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NEURAL NETWORKS IN THE FRAMEWORK
OF GRANULAR COMPUTING

WitoLp PEDRYCZ***

The study is concerned with the fundamentals of granular computing and its ap-
plication to neural networks. Granular computing, as the name itself stipulates,
deals with representing information in the form of some aggregates (embracing
a number of individual entitites) and their ensuing processing. We elaborate
on the rationale behind granular computing. Next, a number of formal frame-
works of information granulation are discussed including several alternatives
such as fuzzy sets, interval analysis, rough sets, and probability. The notion of
granularity itself is defined and quantified. A design agenda of granular com-
puting is formulated and the key design problems are raised. A number of
granular architectures are also discussed with an objective of dealineating the
fundamental algorithmic and conceptual challenges. It is shown that the use of
information granules of different size (granularity) lends itself to general pyra-
mid architectures of information processing. The role of encoding and decoding
mechanisms visible in this setting is also discussed in detail along with some
particular solutions. Neural networks are primarily involved at the level of nu-
meric optimization. Granularity of information introduces another dimension
to the neurocomputing. We discuss the role of granular constructs in the design
of neural networks and knowledge representation therein. The intent of this
paper is to elaborate on the fundamentals and put the entire area in a certain
perspective while not moving into specific algorithmic details.

Keywords: information granulation, pyramid architectures, encoding and de-
coding, neural networks, learning, knowledge representation

1. Introduction

Last years saw a rapid growth of interest in so-called granular computing and com-
puting with words as one among its realizations (Zadeh, 1996; 1997). In a nutshell,
granular computing is geared toward representing and processing basic chunks of
information — information granules (Pedrycz, 1998; Zadeh, 1979). Information gran-
ules, as the name itself stipulates, are collections of entities, usually originating at the
numeric level, that are arranged together due to their similarity, functional adjacency,
indistinguishability or alike. The process of forming information granules is referred
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to as information granulation. No matter how this granulation proceeds and what
fundamental technology becomes involved therein, there are several essential factors
that drive all pursuits of information granulation. These factors include

o A need to split the problem into a sequence of more manageable and smaller sub-
tasks. Here granulation serves as an efficient vehicle to modularize the problem.
The primary intent is to reduce an overall computing effort.

e A need to comprehend the problem and provide with a better insight into its
essence rather than get buried in all unnecessary details. In this sense, gran-
ulation serves as an abstraction mechanism that reduces an entire conceptual
burden. As a matter of fact, by changing the ‘size’ of the information granules,
we can hide or reveal a certain amount of details one intends to deal with during
a certain design phase.

The long-lasting tradition of computing using some specific information gran-
ules is a visible testimony that some specific versions of granular computing are om-
nipresent indeed. As a matter of fact, as we discuss in this study, digital-to-analog
transformation leading to digital computing for the analog world is just a highly rep-
resentative (albeit quite specific) instance of granular computing. By tradition (and
the associated technology dominant at that time), we have embarked on the digital
world of computing. To interact with the continuous (analog) world, we use set-
based granulation (more specifically, interval-valued granulation). This specific type
of granulation comes under the name of analog-to-digital conversion.

Information granules may arise as a phenomenon of inherent nonuniqueness asso-
ciated with the problem at hand. As a simple example, one can resort himself to any
inverse problem; the type of characteristics involved (as the functions may be non-
invertible) gives rise to relations and as a result, a collection of information granules
rather than single numeric quantities. Dropping some input variable in a model may
also lead to the same effect of granular information.

We may witness (maybe not always that clearly and profoundly) that the concept
of granular computing tends to permeate a number of significant endeavors. The rea-
son is quite straightforward. Granular computing as opposed to numeric computing is
knowledge-oriented. Numeric computing is data-oriented. Undoubtedly, knowledge-
inclined processing is a cornerstone of data mining, intelligent databases, hierarchical
control, etc.

While the idea of granular computing has been advocated and spelled out in the
realm of fuzzy sets (and seems to be a bit biased in this way), there are a number
of fundamental formal frameworks that can be exploited as well. Several alternative
paths to follow include interval analysis, rough sets and probabilistic environments,
to name a few dominant and most visible options.

The diversity of the formal means used for information granulation and further
processing of the resulting information granules has a common denominator. All
of these environments share the same research agenda that attempts to address the
fundamentals of granular computing.
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A way of constructing information granules and describing them in an analytical
fashion is a common problem no matter which path (probability or set-theoretic) we
follow. The question as to the definition of the ‘size’, ‘capacity’ or ‘dimension’ of the
information granule is of primordial interest. How to measure the granularity of the
constructed information granules? How to relate this granularity with computational
complexity? Those are open questions in the framework of granular computing that
still await solid answers.

What are sound methodologies when operating on information granules? How
to evaluate (validate and verify) granular constructs? What would be appropriate
measures of relevance of granular models? These are fundamental issues posed in
the case of numeric modeling and discussed in detail. The same suite of questions
expressed in the case of granular architectures begs for further thorough investigations.

There is an intriguing question as to a way of navigating between constructs
(models) developed at various levels of information granularity. Is the structure de-
veloped with the use of ‘large’ information granules useful when more specific results
are required? It is apparent that when forming information granules, the contributing
elements lose their identity that is essentially a non-recoverable process. Now, how
this could effect the results of computing involving bigger information granules? If
we want to recover the details, how efficient could be our attempt? What are the
limits of this reconstruction? These aspects boil down to the mechanisms of encoding
and decoding granular information. When any datum enters a system operating at a
certain level of information granularity, it becomes encoded. As a result it becomes
‘accepted’ (tuned) to the level of information granularity present within this system.
Once the system tends to communicate its results, these need to be decoded. In other
words, encoding and decoding are interfaces between worlds (systems) operating at
various levels of information granularity. We have already encountered this scheme
in digital processing: encoding corresponds to the analog-to-digital (A/D) conversion
whereas the decoding comes under the name of digital-to-analog (D/A) conversion.

Fuzzy modeling has emerged as an interesting, attractive, and powerful modeling
environment applied to numerous system identification tasks. Granular computing
forms a useful environment supporting all modeling pursuits and adding another
dimension to the modeling itself. The key features being emphasized very often in
this setting concern a way in which fuzzy sets enhance or supplement the existing
identification schemes. It was Zadeh (1979) first who has introduced the concept of
fuzzy models and fuzzy modeling. The enhancements of system modeling conceived
within this framework take place at the conceptual level as well as at the phase of
detailed algorithms. In a nutshell, fuzzy models are concerned with the modeling
pursuit that occurs at the level of linguistic granules (fuzzy sets or fuzzy relations)
rather than the one that happens at a detailed and purely numeric level encountered in
other modeling approaches. What fuzzy sets offer in system modeling is another more
general and holistic view at the resulting model that gives rise to their augmented
interpretation and better utilization. From a computational point of view, fuzzy sets
are inherently nonlinear (viz. their membership functions are nonlinear mappings).
As a consequence of such a nonlinear character, one may anticipate that this feature
augments the representation power of the fuzzy models. There have been a substantial
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number of various schemes of fuzzy modeling along with specific algorithmic variations
that help eventually capture some specificity of the problem at hand and contribute
to the efficiency of the overall identification schemes, cf. (Kruse et al., 1994; Tsoukalas
and Uhrig, 1997). Quite often, in order to take advantage of numeric experimental
data, the modeling algorithms resort themselves to a vast spectrum of neurofuzzy
techniques, see e.g., (Bortolan, 1998; Buckley and Hayashi, 1984; Harris et al., 1993;
Jang, 1993; Jang et al, 1997; Kasabov, 1996; Kruse et al., 1994; Pedrycz, 1997;
Tsoukalas and Uhrig, 1997).

Granulation is a necessary prerequisite that is required to take advantage of
discrete models (where by ‘discrete’ we mean granular) such as finite-state machines,
Petri nets, and alike. ‘

Indisputibly, neural networks enjoy a rapid growth that has materialized in a vast
number of architectures, learning algorithms and applications. By and large, neuro-
computing is inherently geared to numeric computing. In a nutshell, neural networks
support the bottom-up development approach: we start with clouds of numeric data
that are captured into more concise nonlinear mappings through intensive learning.

The objective of this study is twofold. First, we raise fundamental issues of gran-
ular computing as a new and unified paradigm of information processing, elaborate on
a family of possible formal frameworks and formulate the key design problems associ-
ated with this form of computing. Second, we show how granular computing gives rise
to a new broad category of granular neural networks and granular neurocomputing.

2. Granular Computing: An Information Processing Pyramid

In granular computing, we operate on information granules. Information granules ex-
hibit different levels of granularity. Depending upon the problem at hand, we usually
group granules of similar ‘size’ (that is granularity) together in a single layer. If more
detailed (and computationally intensive) processing is required, smaller information
granules are sought. Then these granules are arranged in another layer. In total,
the arrangement of this nature gives rise to the information pyramid. As portrayed
schematically in Fig. 1, in granular processing we encounter a number of conceptual
and algorithmic layers indexed by the ‘size’ of information granules. Information
granularity implies the usage of various techniques that are relevant for the specific
level of granularity. Alluding to system modeling, we can refine Fig. 1 by associating
the layers of the information processing pyramid with the pertinent most commonly
used classes of processing and resulting models:

e at the lowest level we are concerned with numeric processing; this is a domain
completely overwhelmed by numeric models such as differential equations, re-
gression models, neural networks, etc.,

e at the intermediate level we encounter larger information granules (viz. those
embracing more individual elements),

® the highest level can be solely devoted to symbol-based processing and as such
invokes well-known concepts of finite state machines, bond graphs, Petri nets,
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qualitative simulation, etc. Note that some of these classes emerge at the inter-
mediate level of information granularity and at that level their conceptual and
symbolic fabric is usually augmented with some numeric component.

The general characteristics of the principle of granular computing can be enu-
merated as shown in Table 1.

high

| GRANULARITY

low

Fig. 1. An information-processing pyramid (the respective layers are
indexed by the corresponding level of information granularity).

Table 1. The fundamental features of granular computing.

Allow for multiple abstraction levels (granularity levels)

Allow for several methods of traversing various levels of hierarchy
(encoding-decoding mechanisms)

Allow for nonhomogeneous methods (differential or difference equa-
tions, Petri nets, finite state machines)

3. Information Granulation

In this section, we look into the underlying rationale behind information granulation
and discuss various means supporting the construction of information granules. The
starting point is to look at any linguistic model as an association of information gran-
ules (linguistic terms) defined over some variables of the system. Quite descriptively,
one may allude to such linguistic granules or linguistic landmarks as being a focal
point of all modeling activities. Linguistic granules are viewed as linked collections of
objects (data points, in particular) drawn together by the criteria of indistinguisha-
bility, similarity or functionality. Such collections can be modeled in several formal
environments including set theory, rough sets, random sets, shadowed sets or fuzzy
sets.
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Informally speaking, information granules (Zadeh, 1979; 1996; 1997) are viewed
as linked collections of objects (data points, in particular) that are drawn together by
the criteria of indistinguishability, similarity or functionality. Information granules
and the ensuing process of information granulation constitute a vehicle of abstraction
leading to the emergence of concepts.

Granulation of information is an inherent and omnipresent activity of human be-
ings carried out with the intent of better understanding of the problem. In particular,
granulation of information is aimed at splitting the problem into several manageable
chunks. In this way, we partition the problem into a series of well-defined subproblems
(modules) of a far lower computational complexity than the original one. Granulation
is related to the notion of abstraction. Likewise in abstraction, we are concerned with
forming general concepts by identifying similarity between elements belonging to the
same category.

Granulation occurs everywhere; the examples are numerous and they originate
from various areas:

® We granulate information over time by forming information granules over pre-
defined time intervals. For instance, one computes a moving average with its
confidence intervals.

e In any computer model we granulate memory resources by subscribing to the
notion of pages of memory as its basic operational chunks (then we may consider
various swapping techniques to facilitate an efficient access to individual data
items).

* We granulate information available in the form of digital images—the individual
pixels are arranged into larger entities and processed as such. This leads us to
various issues of scene description and analysis.

* In describing any problem, we tend to shy away from numbers. Instead, we tend
to use aggregates and building rules (if-then statements) that dwell on them.

e We live in an inherently analog world. Computers, by tradition and technology,
perform processing in a digital world. Digitization of this nature (that dwells
on set theory — interval analysis) is an example of information granulation.

e All mechanisms of data compression are examples of information granulation
that is carried in a certain sense.

Overall, there is a profound diversity of the situations that call for information
granulation. There is also a panoply of possible formal vehicles to be used to cap-
ture the notion of granularity and provide with a suitable algorithmic framework in
which all granular computing can be efficiently completed. In the ensuing section, we
elaborate on those commonly encountered in the literature. Examples of such formal
environments include set theory, rough sets, random sets, shadowed sets or fuzzy sets.

The idea of information granules and the size of information granules themselves
gives rise to an important and application-driven issue of usefulness of information
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granules. One should stress that the size of information granules is dictated by the
particular application or a certain category of users. This effect of variable usefulness
of information granules versus their level of granularity is illustrated in Fig. 2. In
these considerations, we express granularity through measures such as cardinality or
o-count, i.e.

Card (4) = | A(z)dz,
/

where A is an information granule under consideration.

A usefulness

P>

() granularity

A uscfulness

'
(b) granularity

Fig. 2. Usefulness of information granules as a function of their
granularity.

These two figures exhibit quite distinct patterns of behavior: in Fig. 2(a) we ob-
serve that the the usefulness of information is quite low when dealing with information
granules of lower granularity while the usefulness does not change drastically when
moving towards higher granularity. An opposite pattern appears in Fig. 2(b).
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There are a number of fundamental approaches to information granules and in-
formation granulation. Table 2 summarizes the key formal frameworks of information
granulation, identifies the notation being used therein and underlines the main fea-
tures of such approaches.

Table 2. Selected models of information granulation and their brief characterization.

A: X—{0,1,[0,1]}

Formal model | Notation; X isa Characterization
of information | universe of dis- Example and applications
granules course (space)

Set theory P(X) A Basic model of information

granules. It generalizes and
l__] _ | encapsulates a collection of el-
. | ements. Sets are described by
two-valued characteristic func-

: X . . .
A - {01} tions. Elements in sets are in-
distinguishable. For X = R
set theory gives rise to interval

analysis.
Fuzzy sets FX) 10 Model of concepts with con-
tinuous rather than abrupt
» | boundaries. Membership func-
« | tion captures a notion of par-
A: X—[0,1] tial membership.

Rough sets R(X) Hi L0 Dwell on the notion of indis-
e T cernibility relation. Concepts
| r l » | are described by their upper

and lower bounds.
A= (XA, A")
where A, and A*
are lower and upper
bounds
Shadowed sets S(X) Model of concepts with ill-

defined boundaries. The bo-
undaries are captured through
intervals of possible member-
ship values rather than a sin-
gle specific membership value.
Shadowed sets could be in-
duced by fuzzy sets and pro-
vide an efficient computing ve-
hicle. Shadowed sets bridge
fuzzy sets and rough sets.
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4. Fundamental Issues of Traversing Information Pyramid:
Encoding and Decoding

Granular computing supports modeling activities carried out at various levels of in-
formation granularity, cf. Fig. 3.

Decoding

Encoding

Fig. 3. Decoding and encoding information granules as a vehicle
of traversing the information pyramid.

The ability to traverse through the layers characterized by different sizes of in-
formation granules is one of the dominant features of the modeling pursuits discussed
in this framework. Each modeling layer indexed by the assumed level of granularity,
comes with its own repertoire of modeling techniques. For instance, for the highest
level of information granularity, viz. numeric data, we are dealing with differential
equations and regression models as basic vehicles of system modeling. Commonly
used neural networks fall under the same category. When moving towards a non-
numeric layer where some information granules of lower granularity are formed, we
encounter a diversity of models such as Petri nets, finite state machines, bond graphs,
constraint-based, etc. Depending on the specific form of granulation, we subsequently
allude to fuzzy Petri nets, probabilistic Petri nets, etc.

The layers communicate between themselves. They receive data from other lay-
ers, complete computing (processing) and return the results to some other layers.
These communication mechanisms are referred to as encoding and decoding, respec-
tively. The role of the encoder is to transform the input information entering the given
layer. The objective of the decoder is to convert the information granules produced
by the given layer into the format acceptable by the destination layer. Depending
on the problem at hand and the formalism of information granulation being used,
a specific naming comes into play.

The general formulation of the encoding-decoding problem can be delineated as
follows: Develop encoding (Enc) and associated decoding (Dec) algorithms such that
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the following relationship is satisfied:
Dec (Enc (X)) = X

for all information granules (X) defined in a certain formal framework of information
granulation and for a broad range of sizes of the information granules involved. In
a limit case numeric granules are also included. Note, however, that the decoding-
encoding scheme could be very demanding and one may not be able to meet the
equality. More practically, we request that the design of these transformation should
minimize the associated transformation error meaning that we are interested in min-
imizing the expression involving the distance || - || between the original information
granule and its transformation

| Dec (Enc (X)) — X || = Min

over a given range of granularity of X’s involved there and for a fixed granulation
environment.

The A/D and D/A conversions form an interesting illustration to the formulation
of the problem given above, see Fig. 4. We have:

A/D: Enc(X): X = {z} € R > X € P(R) (the resulting granules are intervals in
R; depending on how the intervals are formed, one encounters either a uniform
quantization or a non-uniform one).

D/A: Dec(X): X € P(R) - X = {z'} € R (usually a quantization error occurs so
we never obtain the original numeric entity, z # z').

Digital

Processing

Digital world

Analog world

Fig. 4. Digital processing as an example of commonly encountered
granular computing; note a role of A/D and D/A converters
utilized as the encoding and decoding modules.
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The A/D and D/A conversions can be revisited and generalized in the framework
of fuzzy sets, F(X). This leads to the following formulation of the problem:

A/D: Enc(X): X = {z} € R = X € F(R) (the resulting granules are fuzzy
sets in R; depending on how they are formed, one encounters either a uniform
quantization or a non-uniform linguistic discretization of X).

D/A: Dec(X): X € P(R) - X = {z'} € R (usually a quantization error; it can be
avoided by selecting a proper family of fuzzy sets. The zero error occurs for the
triangular fuzzy sets with overlap between successive membership functions).

In fuzzy controllers, the process of converting numeric data into the format ac-
cepted by the inference engine is called fuzzification. This is the name used for the
encoding mechanism. The decoding is referred to as a defuzzification scheme.

One may also envisage a mixed form of information granules, namely they may
originate from different formal environments of information granulation.

5. Hybrid Models of Information Granules and Interoperability
of Various Platforms of Granular Computing

Various models of information granules and granulation processes themselves are cru-
cial in the realization of interoperability when dealing with various platforms of gran-
ular computing. We illustrate this important concept in the setting of data mining.
Information granules, no matter what formal framework they are supported by, are
used as front and back end interfaces of the data mining computing machine. The
need for the studies of the hybrid models of information granules arises when we are
faced with an issue of interoperability between various tasks or subsystems of data
mining that could be realized in various frameworks of granular computing. As an
example, consider the situation visualized in Fig. 5(a). One data mining task, say 71,
is realized in the setting of information granules in the setting G,. The other one
is developed in the granular environment G5. The results of the first task need to
be communicated to the second module. This inherently gives rise to concept of the
hybrid models of information granularity. For instance, assume that G2 dwells on
set theory. Now if G generates the results in the form of fuzzy sets, this type of
communication gives rise to fuzzy rough sets. Interestingly, even though G; and G,
could exploit the same formalism of granular information, the communication between
these two modules produces rough sets (Pawlak, 1982). This arises as a result of a
certain level of granularity of data. As visualized in Fig. 5(b), ‘X is A’ is a result of
passing a message to the second task. This, in turn, invokes the representation of A
in terms of the family of sets. As a consequence, even though we have sets at both
ends, the representation of A emerges as a rough set. Put it in a different way: rough
sets are just the outcome of the communication at the granular level. In more detail,
cf. Fig. 5, X is transformed into the following form:

X € P(X) = X* € R(X)
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with P and R being the families of sets and rough sets defined in X. The lower and
upper bound of X* is expressed as

X ={A4}, X*={A3, A4, A5}

One can justify the origin and usage of some other hybrid models in the same way.

DM task 1 DM task-2

DM: task-1

A A, Aj A, As

DM: task-2
Set-based granulation

Rough set
as a result of
interfacing

(b)

Fig. 5. Two data mining tasks realized with the aid of different formalisms
of information granulation: (a) a general scheme of communication,
and (b) rough sets arising as an effect of communication between DM
tasks accomplished in the granular setting implemented by sets.
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6. Selected Approaches to Information Granulation

In this section, we elaborate on two selected approaches to information granulation
showing how numeric data can be efficiently converted into information granules.
The first one is a simple method of a direct transformation of data into chunks of
knowledge. The second one alludes to fuzzy clustering.

6.1. Granulation with Fuzzy Sets: From Numeric Data to Triangular
Fuzzy Numbers

This approach concentrates on the construction of triangular membership functions
based on current experimental numeric data. The granulation of data is carried out
according to the following scheme:

e Generate randomly a search region in the entire data space. Both the location
of its center and the corresponding spread are generated randomly.

e Collect the respective data and consider each variable in the problem separately.
Determine a median value of such a numeric sample {our preference is in the
median because of its robustness). The median becomes the modal value of
the triangular fuzzy set (fuzzy number). To determine the spread of the infor-
mation granule, we follow a conservative approach and admit all data to the
triangular fuzzy set, see Fig. 6. It could well be that the spreads obtained in
this way are too broad, yet this construction helps us incorporate as many data
as possible meaning that the resulting information granule conveys a significant
experimental justification (obviously, some other variations of this method are
possible but will be computationally more intensive).

Fig. 6. From numeric data to an information granule described by a tri-
angular fuzzy set (fuzzy number). A shadowed region on the left
hand side of the diagram represent a randomly generated search
region. The small boxes on the right-hand side illustrate the dis-
tribution of the experimental numeric data found therein.
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6.2. Clustering Techniques

Clustering is often regarded as a synonym of information granulation. As underlined
in the literature, the intent of clustering, no matter how the detailed algorithm looks
like, is to find a structure in the data and reveal clusters—information granules in the
data set. It is important to emphasize the following features of the clustering method
(essentially these observations are pertinent to most of the grouping methods):

e Clustering is a direction-free data analysis; it discovers relations or fuzzy rela-
tions not distinguishing between independent and dependent variables (in our
study this pertains to potential inputs and outputs of the neural network).

e Clustering is very much driven by the distance function (|| - ||) forming the
objective function to be optimized. The choice of the distance could be critical
to the form of the ‘discovered’ structure in the data. Interestingly enough,
even though clustering concerns unsupervised learning, by imposing the distance
function, we predefine a focus of search and specify the geometry of information
granules one is looking for. For instance, the Euclidean distance promotes the
ellipsoidal-like form of clusters while the Hamming distance focuses the search
on hyperboxes in the data space.

Granular neural networks distinguish between input and output variables. Clus-
tering methods that adhere to their relational (direction-free) format could not be the
preferred option (as a matter of fact the lack of the already mentioned directionality
mechanism may contribute to an overly strong averaging effect). To incorporate the
directionality component, we complete clustering based on a series of contexts—fuzzy
sets defined in the output space (output variable). Afterwards the clustering is real-
ized for the individual contexts. This limits the scope of clustering by confining it to
the respective linguistic granules. These granules are viewed as fuzzy sets defined in
the output space. Their choice can be predetermined by the designer of the neural
network who can select them having some particular modeling objectives in mind.

The detailed description of the algorithm can be found in the literature (Pedrycz,
1996). It dwells on the well-known FCM method (Bezdek, 1981) and modifies it to
the current problem by adding the context-based mechanism. The main computing
stages include iterative determination of the prototypes and partition matrix of the
clusters.

Let us denote the data to be clustered by zx, k¥ = 1,2,...,N. The number of
clusters is equal to ¢. Moreover, B(yy) stands for the value of the context B for the
k-th data point in the output space, y;. A few words of explanation are helpful here.
The context is a fuzzy set defined by the designer. Say, we are interested in clustering
data from the standpoint (context) of medium positive values of the output. Then
this term is modeled as a fuzzy set, say with a Gaussian membership function

B = exp (- L210)

o?
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(here m and o are the two parameters of this Gaussian fuzzy set of context). The
original data point (z,yx) in the output space invoke the context to the degree
B(yy) thus leaving the pair (z, B(yk)) to be used by the clustering algorithm.

The construction of the clusters is guided by the performance index (objective
function) that is expressed as

Q= Zzu?kllmk ~ vy,
i=1

where ||z—wv;||* is a distance function between the data point and the i-th prototype
(v;). Note that, in general, a fuzzification factor (m) assumes any value greater
than 1. In this setting the objective function reads as follows:

Q=) ulzr— v’
i=1

(in the sequel, we confine ourselves to m = 2 as the option being commonly used).
The minimization of this objective function is an example of the constraint-driven
minimization
Min @ subject to U € U
with U being a family of fuzzy partitions

{ulh Zulk— yk and O<Zu1k <N}

Not going into details (that could be found elsewhere (Pedrycz, 1996)), we sum-
marize the main algorithmic steps. The algorithm is iterative, starts from a certain
partition matrix and iterates through new partition matrices and prototypes until a
given stopping criterion is met. The prototypes of the clusters are determined in the
form

N
2
D i
k=1
- N
2
> vl
k=1

The partition matrix U arises in the form

wik = — B(yk) _
> (=)

=1

As mentioned, the algorithm is iterative and the computations of the prototypes
and the partition matrix are completed up to the point when the differences between
the two successive partition matrices are below a certain threshold value.
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7. The Design of Granular Neural Networks: General
Development Practices

In a nutshell, the development of the granular neural networks involves two main
phases, cf. Fig. 7:

e granulation of numeric data; at this level a collection of information granules is
formed,

¢ the construction of the neural network; now any learning that takes place with
the neural network is based on the information granules rather than original
data.

Fig. 7. The development process of granular neural networks per-
ceived as a two-phase design; the construction of the network
(including its learning) is followed by data granulation.

The role of the information granules in the development of neural networks has
not been dealt with intensively. There has been a lot of research focused on so-called
neurofuzzy systems. The name stipulates that information granules implemented in
terms of fuzzy sets are used there. This is true to some extent. The point is that
information granules do not get involved explicitly in the construction of the neural
network. They do not contribute to the condensation of the original learning data.
They rather retain the dimensionality of the available data. The proposed modifica-
tion concerns an introduction of a strongly nonlinear effect through the characteristics
of the information granules (say, membership functions). The primary intent is to
simplify the learning architecture or/and enhance the learning processes. Being more
specific, information granules do contribute to the transformation (deformation) of the
original data space and positioning all data there. The classic example of this type of
transformation concerns radial basis function (RBF) neural networks (Golden, 1996).
One may refer to a number of interesting findings concerning the equivalence between
such neurofuzzy networks and classic neural architectures, cf. (Hayashi et al., 1993;
Ishibuchi, 1996). The receptive fields are just examples of the membership functions
of fuzzy relations. When distributed properly, they make this classification problem
linearly separable. Note however, that this transformation phase, even though it relies
on the usage of the information granules, does not contribute to any reduction of the
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size of the training data. Quite often, the new space exhibits a higher dimensionality
than the original one (as this is the case for the exclusive-OR problem).

As advocated in Fig. 7, the development process of the granular neural networks
involves two fundamental phases:

¢ First, the data (that are usually numeric) are condensed in the form of some
information granules and as such are made available to the neural network.

s Second, the resulting information granules are subsequently ‘seen’ by the neural
network and as such used for all training purposes. As a consequence, the neural
network is not exposed to the original data of a far higher granularity and far
more numerous as the information granules.

Owing to the fundamental role of the information granules, the ensuing neural
networks will be referred to as granular neural networks. Depending upon the size of
the information granules, one can envisage four possible options as outlined in Fig. 8.

Neural Network GRANULARITY

fnput
Data

high

GRANULARITY

low

Fig. 8. A general taxonomy of granular neural networks.

This taxonomy sheds light on the key classes of granular neural networks (as a
matter of fact, this classification can be easily supported by a number of architectures
in the area of neurocomputing). Two criteria dealing with the granularity of the net-
work itself (viz. connections) and the data (those exploited for the training purposes
or used afterwards) of which are studied here:

(i) High granularity of the structure (connections) along with the high granularity
of input data. In limit, when we encounter numeric quantities, this entry of
the matrix corresponds to the ‘standard’ numerically-driven neural networks.
They come with all training methods available in the literature. The aspects of
generalization of the network is placed in the context of numeric generalization
meaning that one is interested in the predictive abilities of the network in cases
of new numeric entries.



740 W. Pedrycz

(ii) We may train the network using numeric data (data of high granularity) and
then use it in the environment where the granularity of data is low (the entry
indicated as ‘a standard neural networks with granular inputs’). Here we have
to make sure that the network is capable of accepting nonnumeric data when
operating on them. This has to be accomplished through a certain encoding
mechanism. In common, this encoding is embodied through a specialized input
(preprocessing) layer. The granularity of inputs implies a reduced granularity
of the output. The generalization capabilities include also granulation issues,
viz. an ability of the network to cope with inputs of varying granularity.

(ili) We may have situations where the network itself has been designed with the use
of granular connections (low granularity of the underlying neural architecture)
whereas the current inputs are of high granularity (say, numeric entries). There
is a'residual effect of granulation: even though the input is numeric, the output
of such a neural network may exhibit low granularity (being the reflection of
the nonnumeric connections). For these networks, there is no need to develop
any specific encoding mechanisms to assure their proper interaction with the
environment.

(iv) Finally, the most challenging situation emerges where we are concerned with the
structure of the network with the connections of low granularity when one has
to operate in presence of granular information again of a fairly low granularity.

8. Selected Architectures of Granular Neural Networks

The proposed granular neural networks as far as their topologies and respective learn-
ing schemes are concerned, are directly linked with the way in which the information
granules are constructed. It is worth underlining that quite often the intensity of
training depends on the way in which the information granules were developed. Fur-
thermore, the common task embraces a way of encoding the information granules
within the topology of the neural network.

8.1. Granular Neural Networks with Parametric Encoding

The underlying architecture is implied by the form of the information granules avail-
able for the training of the network. They are regarded to be homogeneous in terms of
their representation of the information granules. In other words, we confine ourselves
to a certain parametric representation of the information granules. For example, in
the case of the triangular fuzzy numbers we represent each input and output variable
as a triple of three entries (bounds and modal value) (Bortolan, 1998), see Fig. 9.

The learning of the neural network here has to be done from scratch in the sense
we are provided with granular input-output data but there are no prior relationships
specified between them. The architecture lends itself to the standard neural network

" with numeric connections. The learning algorithms here are well-known and fully
developed. Note that the use of the granular data leads to the reduction of the size
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T(a,m,\b)

Neural
Network

Fig. 9. An architecture of the granular neural network with para-
metric encoding—the case of triangular fuzzy numbers

of the original numeric data set. At the same time the dimensionality of the problem
" increases as we need a number of parameters to represent each granule (in the case
of the triangular fuzzy numbers this triples the number of inputs).

8.2. Classes of Granular Neural Networks Exploiting Results
of Cluster-Based Information Granulation

The context-based clustering leaves us with the number of contexts and induced
clusters. The links (associations) between these entities are assumed by the method
but not quantified at all. What we are provided with once the contextual clustering
has been completed is a structure one can portray in Fig. 10. This figure summarizes
the associations as being formed by the clustering method. What has been constructed
in this manner, becomes eventually the most descriptive and least restrictive (but yet
operational) realization of the granular neural network. Still a lot of details may be
missing at this stage.

context space
contexts

induced clusters data space

Fig. 10. Results of context-based clustering as a blueprint of the granular neural network.
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The skeleton of the granular neural network (that is highly heterogeneous) in-
volves the following computational layers:

e the input layer formed by the induced clusters (from the functional standpoint,
they are similar to the radial basis functions used in RBF neural networks),

e the activation levels of the corresponding clusters are combined together in
the output layer which is composed of a single summation unit with granular
connections being the contexts (fuzzy sets) used in the context-based clustering
scheme. The granularity of the connections requires computations involving this
effect. We can write them down in a concise manner as

P
Y = @ZZL’B,;.

=1

Where z; denotes an activation level of the i-th context—these are the values pro-
duced by the previous layer. The addition completed here involves operations on
information granules rather than plain numbers. Evidently, the granular neural net-
work produces nonnumeric outputs even for a numeric form of the input.

More specifically, for the contexts being specified as triangular fuzzy numbers,
say B; = T'(a;—,a;,a;+), the output of the network is again a triangular fuzzy num-
ber, ¥ = T(y—,Ym,y+) with the bounds computed based upon the bounds of the
individual contexts. The calculations adhere to the principles of fuzzy arithmetic
(Kandel, 1986; Pedrycz, 1998).

Interestingly, there are no provisions as to any further learning of the granular
neural network as all its components have already been provided (namely the contexts
forming the connections of the neuron in the output layer as well as the form of the
receptive fields- induced clusters). To enhance the neural architecture and come up
with some adaptable connections, we modify the network by adding one intermediate
(hidden) layer dealing with the calibration of the activation levels of the individual
clusters, see Fig. 11. Simple summation nodes (each for the corresponding context)
are a viable enhancement of the neural architecture.

9. Conclusions

We have discussed the fundamentals of granular computing viewed as a new unified
paradigm of processing information granules. Granular computing subsumes com-
monly encountered numeric processing as its special (limit) case.

The research agenda of granular computing includes a series of key and well-
defined methodological and algorithmic issues:

e Construction of information granules. This deals both with the selection of the
formal framework of information granulation and detailed estimation procedure
producing information granules. The latter dwells on the usage of the setting
in which the granules are constructed.
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Fig. 11. An enhanced topology of the granular neural network realized
by an addition of a hidden layer of linear processing units.

e Characterization of the dimension (granularity) of information granules. This
task is crucial as providing us with a better insight as to the essence of the
granulation process and its implications both at the level of processing and
comprehension.

e The development of the encoding and decoding mechanisms. These are essen-
tial to the functioning of any granular architecture. The encoding and decoding
schemes are essential to the performance of granular computing. Interestingly
enough, the essence of information compatibility expressed in terms of its gran-
ularity is inherently related with granular computing and nonexistent within
other environments.

o The issues of interoperability are crucial to the design of systems operating
within the realm of various formalisms of information granularity.

In this study, we have introduced granular neural networks. These constructs
arise at the junction of neurocomputing and neurocomputing and tend to reconcile
some of the difficulties encountered in the development of neural networks. The
computational aspect of training neural networks in the presence of huge data sets
has been effectively addressed by applying some data granulation techniques. The
methods of data granulation themselves were discussed as well.

The points worth underlining are the following:

o Granular neural networks can be realized in many.possible ways depending on
the type of information granules as well as an intensity of the learning processes.

e When looking into the training of the granular neural network, one should be
clearly aware of the two dimensions of the training set, namely its representing
abilities in terms of space coverage as well as the granulation level of the training
data themselves. In contrast, when dealing with numeric training data, we have
to deal only with the first of these aspects.
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e The two-phase development process highlighted in this study, calls for the for-
mation of the information granules and the neural manipulation of these after-
wards. This helps reduce all learning burden associated with all large training
data sets.

e The granulation mechanism supports an important feature of problem modu-
larization (and as such is very much in line with the existing neural structures
such as correlation neural networks (Golden, 1996)). The granular neural net-
work can serve as a skeleton (blueprint) of the overall architecture that could
be easily refined afterwards and lead to the detailed construction of the numeric
neural networks developed at the local basis.

The intent of this study was to introduce the concept of the granular neural
networks and discuss their fundamental properties not necessarily covering all opti-
mization tasks.
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