of the output error may be
defined for a single pair from the traming set:

E = % (to —0)°, (44)

where to stands for the desired (target) output value.

The minimization of E is made iteratively (for the parameter a):

(@new = @a = n9e| (45)

az(a)old
where 7 signifies the learning rate.

The partial derivatives of E with respect to the unknown parameters are of the
form

o - (yo — to) [y(_:‘) (20) = Yol R (o) 9 [Rr(zy ), w®] @jo — c(k)

3_697 - > 9 [Ri(_ago) w(i)] ORk(z4) 2(55@)2 ) (46)
o8 ™ (z4) — yo] Ri(zg) 09 [Ri (o), w®] (x40 — c§k))2
55 (%o — to) £ T B h(zy) 2P (47)
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Fig. 2. Graphical illustration of an artificial neural network based
on the logical interpretation of if-then rules (ANBLIR).

oF Ri(zg), w®
o G = B0 t) If[ rleo) w7 Tjo,
P Eetiso vl
OE Rz ’w(k)
W:(yo_to)g[ k(_-O) ] ’
Po 3> g [Ri(z,), w®]
i=1
0B _ y® (z4) —yo  0g [Ri(g,), w®]
o™ (0 — to) ' ) .
;g [Ri(zy), w®]

(49)

(50)

The unknown parameters can be modified on the basis of (45) after collecting each
input-output pair or after collecting all such pairs (cumulative method). Additionally,
the following heuristic rules for changes in 7 may be applied (Jang et al., 1997). If the
mean square error in four consecutive iterations has decreased for the whole learning
set, then the learning parameter is increased (multiplied by ny). If the error in four
consecutive iterations has increased and decreased, then the learning parameter is

decreased (multiplied by np).

Another solution accelerating the convergence of the method is the estimation of
parameters 1_9(’“), k =1,...,K by means of the least-squares method. The output
value yo of the system in (43) may be considered to be a linear combination of the
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unknown parameters Q(’“). If we introduce the notation

g [Br(z,), w™]

S®) (g,) = = — (51)
Tg’lg [Ri(%)’w(l)}
) T
D (z,) = [S(I)w()T PSPl L S(K)x{)T] , (52)
) T
P [B(l)T PpOT L B(K)T] 7 (53)

eqn. (43) can be written in the form:

yo = D (zo)" P. - (54)

Hence the parameters P may be estimated via the least-squares method. To
eliminate matrix inversion, we use a recurrent method. For the k-th step (k-th
element from the learning set), we get (de Larminat and Thomas, 1977):

B(k) = P(k—1)+G(k - 1)D[zy ())] {wo(k) — Dlzo (&) "Bk — 1)}, (55)

G(k) = G(k—1)—G(k —1)D[z, (k)]

-1
x{Dle, ()] "Gk = DD[zy B)] +1}  Dlze (W] G ~1). (56)
To initialize the computations, we take

{ P(0)=0,

G (0) = pI, S

where I is the identity matrix and B denotes a large positive constant (e.g., 10).
Finally, in each iteration the parameters p(*) are estimated on the basis of (55) and
(56), whereas the other parameters by means of the gradient method (45)—(47), (50).

Another problem is the estimation of the number m of if-then rules and initial
values of the membership functions for the premise part. This task is solved by
means of preliminary clustering of the input part of the training data using a fuzzy c-
means method (Bezdek, 1981; Pal and Bezdek, 1995). This method assigns each input
vector z4 (k), k =1,2,...,N to clusters represented by prototypes v;, i = 1,...c
measured by grades of membership u;; € [0,1]. The ¢ x n partition matrix satisfies
the following assumptions:

[«
Y ;uikzla

N (58)
Y g 0,N).
y Zuke( )

k=1
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The c¢-means method minimizes the scalar index

N ¢
2
T =Y uly llag (k) — ] (59)
k=1 i=1
with respect to r > 1.
Defining D;z = ||z (k) — v;||, where ||| is a vector norm, we get an iterative

method of the consecutive modification of the partition matrix and prototypes (Bez-
dek, 1981):

N
2 iy Zo (k)

_ k=1 )
ZU&
k=1
c /D -1
Vo oug = ik . 61
¥ ;(Dk) (61)

Accordingly, the obtained calculations are initialized using a random partition
matrix U which satisfies (58). Such a method leads to a local minimum for (59).
Therefore, the most frequently used solution is baseed on multiple repeated calcula-
tions in accordance with (60), (61) for various random realizations of partition matrix
initializations. The computation is stopped when a predefined number of iterations
(in our case 500) are executed or when in two consecutive iterations the change in J,
is less than an imposed value (in our case 0.001).

As a result of preliminary clustering, the following assumption on the ANBLIR
initialization can be made: ¢¥) =v; for j =1,2,...,K and

sU) = k=1 _ , (62)

For the calculations presented in the next section, the Reichenbach fuzzy im-
plication due to the simplicity of the g (R,w) function was applied. The ANBLIR
parameters were set to the values 7 =10.01, ny = 1.1, np = 0.9, § = 10%, r = 2.

6. Application of ANBLIR to Pattern Recognition

In this section, we present an application of the proposed fuzzy system to a pattern
recognition problem. If the patterns from a learning set belong to classes w; and wy,
then we can build a fuzzy system whose output takes positive values for the patterns
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from w; and negative or zero values for wy. If we denote by yo = ®(z,) the fuzzy
system, we get

>0 if zy(k) € wi,
yo(k) = 12 [z, (k)] <0 if _O(k) Ew (63)
S I Zy .

During the learning process of a classifier, we take tp(k) = 1 for each pattern
Zo(k) from class wy and to(k) = —1 for each pattern from class wy. For a larger
number of classes (wi,ws,...,wp, p > 2), an extension class-rest or class-class can
be used (Ripley, 1996; Tou and Gonzalez, 1974). The latter was used in our method
due to the existence of common feature regions for which the classifier class-rest does
not give the answer which class the classified pattern belongs to. The disadvantage
of such a solution is the necessity of constructing a larger number of classifiers. Let
us denote by

>0 if zy(k) € wi,
volk) = %5 2 (K] <0 if zy(k) e (64
< Iz wj

the classifier making the decision whether a pattern belongs to the i-th or the j-th
class.

Obviously, we do not construct the classifier ®;; and the information about the
membership to the i-th and the j-th classes can be obtained on the basis of the ®;;
or ®;; classifiers. Hence we construct p(p—1)/2 classifiers ®;; for 1 <1 <p, j > i.
The classification condition for the i-th class has the form

jZi @.i]‘ [%(k)] > 0= Qo(k) € Wwj. (65)

The learning process runs as follows: for each pair of indices ¢j (1 <7 < p, j > 1)
we assume to(k) = 1 for a pattern zg(k) belonging to class w; and to(k) = —1 for
a pattern zo(k) belonging to class w; (the patterns belonging to other classes are
removed from the training set) and we conduct the learning process of the classifier.
The final pattern classification is made based on the condition (65).

7. Numerical Examples

All the databases presented in this section were obtained from the UCI machine
learning repository (http://www.ics.uci.edu/ mlearn/MLSummary.html). These
standard databases are commonly used for evaluating the performances of classifiers.

7.1. Application to Forensic Glass Classification

The data from forensic glass tests were collected by B. German on 214 fragments of
glass. Each case has a measured refractive index and composition weight percentage
of oxides of Na, Al, Mg, Si, K, Ca, Fe and Ba. The fragments were classified into
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six types: window float (WinF, 70 cases), window non-float (WinNF, 76 cases), ve-
hicle window (Veh, 17 cases), containers (Con, 13 cases), tableware (Tabl, 9 cases)
and vehicle headlamps (Head, 29 cases). This database had been tested exhaus-
tively using standard methods of pattern recognition in (Ripley, 1996). The ob-
tained error rates are as follows: a linear classifier—38%, logistic discrimination—
26.2%, a neural network (back-propagation with eight hidden units)—24.8%, a nearest
neighbor method—23.4%, learning vector quantization—29.9% and a tree-structured
classifier—32.2%. The method of classifier construction proposed in this paper was
also applied to this database. 500 iterations of learning were executed for each clas-
sifier. The number of if-then rules varied from 2 to 5. The error rates equal: 18.22%
(two rules), 12.62% (three rules), 10.75% (four rules) and 7.48% (five rules) with the
confusion matrix presented in Table 3.

Table 3. Simulation results for classification of the forensic glass.

| WinF | WinNF [ Veh [ Con | Tabl | Head |

WinF 66 3 1 0 0 0
WinNF 8 68 0 0 0

Veh 3 1 13 0 0 0
Con 0 0 0 13 0 0
Tabl 0 0 0 0 9 0
Head 0 0 0 0 0 29

7.2. Application to the Famous Iris Problem

The iris database is perhaps the best known database to be found in the pattern
recognition literature. The data set contains 3 classes of 50 instances each, where
each class refers to a type of the iris plant. The vector of features consists of the
following elements: sepal length in cm, sepal width in cm, petal length in cm, and
petal width in cm. We consider three classes of patterns: Iris Setosa, Iris Versicolour
and Iris Virginica. The confusion matrix for 500 learning iterations and two if-then
rules is shown in Table 4. The error rate is equal to 1.33%. The increase in the rule
number did not cause any decrease in the error rate.

Table 4. Simulation results for classification of the iris database.

[ ] Iris Setosa l Iris Versicolour | Iris Virginica
Iris Setosa 50 0 0
Iris Versicolour 0 50 0

Iris Virginica 0 2 48
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7.3. Application to Wine Recognition Data

These databases are the results of a chemical analysis of wine produced in the same
region in Italy but coming from three different producers. The analysis determined
the quantities of 13 constituents found in each of the three types of wine. The data
were collected by M. Forina and used by many others for comparing various classifiers.
The classes are separable, though only a radial discriminant analysis achieved 100%
of correct classifications (RDA: 100%, QDA: 99.4%, LDA: 98.9%, 1NN: 96.1%). 500
learning iterations were executed for the classifier described in Section 6. Correct
classifications 99.43 and 100% were obtained.

7.4. Application to MONK’s Problems

The MONK’s problem was the basis of the first international comparison of learning
algorithms. The result of this comparison is summarized in (Thrun et al., 1991). One
significant characteristic of this comparison is that it was performed by a collection of
researchers, each of whom was an advocate of the technique they tested (often they
were the authors of various methods).

In this sense, the results are less biased than those obtained by a single person
advocating a specific learning method, and more accurately reflect the generalization
behavior of the learning techniques as applied by knowledgeable users. There are
three MONK’s problems. The domains for all of them are the same. One of the
MONK’s problems has noise added. For each problem, the domain was partitioned
into training and testing sets. The vector of features for each pattern consists of 7
features which take the following values: first feature—1,2,3, second—1,2,3, third—

2, fourth—1,2,3, fifth—1,2,3,4, sixth—1,2. The patterns were classified into two
classes. Taken from (Thrun et al., 1991), the results of testing for various methods
are collected in Table 5. It should be pointed out that methods which gave the
highest percentage of correct classification were selected. The testing results obtained
by means of the method described in this paper are presented in Table 5 as well.
The number of if-then rules varied from 2 to 4 and the number of executed iterations
varied from 25 to 6000 depending on the considered problem.

8. Conclusions

In some cases the inference algorithms based on conjunctive operators seem faster,
simpler and more exact than fuzzy implication based inference systems. Moreover,
the interpretation of the fuzzy if-then rules based on fuzzy implications is sounder
from the logical point of view.

In this paper, a new artificial neural network based on a logical interpretation
of if-then rules (ANBLIR) has been described. Such a system can be used for an
automatic if-then rule generation. The novelties of this system in comparison with
the well-known solutions from the literature are the logical interpretation of fuzzy
if-then rules and moving fuzzy sets in consequents. A combination of gradient and



720 J. Beski and N. Henzel

Table 5. Simulation results for classification of the MONKS problems.

Method MONKS-1 | MONKS-2 | MONKS-3
ANBLIR, K =2 97.9% 88.8% 92.9%
ANBLIR, K =3 100% 100% 97.6%
ANBLIR, K =4 100% 100% 95.5%
AQ-15 Genetic 100% 86.8% 100%
Assistant Professional 100% 81.3% 100%
NN with weight decay 100% 100% 97.2%
Cascade Correlation 100% 100% 97.2%
CN2 100% 69.0% 89.1%
ECOBWEB 71.8% 67.4% 68.2%
ID5R-hat 90.3% 65.7% —
mFOIL 100% 69.2% 100%
PRISM 86.3% 72.7% 90.3%

least-squares methods of parameter optimization for ANBLIR, was used. For initial-
ization of calculations preliminary fuzzy c-means clustering was applied. A promising
application of the system to standard pattern recognition problems was demonstrated.
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