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ADAPTATION OF REGULARIZATION PARAMETERS
IN NM-DELTA NETWORKS

ProTR GOLABEK*** WITOLD KOSINSKT**: ***

The paper describes an application of regularization techniques to an automatic
choice of parameters driving the learning process in the NM-Delta neural net-
work architecture. The heterogeneous learning algorithm is identified as very
similar to the Levenberg-Marquardt method but with a considerably smaller
computational cost and different justification of parameter selection. The per-
formance of the modified algorithm proves to be comparable with that of the
Levenberg-Marquardt.
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1. Introduction

In this paper we apply some results from regularization theory to improve the learn-
ing process taking place in a specific neural network structure. The regularization
approach proves to be relatively successful when applied to the interpretation of the
learning processes. Many techniques used in neural networks, such as weight decay,
weight pruning, learning with noise, radial basis function models, etc., have been ex-
plained in terms of the regularization. In fact, regularization theory and the Bayesian
inference constitute a very promising and coherent framework for the analysis of neu-
ral networks.

In this paper, we analyze the optimization process in NM-Delta neural networks.
The learning algorithm used by such a network can be considered in the perspective
drawn from different fields of research: adaptive signal processing, optimization and
regularization theories. Our goal is to cross-examine this different approaches in order
to build an effective learning process. In particular, we apply regularization techniques
to enrich the original algorithm with adaptation of the regularization parameter.
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2. Description of the NM-Delta Algorithm and Notation
2.1. M-Delta Algorithm

The M-Delta neural network (Kosifiski and Weigl, 1996; 1998; Weigl, 1995) is a net-
work with one hidden layer and neurons employing the generalized logistic activation
function '
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The additional parameters m and § determining the slope and the range of the activa-
tion functions are adapted along with the regular weights using the Gradient Descent
Method, i.e. updating m and ¢ in the p-th iteration of the algorithm according to the
general formula .
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where F' is the error function and g is the learning speed factor. The M-Delta net-
work is therefore an extension of the ordinary backpropagation (BP) network. Updat-
ing the m and § parameters usually gives a boost to the learning process because, as
has been shown in various publications (Golabek et al., 1999; Krushke and Movellan,
1991; Thimm et al., 1996), changing these parameters can be treated as an equivalent
of the adaptation of the learning speed for weights in regular BP networks. An ad-
ditional practical advantage of this architecture is the elimination of the necessity of
data scaling. An M-Delta network generally uses one hidden layer, as it is sufficient
for building a universal approximator for a broad class of functions, and the function
approximation is the main application area for this architecture.

2.2. NM-Delta Algorithm

The NM-Delta network (Kosinski and Weigl, 1996; Weigl 1995) adds complexity to
the M-Delta approach by using a heterogeneous learning algorithm consisting of two
phases:

o adaptation of the regular weights by means of the least-squares algorithm (the
m and § parameters are left intact during this phase),

s adaptation of the m and § parameters (with frozen regular weights) by means
of the gradient descent method (GDM), in exactly the same way as in M-Delta
networks.

The use of the least-squares algorithm to calculate optimal weight values comes
from partial linearization of the learning problem, as it will be discussed in detail in
Section 3. Strong assumptions implicitly cast on the learning problem during the least-
‘squares phase are then relaxed by the second phase (m and § adaptation). The least-
squares algorithm used in NM-Delta networks is implemented as a recursive procedure
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(RLS), calculating the pseudoinverse of the autocorrelation matrix by means of the
well-known matrix inversion lemma (Haykin, 1996; Rutkowski, 1994; Weigl, 1995).
This lemma allows for iterative construction of the matrix inverse, without actually
performing any inversion operation, which greatly decreases the computational cost
of the algorithm.

Owing to the RLS phase, NM-Delta networks are characterized by very good
convergence speeds. The drawback of both the architectures (M-Delta and NM-Delta)
is that many extra network parameters are introduced. Dealing with these parameters
is troublesome, as they have to be properly managed in terms of the initial value
assignment and driving the adaptation process. Our paper proposes a solution to this
problem.

2.3. Notation

The original NM-Delta algorithm uses the stochastic adaptation scheme, making up-
dates after presentation of each training pair. The contribution from subsequent pairs
is exponentially weighted by the so-called forgetting factor. The motivation for this
parameter comes from adaptive signal processing, where the RLS algorithm is used
extensively. The parameter is used when dealing with nonstationary signals. In this
paper, we do not attempt to consider stochastic aspects of the NM-Delta algorithm
and thus will use a modification of the original algorithm with a batch (determinis-
tic) update scheme. The forgetting factor will be held equal to one, which means no
forgetting.

Whenever there is a reference to the Hessian, this usually means some more
or less crude approximation to the true Hessian matrix (the matrix of the second
derivatives of the error function w.r.t. the weights). We usually consider a block-
diagonal approximation to the Hessian with zero off-diagonal block elements.

The paper uses the following notation:
z; — the i-th input to the network,
w;; — the weight of the connection from the j-th to the i-th neuron,

z; — the net activation of the i-th neuron,
u; — the output of the i-th neuron,
F' — the error function,

vi = —0F/0z; — the error of the linear part of the i-th neuron, and

g; = —OF/0u; — the error of the nonlinear part of the i-th neuron.

For notational convenience, the superscript denoting the layer number is omitted
(with one exception) in all formulae. For the same reason, the formal dependence of
various quantities on the index p of the learning epoch is pointed out only if necessary.

The reader is warned that some original notation found in cited works had to be
changed in this article in order to avoid notational conflicts.
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3. RLS Phase of the NM-Delta Algorithm

The RLS phase of the NM-Delta algorithm tries to calculate the optimal weights
for the processed layer of neurons by solving the system of equations F/0w;; = 0.
As will be shown, the RLS phase effectively implements a quasi-Newton procedure
which converges toward the optimal weights iteratively calculating in each iteration
consecutive approximations by

w(p+1) = w(p) — H ' (p)J (), 3)

where H(p) and J(p) are respectively the Hessian and the Jacobian of the error
function w.r.t. the weights in the p-th learning epoch. Using such a formula, the
Newton algorithm assumes that the error function is quadratic in.the weights. The
RLS phase is built on another approach. It replaces the gradient zeroing condition
by

821'
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Here 7; is the desired value of the net-activation for the i-th neuron calculated by
means of the back-propagation or the antithreshold function. It is clear that the
algorithm makes quite strong assumptions on the error function. It assumes that
this function is quadratic in z; and that it has the second derivative 92F/0z7 = 1.
Moreover, the RLS algorithm operates separately on each neuron, thus assuming
implicitly the diagonal character of the [§%F/0z?] matrix. These assumptions can be
relaxed by an appropriate design of the m and § adaptation phase, as will be shown
in what follows.

Accepting the assumptions, we can interpret the RLS algorithm as a quasi-
Newton procedure in which there is a gradually improving Hessian estimation. Start-
ing with the assumption 0*F/0z;0z; = I, we can write

O*F 0*F ;
————— = L ——— = s (5]., 5
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where 5{ is the Kronecker delta. We then get a block-diagonal form of the estimate
to the Hessian, with the partial autocorrelation matrix A(p) = X (p) X 7T (p) repeated
for each neuron. The solution to the optimal weight estimates for each neuron takes
the form

w;(p) = w;(p— 1) - S(p)J;(p), (6)

where the matrix S(p) is a gradually improving estimate of A7 (p), and J;(p) is
the gradient vector

T5(0) = [8F(p)] .

9z (p)

Comparing (6) and (3), we can clearly see an equivalence between the quasi-
Newton optimization process and the RLS algorithm employed by the NM-Delta

(7)
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(under the foregoing assumptions). In consequence, the assumption 8%F/8z;0z; = I
greatly reduces the computational complexity and in fact is not that radical. Many
algorithms exploit the assumption of the diagonal (not even block-diagonal) structure
of the Hessian. The prefix ‘quasi’ in the name ‘quasi-Newton’ has been used not
because of the simplifying assumptions, but because of the initialization technique
used by the RLS process. The gradually-built estimation of the autocorrelation matrix
inverse, S, has to be initiated. The algorithm uses the initialization

S(0) =971, (8

which is usually described as an equivalent to ensuring the well-conditioning of the
estimated A. It can be shown that such an initialization is equivalent to imposing
the Tikhonov regularization on the LS problem solved (Hansen, 1993; Haykin, 1999).
We will use this feature further on to adapt the v values.

It is striking that the approach described above is very similar to the Levenberg-
Marquardt algorithm. The L-M method has been derived for nonlinear models using
the quadratic error function. For such models, the Hessian can be calculated according
to the following formula:

H(p) = J(p)J (p)* + R(p), 9)

where H (p) is the Hessian, J(p) stands for an appropriately constructed matrix of
gradients and R(p) denotes the term involving second-order derivatives, vanishing
in the neighbourhood of the minimum. The Levenberg-Marquardt method calculates
an estimate to the Hessian using the approximated formula

H(p) = J(p)J(p)" + a(p)I, (10)

where a(p)I is the term representing an approximation of the second derivative,
adapted in the course of learning. The L-M algorithm does not treat « as a reg-
ularization parameter and rather uses some heuristic of the ‘search then converge’
type to adapt its value. The L-M method starts with a value of a large enough so
that the first term of (10) is dominated by the other. The optimization process in
this phase is simply a gradient descent (cf. (3), taking into acount that the Hessian
is ‘constant’). In the course of the learning process, the algorithm decreases the «
value, which ‘activates’ the first term of (10) and makes the other gradually vanish to
zero, exactly the way in which R(p) in (9) behaves. Thus, in the course of learning,
the value of the Hessian calculated with (10) converges to the true value of (9). The
‘converge’ phase involves calculating the product J(p)J(p)?, which constitutes the
main computational cost of the method.

4. (m,d)-Adaptation Phase of the NM-Delta Algorithm

To relax the strong assumptions on the structure of 52F/3z Wwe can use an appro-
priate adaptation of the parameters m and 4. Intuitively, the idea is to ‘stretch’ the
error surface so as to conform to the assumptions made on its curvature by the RLS
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process. We can obtain the description of the error surface transformation taking
place in the backpropagation process, as follows:
O*F O*F Ouy 3uj O%u, 8_F - (11)
02;0z; Buzau] 0z; 0z;  02z;0z; Ou;’

In (11) there is a second-derivative factor 8%F/8u;0u;. In order to calculate it,
we can exploit the assumption on the diagonal structure of the matrix [0F/8z*]
for the layer I+ 1 (in the earlier phase of the algorithm, care has already been taken
to approximate the diagonal structure of that matrix). In such a case, we have

O°F ~
Bulau Z 5:11 Z wsz_l l+1azl+1 = Z wfzj'-lwgl: (12)
m a

with the last step of derivation using the assumed identity character of the
0*F/dz}1 021! matrix. The other term of (11) is diagonal and non-zero for i = j.
It is obvious that changing Ou,/0z, by means of the parameters m and § we are
not able to remove the off-diagonal terms of 32F/8zi6Zj. We can only drive the
(m, §)-adaptation process in such a way that the diagonal terms be close to one. The
necessary condition is

OF _OF (du\" 0w OF _
022 8u? \ 9z 8z7 du;

This expression is independent of the chosen error and activation functions.

(13)

In the case of the generalized logistic activation function used in the NM-Delta,
we have

m
ualze) = T
Oua _ —(-53— (m Ug)
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57 = mga(e ~ )57 (14

An example of such a function with its first and second derivative is shown for
reference in Fig. 1. Deriving from (13) the procedure of changing the values m and §,
we have made the following simplifying assumptions:

o It can be easily seen in Fig. 1 that there are conditions for which fulfilling
(13) demands excessive values of §,/m (a very small value of OF/Ou; in the
saturation region of the activation function). We then impose some limits on
the value of this ratio.

* We have decided to adapt only the m values, keeping & constant.

o We have linearized the approximation function, i.e. we have neglected the other
term of (13) involving the second derivative of the activation function. We can
justify such an approach by choosing relatively small values of the parameters
¢, which determine maximal curvatures of the activation functions.
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Fig. 1. Logistic activation function (m = 2, solid line) along with
its first (dashed line) and second (dotted line) derivatives.

On the above assumptions, (13) reduces to

82F 8u1- 2

- =1 15

ou? (8z¢> ’ (15)
which we use to calculate the m values in the subsequent epochs of the learning
process.

5. Adaptation of the Regularization Parameter ~

As was pointed out, the initialization of the RLS algorithm is equivalent to the
Tikhonov regularization (Tikhonov and Arsenin, 1977) of the least-squares problem.
The LS problem with the Tikhonov regularization consists in finding

min (| Az — ], + A ||L (z ~ zo)]l,) - (16)

The regularization parameter A determines an equilibrium between the residual error
|l[Az — bl|, measuring how well the model fits to the training data and the solution
norm [|L(z — xo)||; constraining large ‘magnitudes’ of = leading to non-smooth
solutions. We often use o =0 and L = I. It can be shown that

1
Y= X;- . (17)

The described regularization approach was identified to be equivalent with
the weight decay technique (Bishop, 1995a), the learning with noise contamination
(Bishop, 1995b), and it is also known as the ridge regression technique (Goutte, 1997).
Selection of the regularization term was shown to be equivalent to the choice of priors
in Bayesian inference (Girosi, 1995).
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There are various methods of the optimal choice of the regularization parame-
ter A. The best known approach is to choose the value that minimizes the general-
ization error. This error, in turn, is estimated by means of the crossvalidation or by
using the so-called algebraic estimator (Goutte, 1997). Though regularization should
be considered as a global, data-driven approach which aims at improving generaliza-
tion, we will apply it in a local perspective, on the basis of partial RLS problems
solved, to each layer of the network separately. Such an approach is supported by the
tradition of the least-squares regularization (see e.g. Hansen, 1994). The method of
choice for our problem is the technique proposed by Hansen et al. (1994), see also
(Larsen et al., 1997; Moody, 1991). The method uses optimization of the general-
ization error estimate FEz; w.r.t. the regularization parameters. The method uses
the so-called FPER (Final Prediction Error for models with Regularization) algebraic
estimator proposed in (Larsen and Hansen, 1994):

N + 119

PER= —————
FPER N =2y + iy

Cn (), (18)
where N is the number of training samples, @ is the estimated weight vector mini-
mizing the regularized cost function value after the presentation of N samples, Cy
is the mean-square cost and m;, my are two different effective numbers of weights,
respectively defined as

1y = tr [Hy (WK (w))],
(19)
e = tr [Hy (WK (@) Hy (0K 3 (@))],

where H y is the Hessian matrix of the mean-square cost function w.r.t. the weights
and K is the Hessian of the error function augmented by the regularization term.
The values of m; and m, depend on the regularization parameters. A matrix esti-
mate of Ky' is readily available in each epoch as the matrix S (as has been shown
in Section 3). As for Hy, we use the diagonal approximation applied in the method
of (Hansen et al., 1994), known from the OBD algorithm:

ﬁ~(aF>2. (20)

3 )
6uj Ou,

In order to optimize the generalization error estimate, we use a simple evolution-
ary strategy of reversing the regularization parameter changes when the generalization
error estimate increases.

6. Simulations Results

The learning problem for simulations has been drawn from the DELVE (Data for Eval-
uating Learning in Valid Experiments) repository, held at the University of Toronto,
wWW.cs.toronto.edu/~delve/. The motivation for the project is to provide uniform
framework to report a performance of the learning algorithm. Following the authors’
intentions, we used one of the so-called development datasets, namely the kin8nm
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dataset. The set provides synthetically generated data from a realistic simulation of
the forward kinematics of an eight-link all-revolute robot arm. The data has eight
input channels, corresponding to the angular positions of the eight joints of the robot
arm and one output referring the Cartesian distance of the end-point of the arm from
the position (0.1, 0.1, 0.1). The transfer function is highly nonlinear. The data are
contaminated with the noise of a medium level. For the training we used 1000 exam-
ples from the dataset. All simulations were conducted using Matlab software. The
Levenberg-Marquardt implementation comes from the Neural Network Toolbox, and
the NM-Delta implementation is of our own. '

Figure 2 draws a comparison of the learning of the kin8nm problem by the original
NM-Delta and the Levenberg-Marquardt algorithm. The regularization parameter -y
was chosen arbitrarily and probably not very well, because the performance of the
network is poor. The results are the best from among a few guesses for the values of
the regularization parameter and the learning speed for the GDM phase. They depict
troubles we have while tuning the learning parameters.

Sum-Squared Metwork Evor for 365 Epnchs BurnBouatsd Mtweek Buor ¢ 177 Eporks

% 14
o,
-
M._._ 3
W
16
5 o
H gy
23 22
@ &
¢ A
A-&
21
S,
3. 0y e 2 3. %, 3, 2. 3. D
B X 4 0w WMo e ow) W R I R S R R R P )
Eporh Epoch
(a) (b)

Fig. 2. The training error evolution in the NM-Deltanetwork (a) and
in the network using the Levenberg-Marquardt algorithm (b).

Figure 3 shows results of the learning process for the NM-Delta network with an
automatic choice of m parameters, as described in Section 4. There is no significant
difference between the processes. This suggests that the original GDM algorithm
conforms in some way to the assumptions on the Hessian structure stated in Section 3.
Certainly, some further investigation is needed here. The results of the simulations
suggest that apparently the main obstacle to achieve a better fit are the stiff values
of the regularization parameters bearing false assumptions on the smoothness of the
approximated function.

Figure 4 shows the results of the learning process for the NM-Delta network us-
ing the adaptation of the regularization parameters and for the network using the
Levenberg-Marquardt method. As can be seen, the barrier of improper regularization
assumptions has been broken. The Levenberg-Marquardt still shows better perfor-
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Fig. 3. The training error evolution in the NM-Delta network with
the adaptation of m parameters described in Section 4.
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Fig. 4. The training error evolution in the NM-Delta network with adapted regulariza-
tion parameters (a) and in the network trained with the Levenberg-Marquardt
algorithm (b).

mance. It reaches a target mean square error of ca 0.74 after 200 learning epochs as
opposed to ca 3.40 achieved by the NM-Delta The learning is also somewhat slower
in the initial phase for the NM-Delta than for the I-M. The difference comes un-
doubtedly from the approximation to the Hessian structure made by the NM-Delta,
algorithm, more coarse than that for the Levenberg-Marquardt. Besides, the choice
of the learning speed of the regularization parameter adaptation exerts influence on
the error level achieved. However, the computational cost comparison reveals a clear
advantage of the NM-Delta network. Matlab simulation for the learning process under
consideration takes 2.7890e-+9 Flops, while for the NM-Delta it is 0.4417e+9. And of
course, the Levenberg-Marquardt algorithm scales in a much worse way. The Hessian
evaluation itself needs O(N?) operations, where N is the number of weights. For
the NM-Delta, N is the sum of the number of inputs to the network and the number
of hidden neurons.
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7. Conclusions

The paper presents the approach that is rather far from the intentions of regulariza-
tion theory, especially in its Bayesian context. We have tried to use regularization
techniques for tuning parameters of the optimization process. The dependence of
the optimization process on the curvature of the error surface is an unquestionable
postulate exploited more or less extensively in many algorithms. On the other hand,
the act of the regularization is motivated by some assumptions on the features of the
approximated function, and thus—on the error surface. We have tried to get some-
thing from both the worlds. We think that such an approach can be fruitful in the
analysis of the learning algorithms.
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