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ABSTRACTION BASED CONNECTIONIST
ANALOGY PROCESSOR

Syozo YASUI*

The Abstraction Based Connectionist Analogy Processor (AB-CAP) is a train-
able neural network for analogical learning/inference. An internal abstrac-
tion model, which extracts the underlying relational isomorphism and expresses
predicate-argument bindings at the abstract level, is induced structurally as a
result of the backpropagation training coupled with a structure-pruning mecha-
nism. AB-CAP also develops dynamically abstraction and de-abstraction map-
pings for the role-filler matching. Thus, the propositions including both known
and inferred ones can be expressed by, induced as, stored in and retrieved from
the internal structural patterns. As such, there is no need for AB-CAP to
use rule-based symbolic processing such as hypothesis making and constraint
satisfaction or pattern completion checking. In this paper, AB-CAP is evalu-
ated by using some examples. In particular, incremental analogical learning by
AB-CAP shows that the internal abstraction model acquired from previous ana-
logical learning acts as a potent attracter to bind a new set of isomorphic data,
manifesting the analogical memory access/retrieval characteristics of AB-CAP.

Keywords: analogy, neural network, network pruning, dynamic binding, ab-
straction :

1. Introduction

The analogy with water turns out to be helpful in understanding electrical current.
The analogy is relational knowledge that allows one to find correspondences between
aspects of two or more situations. The corresponding aspects are recognized as such
when they play the same role in the relationships with other aspects within the re-
spective situations (e.g., Charniak and Mcdermott, 1986). In the familiar example
of Table 1, the two systems are structured in the same way, i.e., using a relational
isomorphism. The analogical inference assumes that if two situations are known to
be similar in some respects, it is likely that they will be similar in others (Luger
and Stubblefield, 1993). For instance, if all facts except (nucleus, attracts, electron)
have been taught and learned, then it would be an inference test to ask the question
of (sun, attracts, 7). Analogies have been studied in various areas such as cogni-
tive psychology, pedagogy, science history and epistemology. There also have been a
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great deal of computational research attempts. The structure mapping theory due to
Gentner (1983) is particularly influential in this and other studies. The theory has
been applied to develop SME (Structure Mapping Engine) by applying traditional AT
techniques based on rule-based reasoning and symbolic processing (Falkenhainer et
al., 1989).

Learning by analogy in humans, on the other hand, often appears to occur spon-
taneously without logically thinking or analytical efforts. This aspect of analogy
resembles sensory perception and seems to reflect something that characterizes brain
mechanisms. Not surprisingly, therefore, the connectionist approach to the study of
analogy has drawn considerable interest in recent years. ACME (Analogical Con-
straint Mapping Engine) due to Holyoak and co-workers is a well-known connection-
ist attempt (Holyoak and Thagard, 1989a; Holyoak et al., 1994). Network nodes in
ACME can represent potential correspondences of propositions across the source and
target domains. The inter-node connections are made excitatory or inhibitory on the
basis of structural, semantic and pragmatic criteria, and a relaxation algorithm is
used to finalize the network dynamically. Although ACME is built on a neural net-
work, its operational aspect is much Al-like, because of its frequent use of the if-then
symbolic logic for comparison, constraint checking and hypothesis making. Thus,
ACME operates essentially with logical induction, rather than learning in the usual
connectionist sense, although related models such as IMM (Indirect Mapping Model)
and LISA (Learning and Inference with Schemas and Analogies) adopt connectionism
to a greater extent (Hummel et al., 1994; Hummel and Holyoak, 1997). Besides the
exposition of LISA, the last paper cited provides an intensive review on issues in anal-
ogy study from both cognitive science and connectionist standpoints. The Copycat
model by Hofstadter and Mitchell (1994) should also be mentioned, although the kind
of analogy it deals with is different from that of the present study, i.e., proportional
analogies of the standard A:B::C:? form (e.g., doctor: patient :: teacher: ?), are con-
sidered in Copycat. The underlying idea of Copycat is more akin to the connectionist
paradigm than to the symbolic one. Perhaps, the most interesting aspect of Copycat
resides in its unique stochastic property that might have some parallel with mental
fluidity of our brain.

Rumelhart (1989) expressed the need of a genuine connectionist approach
whereby the goal, i.e., analogical reasoning or inference, should be achieved not as
a result of explicitly intentional design but as a side effect of some general learning
principle. In fact, Hinton (1986) described such a neural network to make inference
on personal relationships in two isomorphic families, and the recognition of this early
work in the context of analogy appears to be relatively recent (Holyoak et al., 1994).
With the same connectionist spirit but with a different architecture, this author pre-
sented an Abstraction Based Connectionist Analogy Processor (AB-CAP), which, like
Hinton’s network, assumes a relational isomorphism (Yasui, 1997b). As a result of the
backpropagation training coupled with a mechanism to prune the AB-CAP structure
dynamically, the underlying analogy structure (i.e., the internal abstraction model)
is induced in AB-CAP more explicitly than in Hinton’s network. Another notable
aspect of AB-CAP in contrast to other connectionist attempts including Hinton’s is
that AB-CAP is ready to use for analogies involving multiple (three or more) analogs,
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multiple analogies and incremental analogical learning (Yasui, 1998; Watanabe et al.,
1999). The knowledge data supplied to AB-CAP are not compared directly with each
other, but the internal abstraction model induced in AB-CAP serves as a mediator in
this context. Because of this property, AB-CAP circumvents combinatorial explosion
which would be likely to arise in other existing analogy processors when applied to
large-size problems.

The cognitive science community generally agrees that the analogy by humans
involves semantic, pragmatic and structural faculties. AB-CAP, on the other hand,
is purely structural; only the relational isomorphism is important, and semantic,
pragmatic and other aspects are not considered. Obviously, therefore, AB-CAP has
limitations as a model to understand human analogical learning. However, the internal
abstraction model induced in AB-CAP is similar to the cognitive science notion of
schema stemming from Kant. And schema induction in a computational framework
has been a difficult problem of widely recognized importance, as reviewed by Hummel
and Holyoak (1997). From this standpoint, AB-CAP is thought to be still relevant to
analogy research in cognitive science, besides its potential technological applications,
i.e., machine learning by analogy. In this paper, the performance of AB-CAP for
analogical inference is examined using a family-tree example, more systematically

than previously. Another example is given to examine incremental analogical learning
by AB-CAP.

2. Basic Ideas and Archtecture of AB-CAP

The central idea underlying AB-CAP is obtained by noting that the solar/atom anal-
ogy (Rutherford analogy) of Table 1 can be generalized as shown in Fig. 1 and Table 2,
wherein each pair of the corresponding specific items or objects (constants, e.g., sun
and nucleus ) are represented symbolically by a single abstracted item (variable, e.g.
z) which plays a role (or roles) designated by a relational predicate (or predicates)
such as attract, revolve around and so on. In Tables 1 and 2, the ordered triple (e,
7, B) denotes a proposition that item « is related to item S through relational
predicate 7. The basic architecture of AB-CAP is shown in Fig. 2 and illustrated
below using the solar/atom example. Throughout this paper, the terms ‘unit’, ‘node’
and ‘neuron’ are used synonymously. Also, ‘slot’ is often used to mean the input or
output units. Every unit in the input and output layers is tagged by the name of a
specific item (e.g., sun, earth, elrectron), and the input and output layers look the
same.

Table 1. Solar/atom analogy: an example of a relational isomorphism.

Solar system:

(solar system, greater than, (sun, earth)) (sun, included in, solar system)

(sun, greater than, earth) (sun, attract, earth) (earth, included in, solar system)
(earth, revolve around, sun)

Atomic system:
(atom, greater than, (nucleus, electron)) (nucleus, included in, atom)
(nucleus, greater than, electron) (nucleus, attract, electron) (nucleus, included in, atom)

(electron, revolve around, nucleus)
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Table 2. Generalization of the solar/atom analogy.

Abstraction model:

(x, greater than, (y,2)) (v, included in, z) (y, greater than, z) (y, attract, z)
(z, included in, x) (2, revolve around, y)

Abstraction mapping:

solar system, atom — z, sun, nucleus — y, earth, electron — z

De-Abstraction mapping:

z — solar system, atom, y — sun, nucleus, z— earth, electron

solar system L

Fig. 1. Artist’s concept of the solar/atom analogy and its generalization.
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Fig. 2. Basic architecture of AB-CAP. The triangles represent the gating mul-
tipliers. CS (Convergence Suppression) and DF (Divergence Facilita-
tion) fields (Yasui, 1997a) are present for the network pruning.
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In AB-CAP, the specific items do not play a role by themselves. Instead, they
let the corresponding abstracted items do the job. In this context, the specific items
are indirect role fillers.

The possible relational predicates are treated as another set of inputs to AB-CAP.
When a pair of specific item o and relational predicate 7 from the ordered triple («,
7, fB) are provided as input, the two respective input neurons are set to ‘1’ and the
remaining input neurons ‘0’ for their activities. AB-CAP is required to produce the
activity of ‘1’ in the output neuron corresponding to specific item £, and ‘0’ in the
rest of output slots. All neurons except for the item- and relation-input units have a
sigmoidal activation function. All connections are allowed to have only non-negative
weights. This is an appropriate restriction since what matters is whether there is a
connection or no connection between any two nodes. All bias inputs are a negative
constant (—4), except those to the final output units which are each independently
updated by training and normally remain negative (with the initial value being —5).

The training is made using the backpropagation (BP) algorithm with S as the
teacher signal for learning («, m, 3). Initially, a sufficiently large number of neurons
are made available for use in each hidden layer. AB-CAP is pruned dynamically
during the training by means of an algorithm called Convergence Suppression (CS)
and Divergence Facilitation (DF) due to this author (Yasui, 1997a). Briefly, the CSDF
algorithm is especially suitable for trimming multi-output neural networks such as
AB-CAP. Like many other existing pruning methods, CSDF eliminates irrelevant
and redundant connections or hidden units. CSDF does this in such a novel way
as to minimize the total number of active hidden units and at the same time, to
maximize the number of hidden units that can be used jointly by two or more output
units. CS and DF are applied to certain receptive and projective fields as marked
in Fig 2. No information is given to AB-CAP as to how many analogs (two in the
solar-atom example) exist, as well as which analog individual items belong to. This
class identification is handled by the auto-categorizer module that appears on the left
in Fig. 2. Namely, the weight matrices V' and VT are expected to grow into the
categorization and de-categorization mappings, respectively, and only the necessary
and sufficient number of categorizer hidden units would survive the CSDF pruning.

The abstraction and de-abstraction mappings are formed through the develop-
ment of the transpose pair of weight matrices W and W7, respectively. Thus, the
AB-CAP architecture has some symmetry with respect to its upper and lower parts
(Fig. 2). The structure that involves the two hidden layers, A1 and A2, is expected
to grow into the internal abstraction model. The Al and A2 hidden units that sur-
vive the CSDF pruning will correspond to the abstracted items such as z, y and
z of Fig. 1 or Table 2. Each connection from the Al to A2 layer is controlled by a
weighted vector signal from the relational predicate inputs through gating multipliers.
This predicate-argument binding is expressed by a three-dimensional matrix U. As
a result of all this, selective dynamic bindings will occur between abstracted items
and relational predicate inputs. Accordingly, AB-CAP would generate its own version
of the abstraction model such as the one given in Table 2.
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3. Mathematical Description of AB-CAP

Further details of AB-CAP are given mathematically in this section.

3.1. Relational Isomorphism

Let Sy = Rx Ay x Ay (k=1,...,N) be a situation. Here, 4; = {ar1,...,apn}
and U{;’:lAk is the set of all distinct items. Furthermore, R = {ry,...,r1,0}
expresses all possible relational predicates including ‘no relation’ corresponding to
the element 0. Thus, there are N categories corresponding to the N situations,
each of which involves M distinct specific items. The situation Sj consists of all
facts or propositions that belong to the k-th category. It is assumed in the present
study that these individual propositions are expressible in the form (o, m, B) where
a,B € UYL, Ag. A relational isomorphism can be defined by introducing an abstract
entity B = {b1,...,bp}. Thus, Sy,..., Sy aresaid to form a relational isomorphism
iff

(VE ¥ ((rp, aki, arg) € Sk) 3m In (7, bmy b)) A (¥ (7p, bnsy b)
34 3] ((rp,au,alj) € Sl) A ATi 37 ((rp,aNi,aNj) € SN))

The situations Sy,...,Sy satisfying this isomorphism are said to be analogous
to each other. If this is the case, each element of B is a variable which is a gen-
eral symbolization of the corresponding specific items, and accordingly it is an ab-
stracted item to be filled by the appropriate specific items. Thus, R x B x B is
a generalized situation, i.e., an abstraction model. In the solar/atom analogy, for
example, we have A; = {solar system, sun, earth}, Ay = {atom, nucleus, electron},
R = {greater than, included in, attract, revolve around, 0}, and B = {z,y,2}.

3.2. Abstraction Based Connectionist Analogy Processor (AB-CAP)
3.2.1. Structures Evolving into Abstraction

"The activity vectors are denoted by = = [z1,...,2n5 )T for the specific item neurons
(e-g., sun, earth, nucleus, etc.) in the input layer and by m = [m1,...,m]T for the
relational predicate units (e.g., attract, revolve around, etc.). The former signals
are sent to two separate hidden layers, the categorizer hidden layer and the A1 layer.
There are J Al neurons (J > M) and the corresponding activity vector is denoted by
h =[h1,...,hs]T €[0,1]7. These neurons are candidates of the nodes to represent the
abstracted items. The transformation from z to h would evolve into the abstraction
mapping. If W = [wy;] € [0,00]”*NM denotes the synaptic weight matrix associated
with this transformation, then

hi=f((Wali+¢), i=1,...,J

Here, [Wz]; stands for the i-th component of the vector Wz, § () =exp()/(1 +
exp(-)) is the activation function, and ¢ is a bias which is a negative constant.
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Like Al units, some units of the A2 layer are expected to survive the CSDF
pruning and to represent the abstracted items. Signals from the Al layer interact
with the predicate inputs before arriving at the A2 layer (Fig. 2). This interaction
facilitates predicate-argument bindings at the abstracted level and it is described,
as illustrated below, by a three-dimensional weight matrix U = [u;x] € [0, 0],
i,j=1,...,J, k=1,...,L. There are a total of L potentially useful connections
from the 4-th unit of the A1l layer to the j-th unit of the A2 layer. Each of these
connections is gated by the relational predicate input vector 7 by using L multipliers
corresponding to the L predicate inputs. Thus, the element w;;; is the synaptic
weight acting on the k-th predicate input before the multiplier. This arrangement,
which is akin to the method based on the tensor product of vectors to represent
the predicate-argument binding (Smolensky, 1990; Halford et al., 1994), is expressed
mathematically as follows. Let u;; = [ujj1,. .., us;z], so that a JxJ matrix Plu;;-n]
can be constructed where - denotes inner product of two vectors. If the vector
9 =1[91,-.-,97]T €[0,1)7 denotes the activity pattern of the A2 hidden layer, then

gi=f([Phli+c), i=1,...,J
Note that

[Ph]i = ZZuijkhJ”n’k, 1= 1,.‘.,J.

J
=1 k=1

J

Thus, each element of U = [u;;;] quantifies the degree of binding involving a rela-
tional predicate and two arguments corresponding to two abstracted items, one in the
A1l layer and the other in the A2 layer. Accordingly, the matrix U is what would
evolve into the internal abstraction model after the BP-CSDF training which will be
explained in Section 3.2.3.

3.2.2. Categorizer and De-Abstraction

Another hidden layer on the left in Fig. 2 constitutes the auto-categorizer to identify
which of the classes (e.g., solar or atomic system) an input item belongs to. If s =
[s1,-..,8K]T € [0,1)¥ is the activity vector of K categorizer hidden neurons (K >
N), then

si=f([Vali+¢), 1=1,...,K,

where V' = [v;;] € [0,00]5E*VM is a weight matrix. The output layer provides the
network’s answer to (a, w, 7). Thus, it consists of N x M item neurons, like the
item-input layer. If their activity vector is denoted by ¥ = [y1,...,ynm]? € [0, 1]V,
then

yi = f(WTgl; + [VTsli+b), i=1,...,NM.

Here, b is a bias. Unlike the bias ¢ associated with other layers, b is not constant.
The transformations from the A2 and categorizer hidden layers to the output layer are
made by the matrices W7 and V7, respectively, in order for AB-CAP to generate
the answer to (o, , 7).
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3.2.3. Backpropagation Training with Dynamic Structure Pruning

For each output unit, the error vector e = [y1 —t1,...,ynar — tnar]? is defined with
t = [t1,...,tnm]7 being the teacher signal vector. Let w represent an element of
W, V, U or b. Then w is corrected iteratively by means of the backpropagation
(BP) algorithm. Thus,

Awnew sp = ndele/dw + alwyq,

where 7 and o are the learning-rate and momentum constants, respectively.
deTe /0w can be written down explicitly by using the delta rule as is well-known.
Actually, the BP corrections for W and V' are made twice in every iteration cycle,
once for abstraction (i.e., as W and V) and once for de-abstraction (ie., as W7T
and V7).

Furthermore, insignificant and irrelevant connections are eliminated by the CSDF
pruning algorithm due to Yasui (1997a):

Awnew = AWnew,BP + Awcs + Awpr,

with Awcs and Awpr being CS (Convergence Suppression) and DF (Divergence
Facilitation) terms, respectively. Awyey is ignored if it made the new value of w
become negative. There is no such restriction, however, for the variable bias b which
normally remains negative. The CS mechanism is imposed across the receptive (fan-
in) fields of all output neurons, and DF is introduced across the projective (fan-out)
fields of the hidden-output connections (Fig. 2). Thus,

Awijos = —esgn (wij) (Jwij| + - + Jwrjz| — |wyz]) /7,

Aw,-j,DF = —fyBeTe/aw,-j(lwﬂ] + -4 |’u}1',NM’ — I’LU”D/(NM),

for j = 1,...,NM and i = 1,...,J. Here, € and v are algorithm parameters.
The expressions are similar for Av;;cg and Awv;;pr associated with the categorizer
module. In addition, the CS pruning is applied also to uijr’s, which are the gating
weight parameters to allow for interactions between the abstracted items and predicate
inputs, such that

Augjr,cs = —esgn (uige) (wijy + -+ + wijr — wige) /L, i,j=1,...,J.

3.3. Parameter Setting/Control and Initial Conditions

Generally speaking, AB-CAP is considerably robust against the choice of its param-
eter values. It should be noted, however, that the shorter the learning time is, the
more often the learning fails. The present parameter setting is a compromise between
the learning speed and accuracy. The learning-rate constant (n) was 5 for WT and
VT and 5 for W and V. Moreover, n for U was 10 and 20 for Phase 1 and 2, re-
spectively. Here, Phase 1 refers to the training period before all output errors become
less than 0.95 in the absolute value, and the remaining period is denoted by Phase 2.
Normally, the desirable internal structure is basically formed near the end of Phase 1,
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and Phase 2 accelerates and shapes up the emergent structure. The momentum con-
stant (o) was 0.2. 7 for the bias weight associated with each output unit was 0
and 1 for Phase 1 and 2, respectively. As regards the CSDF pruning, the facilitation
parameter (y) was 5, and the suppression parameter (¢) for both W and V was
0.002 for Phase 1 and 0.005 for Phase 2. € for U was 1 x 107% and 5 x 1073 for
Phase 1 and 2, respectively. For Phase 2, however, the convergence suppression (CS)
included ‘self-suppression’. That is, the last equation was slightly modified such that

AUijk,CS = —gsgn (uijk)(uijl + -+ uijL)/L, ,7=1,...,J.

This modification has been found to be more effective for scavenging remnants
in the wij, values which would otherwise remain unvarnished even near the end of
the BP-CSDF training. The reason for this effectiveness is as follows. If one and only
one unnecessary connection happens to survive the CSDF pruning in a fan-in field,
then no inhibitory force would be available from the ‘non-self-suppression scheme’
to eliminate that connection. As for the non-negative weight parameters, the initial
values of w;; € W were 0 and those of v;; € V and wuy, € U were distributed
randomly in [0,1], V4,7, k. In order to prevent the weight values from going too wild
during the training, a restriction was imposed such that w;; <6, vi; <6, us < 10
for Phase 1, and w;j < 12, vy; < 10, uij, < 20 for Phase 2.

4. Analogical Inference by AB-CAP

If some relationships are excluded from the training dataset, then the inference tests
asking (o, m, 7) can be made about those untaught relations after the training.
A success of the inference by AB-CAP entails the proper acquisition of the abstrac-
tion (W7) and de-abstraction (W) mappings, and the categorization (V') and
de-categorization (V') mappings, as well as the abstraction model determined by the
predicate-argument binding (U) at the abstracted level. The performance of AB-
CAP for analogical inference was demonstrated by the previous studies using the
solar/atom (Yausi, 1998), family-tree (Yasui, 1997b; 1998), and geological (Yausi,
1998) examples. The purpose of this section is a closer evaluation by revisiting the
family-tree example of Fig. 3 or Table 3.

4.1. Inference Test Protocol

In the family-tree example of Fig. 3 or Table 3, five family roles are considered. These
are husband, wife, father, mother and child, so that there are a total of thirty six
personal relationships, eighteen for each family. The number of hidden units initially
made available for use was eight for each of the Al and A2 hidden layers and also
eight for the categorizer layer. The inference tests were made when the CSDF-BP
learning was complete, i.e., when all output errors were < 0.2 in the absolute value.
The inference was judged as successful when the output error for every untaught
proposition was < 0.3 in the absolute value. The inference failure includes the
training runs that never learned the training data before 80,000 iterations. Most
(85%) successful runs ended after 35,000-50,000 iterations. Note that, in a previous
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paper (Yasui, 1998), a table similar to Table 3 suffers from a careless error of writing,
for instance, (John, wife, Nancy), instead of (John, husband, Nancy).

{Jepanese American

Jmkn fl%ri K’yei«x Fobw. Nmﬁy Frank ﬁum

| Abstraction

Fig. 3. Two relational isomorphic families and their abstraction.

Table 3. A written version of Fig. 3.

Japanese family relations:
(Kaz, husband, Junko) (Junko, wife, Kaz) (Junko, mother, Taroh)
(Taroh, child, Kaz) (Maki, wife, Taroh) (Ken, child, Maki), etc.

American family relations:
(John, husband, Nancy) (Nancy, wife, John) (Nancy, mother, Paul)
(Paul, child, John) (Diana, wife, Paul) (Andy, child, Diana), etc.

Abstraction model:
(a, husband, b) (b, wife, a) (b, mother, e) (e, child, a) (£, wife, e) (g, child, f), etc.

Abstraction mapping:
Kaz, John —a, Junko, Nancy —b, ..., Ken, Andy — g

De-Abstraction mapping:
a— Kazuo, John, b— Junko, Nancy, ..., g — Ken, Andy




Abstraction based connectionist analogy processor 801

4.2. Inference Performance

The inference test results are shown in Fig. 4. For comparison, the inference test was
also performed without the CSDF pruning, i.e., BP only. The inference success rate
was examined as a function of the number of relational propositions excluded from the
training dataset. The removal was made from one family only, or alternatively, evenly
from both families. The two alternatives, however, produced no significant difference
in the result. Actually, the untaught relations (i.e., the test dataset) did not include
a counterpart pair such as (Kaz, husband, Junko) and (John, husband, Nancy). If
these data were both removed from the training dataset, then AB-CAP would be
guaranteed to fail in answering to either (Kaz, husband, ?7) or (John, husband, 7).
Also, the selection for the removal from the training dataset was controlled so as to
avoid the cases where a person would never appear as a teacher signal. Although the
training needed a longer time and the inference success rate decreased somewhat, AB-
CAP managed to handle such cases so long as the person appeared in an input slot. In
a separate experiment, ‘no answer propositions’ such as (John, mother, ‘none’) were
included in the training dataset, so that the teacher signal was zero for all the output
units. The inference success rate was improved somewhat unless the percentage of
no-answer propositions mixed in the training dataset was not too high. Thus, there
appears to be some optimum increase in such negative information for the training.
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Fig. 4. Inference success rate vs. the number (n) of relational propositions removed

from the training dataset for 100 runs for each data point. Filled circles:
removal exclusively from one family. Open circles: removal evenly from both
families (n/2).

4.3. Evolution of the Internal Structure

Figure 5 shows how AB-CAP evolved in a successful case of the family-tree learning.
In this record, ‘max_error’ refers to the largest of the absolute output errors in
the last 1,000 iterations. The 3D profiles of the predicate-argument binding matrix
U = [uj;] are presented in the following way.

The five possible predicates (k = 1,...,5) relating two abstracted items ¢ and
j are coded in an alphabet, i.e., father —+F, f, mother =M, m, husband —H, h,
wife — W, w, child — C, ¢. The capital letter is displayed if the corresponding w;jz
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value exceeds the higher threshold, th_1. The lower-case letter is used if the value
falls between th_1 and the lower threshold, th 2. No letter appears in the slot if
ugjr < th_2. Starting from the initial random state (see A), a structure began to
appear in V' such that two of the eight available categorizer hidden units became se-
lectively active (corresponding to the Japanese and American) and the CSDF pruning
eliminated the rest (see B). At C, the matrix W, the abstraction and de-abstraction
mappings was formed almost properly, but the gated binding represented by U was
not yet established. At D, max_error dropped nearly to the zero level, and the learn-
ing successfully ended. Thus, seven units in each of the A1l and A2 layers finally
survived the pruning to represent the seven abstracted persons, a, ..., g of Fig. 3
or Table 3. In this example, a total of eight units were made available in each of
the two layers. This is only one unit more than necessary. This saving was made
in order to make the U result compact in size, simply for the sake of illustration
such as Fig. 5. The final array W consists of two identical patterns. One reflects
the abstraction mapping from the Americans and the other from the Japanese, each
to the corresponding abstracted persons (see Table 3). The panel (D) of Fig. 5 is
enlarged as given in Figure 6, showing that the internal abstraction model (i.e., U
matrix) finally captured conforms to the abstraction described in Table 3, i.e., (a
husband, b), (b, wife, a), (e, mother, g) and so on.

)

4.4. Discussion

As is evident in the present example, the CSDF pruning plays a crucial role in AB-
CAP to form the final internal structure properly. Figure 7 shows a diagram that can
be drawn from the final structure of Fig. 6, illustrating schematically how AB-CAP
can successfully produce the right output of ‘John’ in response to (Nancy, wife, ?),
i.e., whose wife is Nancy? In this example, the item input is signaled from the ‘Nancy’
neuron to the ‘b’ neuron, and only this unit gets activated in the A1l layer since its
input signal is amplified by a large weight to overcome the threshold set by the bias
input to the ‘b’ unit. The relational predicate signal from the wife slot goes to the
gating multipliers associated with all the potentially relevant abstracted propositions,
ie., (b, wife, a), (d, wife, ¢), and (£, wife, g) (see Fig. 3). However, no signal comes
from either ‘d’ or ‘f’ neuron of the A1 layer. In the A2 layer, therefore, the ‘a’ neuron
is the only unit that receives a supra-threshold signal to get activated as illustrated
in Fig. 7. This activation signal goes to the two output slots, one tagged as John
and the other Kaz. But only the ‘John’ neuron can be activated, since it receives
the signal from ‘American’ neuron whereas the input to the ‘Kaz’ neuron is not large
enough to overcome the threshold, due to no signal from the categorization layer.

Actually, the data of (Nancy, wife, John) were not included in the training dataset
for the experiment of Fig. 5. Nevertheless, this whole proposition was induced struc-
turally in AB-CAP (Figs. 6 and 7). Thus, AB-CAP after the training knew that
Nancy is John’s wife, which is knowledge never told to AB-CAP. This inference is
a knowledge transfer from the Japanese counterpart, i.e., (Junko, wife, Kaz). As is
evident from Figs. 6 and 7, however, this transfer is indirect since it is relayed only
through the abstracted proposition (b, wife, a). That is, a micro-structure expressing
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Fig. 5. Evolution of the internal structure during a successful training run for the
family-tree example of Fig. 3. The size of each square is proportional to the
value of the corresponding element in the abstraction mapping (W) or cate-
gorization mapping (V) matrix. The 3D matrix (U) describing the internal
abstraction model is expressed symbolically in an alphabet, e.g., father = F, {
(see the text).
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Fig. 6. Enlargement of Fig. 5(D) illustrating the post-training struc-
ture of AB-CAP learning in the family-tree example of Fig. 3.
In this particular run, the seven abstracted persons in the U,
b, d, f, e, b, g, c corresponded to 4,5 = 1,2,...,7, in that order.

(b, wife, a) was induced by (Junko, wife, Kaz) in the absence of (Nancy, wife, John).
While this process was going, the abstraction binding as well as de-abstraction binding
between the ‘b’ and ‘Nancy’ units were induced by those training data that involved
Nancy, i.e., (John, husband, Nancy), (Paul, child, Nancy) and (Nancy, mother, Paul).
The binding between the ‘a’ and ‘John’ units was made in a similar fashion.

Since the whole proposition (Nancy, wife, John) was induced structurally in AB-
CAP, one can just look at the post-training structure (Fig. 6) to answer not only to
(Nancy, wife, 7), but also to (?, wife, John), i.e., who is John’s wife? or (Nancy, ?,
John), i.e., what family role does Nancy play for John? In fact, such visual inspection
has been recently computerized (Fujimura and Yasui, 2000). It is also obvious by
looking at the structure that John is the answer to the inquiry asking who in the
American family plays the same role as Kaz in the Japanese family. Again, it would
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Fig. 7. Schematic diagram obtained from Fig. 6, illustrating how the optimum (nec-
essary and sufficient) structure operates in AB-CAP to give the right answer
‘John’ to the question (Nancy, husband, 7). Dark circles are the units acti-
vated by the question. The encircled cross symbol represents the gating mul-
tiplier for the predicate-argument binding in the internal abstraction model.
Although not shown here, there is a negative-valued bias input to each neuron
except for the input units.

be a straightforward work to write out a computer program that can do this by reading
the post-training structure.

It should also be noted that a successful inference was almost always (94%)
accompanied by the post-training internal structure (e.g., Fig. 6) that captured the
abstraction scheme of Table 3.

5. Incremental Analogical Learning by AB-CAP

The purpose of this section is to examine what would happen if AB-CAP received a
new set of data having the same relational isomorphism as those previously learned.
This is the problem of incremental analogical learning which was examined previously
in AB-CAP by using an analogy concerning geological orientation (Yasui, 1998). Here,
a different example documented in Table 4 is used.

5.1. Performance Evaluation

A preliminary test was made first for simultaneous (non-incremental) learning of all
the three analogs, i.e., water, electric and heat systems. The inference test score
was good (70-95% success) as far as the number of relationships removed from the
training dataset was no more than four. Figure 8 shows a typical record showing the
progress of incremental analogical learning by AB-CAP. The training was made first
by teaching two of the three analogs. They were the water and electric systems in the
experiment, of Fig. 8. When the learning was completed successfully around stage C,
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Table 4. Water/electric/heat analogy.

Water Flow:
(spring, higher than (in altitude ), lake) spring, supply, water)

lake, accumulate, water)

(

(river, conduct, water) (river, follow, spring)
(lake, follow, river) (
(

(water, flow through, river) water, flow to, lake)

Electric Current:
(battery, higher than (in voltage), capacitor) (battery, supply, charge)

(register, conduct, charge) (resister, follow, battery)
(capacitor, follow, resister) (capacitor, accumulate, charge)
(charge, flow through, resister) (charge, flow to, capacitor)
Heat Flow:

(fire, higher than (in temperature), coffee) (fire, supply, heat)

(metal, conduct, heat) (metal, follow, fire)
(coffee, follow, metal) (coffee, accumulate, heat)
(heat, flow through, metal) (heat, flow to, coffee)
Abstraction Model:

(a, higher than, c) (a, supply, d)

(b, conduct, d) (b, follow, a)

(¢, follow, b) (¢, accumulate, d)

(d, flow through, b) (d, flow to, c)

Abstraction Mapping:

spring, battery, fire — a, river, resister, metal — b,
lake, capacitor, coffee —c, water, charge, heat —+d

De-Abstraction Mapping:

a — spring, battery, fire, b — river, resister, metal,
c — lake, capacitor, coffee, d — water, charge, heat

the third analog which is the heat system was added to the training dataset. The
output error rose immediately, but quickly returned to the zero level at D and the
incremental analogical learning was successful.

5.2. Development of the Internal Structure

Next, the record of Fig. 8 is examined for evolution of the internal structure. The same
convention as in Fig. 5 is used here to present the predicate-argument binding ma-
trix U, with the alphabet coding being such that accumulate — A, a, conduct — C, c,
higher than — H, h, supply — S, s, follow -+ F, f, flow through =W, w, flow to = O, o.
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Fig. 8. Evolution of the AB-CAP internal structure during incremental ana-
logical learning of the heat system after analogical learning of the water
and electric systems.

The record of V' at stage C shows that two categorizer units survived the CSDF prun-
ing, representing the water and electric systems. Correspondingly, the record of W
at C shows two identical connection patterns. The record of U at C expresses the
internal abstraction model which was induced from learning the water and electric
systems. The two W patterns at C manifest correspondence bindings between spe-
cific and abstracted items. At D, the V' record shows the appearance of one more
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categorizer hidden unit, reflecting the addition of the heat system to the training
dataset. Furthermore, at D, the panel of W shows the emergence of a new pattern.
But this one is identical to the two existing patterns formed at C. The whole pattern
of U, however, remains unchanged since its formation at C. All this implies that
the internal abstraction model acquired from the prior analogical learning remains
undisturbed and acts as an attracter to capture new isomorphic knowledge such as
the heat system of the present example.

6. Closing Remarks

AB-CAP (Abstraction Based Connectionist Analogy Processor) is one way to comput-
erize abstraction schemes such as the one presented in Table 3. Its internal abstraction
model has some parallel with the notion of schema in cognitive science. It can also be
said that AB-CAP is a product of the ‘structurism’ stemming from Gentner (1983).
The semantic and pragmatic aspects and background knowledge as well as surface
similarities are not considered in AB-CAP, whereas human analogical reasoning is
known to use these cues often. In AB-CAP, only a relational isomorphism is what
is needed. Thus, the items and relational predicates per se may have no semantic
meaning in AB-CAP, so that they can be just symbols or numbers as in an exercise
presented earlier (Yasui, 1997b). Thus, it is beyond the capability of AB-CAP to
induce, for instance, the notion of ‘marriage’ from the training dataset used in the
family-tree example. For a similar reason, it does not matter to AB-CAP whether
the analogy is of a within-domain or a between-domain type (cf., e.g., Vosniadou and
Ortony, 1989). As such, AB-CAP has limitations as a model for analogical learning
by humans, although AB-CAP might lead to technological applications, i.e., machine
learning by analogy. Nevertheless, AB-CAP may still have relevance to important
issues in cognitive science, since it is based on non-intentional mechanisms to form,
maintain and retrieve the analogical memory. The key to this capability consists of
the internal abstraction model and abstraction/de-abstraction mappings. These are
all induced automatically in AB-CAP as a result of the BP-CSDF training. The
CSDF pruning mechanism plays a crucial role in this process. This agrees with the
connectionist engineer’s notion often referred to as PRR (Principle of Redundancy
Reduction) that good generalization ability of a neural network entails its compact
internal representation.

6.1. No Direct Processing between Source and Target in AB-CAP

In the study of analogy, the two terms, ‘source’ and ‘target’, have traditionally been
used, like a analogical transfer or pattern matching between a source and a target.
The source-target notion is somewhat obscured in AB-CAP as well as other contem-
porary models, since the data can be fragmentary in both the ‘source and target’.
More importantly, in AB-CAP there is no direct interaction or comparison between
the ‘source and target’. The abstraction model that emerges in AB-CAP acts as a me-
diator in this context. An analogy processor called IMM due to Hummel et al. (1994)
mentioned in the Introduction uses a form of guided retrieval to indirectly establish
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mappings between the source and target elements. In AB-CAP, on the other hand,
source-target mappings in themselves do not exist. In AB-CAP, predicate-argument
bindings are made on abstracted items instead of specific items, so as to generate
abstracted propositions such as (z, revolve around, y) in Table 2. For this reason, the
risk of a combinatorial explosion is greatly reduced for large-size application problems.
In fact, AB-CAP allows for multiple analogs and/or multiple analogies to be processed
at the same time without significant computational pressure (Yasui, 1998; Watanabe
et al., 1999). In AB-CAP with these characteristic features, the constraint satisfaction
and isomorphic pattern completion are automatically accomplished without explicit
manipulations such as hypothesis making/checking.

6.2. Propositions are Embedded as Micro-Structures in AB-CAP

In this and earlier studies, the analogical inference by AB-CAP has been examined
by removing a proposition, say, (Nancy, wife, John) from the training dataset. AB-
CAP after the training generates the answer ‘John’ to the question (Nancy, wife, 7).
Actually, by looking at the post-training structure, one can at once answer correctly
not only to (Nancy, wife, 7) but also to (?, wife, John) or (Nancy, ?, John). This is
because what is induced in AB-CAP is a micro-structure expressing the entire propo-
sition (Nancy, wife, John). This point is basically valid for Hinton’s connectionist
model (1986), and the following remark quoted from Holyoak et al. (1994) appears
somewhat misleading; “ . .Hinton’s generalization task involved giving the system the
first argument and relation and asking it to generate the second argument, whereas
ACME was asked to generate entire new propositions ..”. Also by visual inspection
on the post-training micro-structures of AB-CAP, one can easily tell, for instance,
who in the Japanese family plays the same role as John. Such visual inspection can
be computerized easily. Thus, both known and inferred correspondences, no matter
whether they are concerned with single items or relations of items, are embedded in
the structure. In ACME and some other models, the propositions are represented by
single nodes. In AB-CAP, on the other hand, propositions are expressed by, induced
as, stored in, and retrieved from structural patterns.

6.3. Dynamic Binding and Access/Retrieval Mechanisms in AB-CAP

The performance quality of AB-CAP regarding analogical memory access and retrieval
can be demonstrated particularly well by incremental analogical learning. It is shown
in this and earlier studies (Yasui, 1998; Watanabe et al., 1999) that the internal
abstraction model obtained from prior analogical learning is a potent attracter that
binds dynamically new datasets of the same isomorphic structure. In recent years,
dynamic binding has drawn increasing recognition as a fundamental mechanism for
cognitive functions of the brain. And Hummel et al. (1994) appear to be the first to
introduce this notion to analogy research, and predicate-argument dynamic binding is
an operational strategy in LISA, a model for human analogical learning (Hummel and
Holyoak, 1997). Dynamic bindings in AB-CAP work at somewhat different levels and
in a different context in comparison to LISA. In AB-CAP, dynamic bindings occur
between the relational predicates (roles) and the abstracted items (role fillers), as
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a process to acquire the internal abstraction model, i.e., the 3D predicate-argument
binding matrix U. Also, dynamic bindings in AB-CAP 'are coupled with the CSDF
pruning to develop the correspondence matching between the specific and abstracted
items, as is expressed by the abstraction (W) or de-abstraction (WT) mapping. In
a sense, therefore, the specific items in AB-CAP do not play a role by themselves.
Instead, they let their representatives (i.e., abstracted items) be the actual role fillers.

In a case study of incremental analogy described elsewhere (Watanabe et al.,
1999), AB-CAP was trained to learn in succession two analogies of the solar/atom
and water /electric systems, so that two internal abstraction models were induced. Af-
ter that, a training dataset from the heat system was added. As a result, new bindings
were formed to (W) and from (W7) the existing abstraction model corresponding
to the water/electric analogy, not the other one generalizing the solar/atom analogy.
This is selective retrieval of analogical memory or allocation of new role-fillers, and
is reminiscent of human analogical learning whereby one often recognizes a new sit-
uation as analogous to one of the relational concepts previously learned. From such
a viewpoint, the internal abstraction models would be stored as a part of the long-
term memory and the abstraction and de-abstraction mappings would pertain to the
working memory.

6.4. Rutherford and AB-CAP

In reality, the situations faced by the learner are unlikely to conform to the ideal
isomorphism assumed in this study. The isomorphism is probably obscured by irrele-
vant information, and potential analogs would need to be recognized before discovery
of the analogy. This noise-filtering problem appears to remain relatively unexplored,
despite its obvious importance in analogy research. The problem has recently been
examined in the computational framework of AB-CAP. The result obtained by using
the Rutherford analogy shows that the performance of AB-CAP is not affected by
the presence of irrelevant objects such as the moon, positron and neutron (Yasui and
Watanabe, 2000).

In the present study, AB-CAP learns the solar and atomic systems simultane-
ously. This was not exactly the case of Rutherford. At least initially in his and
others’ mind at that time, the solar system was just a knowledge having nothing
to do with analogy. Only retrospectively can it be called a prior example or source
analog. Perhaps in Rutherford’s brain, knowledge of the solar system was retrieved
from the long-term memory to provide input data to his abstraction machinery when
the physicist was confronted by fragmentary information about the atom. In this
context, Rutherford might have been like AB-CAP capturing the abstraction model
by learning the solar and atomic systems simultaneously.

In reality, an isomorphism may also be incomplete or inaccurate. The celebrated
tumor /fortress analogy which is one such example can be understood by most people
(e.g., Holyoak and Thagard, 1989b). Again, AB-CAP remains to be investigated
regarding this kind of non-ideal relational isomorphism. Future study may also include
a possible extension of AB-CAP for dealing with high-order propositions such as (Tom,
know, (John, love, Nancy)) or ((Car A, hit, Car B ), cause, (Car B, hit, Car C)).
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