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EXACT CONTROLLABILITY OF AN ELASTIC

MEMBRANE COUPLED WITH

A POTENTIAL FLUID

Scott HANSEN∗

We consider the problem of boundary control of an elastic system with coupling
to a potential equation. The potential equation represents the linearized motions
of an incompressible inviscid fluid in a cavity bounded in part by an elastic
membrane. Sufficient control is placed on a portion of the elastic membrane to
insure that the uncoupled membrane is exactly controllable. The main result is
that if the density of the fluid is sufficiently small, then the coupled system is
exactly controllable.

Keywords: exact controllability, fluid-elastic interaction, fluid-structure inter-

action, potential fluid

1. Introduction

In this article we consider the problem of controlling an elastic membrane that is
adjacent to a linear potential fluid. There has recently been much research in this
direction, concerning the case of an elastic system with acoustic coupling, see (Ava-
los, 1996; Banks et al., 1993; Lions and Zuazua, 1995; Micu and Zuazua, 1997) and
references therein. Other papers consider the case where the adjacent fluid is a Stokes
fluid (Osses and Puel, 1998; 1999). In this paper the fluid is modeled as a linearized
potential fluid (with a harmonic velocity potential). This model has been used, for
example, to analyze the dynamics of the cochlea in the inner ear (Lighthill, 1981). A
comparison of these various models can be found in (Conca et al., 1998).

The system we consider involves a body of fluid bounded at least partly by a
flexible membrane. A potential equation is used to model the fluid while a wave
equation is used to model the membrane. The two equations are coupled by matching
velocities of the fluid with that of the membrane, and using the fluid pressure as
a forcing term for the membrane. Furthermore, the incompressibility of the fluid
introduces constraints upon the possible motions of the membrane.

It is well-known for the wave equation that the Dirichlet boundary control on
a “sufficiently large” portion of the boundary is sufficient for exact controlliblity.
The main result of this article is that if the fluid density is sufficiently small, the
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same holds true for the coupled fluid-membrane system. A similar result, although
regarding some special cases involving a two-dimensional potential fluid surrounding
a one-dimensional elastic system, appeared in (Hansen and Lyashenko, 1997). There,
the moment method was applied and hence that approach does not work for the case
of a three-dimensional fluid considered here. Here, a modification of the classical “mul-
tiplier method” is applied. The modifications involve handling the additional terms
from the fluid coupling, and finding suitable multipliers that are valid in consideration
of the incompressibility constraint.

1.1. Problem Formulation

Consider the situation of a fluid in a cavity in which a portion (at least) of the
boundary is flexible. Then the domain of the fluid has a boundary consisting of a rigid
part and a flexible part such that the fluid is on one side of the flexible boundary.
(This requirement is for simplicity only.) The fluid in the cavity is assumed to be
incompressible and irrotational (inviscid), and velocities are small enough so that
linearization about the motionless state is valid. The membrane is forced by the
pressure of the fluid and the velocity of the fluid is matched with the velocity of the
boundary. Control is exercised on a portion of the boundary of the membrane.

To describe the situation mathematically, we let Ω denote a bounded domain in
� 3 (

� 2 is OK, with obvious adjustments) with Lipschitz boundary Γ. It is assumed
that Γ consists of an inflexible part Γ0 and a flexible part ω. For simplicity, it
is assumed that at equilibrium ω is a subdomain of the plane x3 = 0 that has a
sufficiently smooth (C2 is fine) boundary γ 6= ∅, which consists of a controlled part
γ1 and an uncontrolled part γ0. To avoid a discussion of singularities, we assume that
γ = γ0 ∪ γ1 with γ̄0 ∩ γ̄1 = ∅. We also need a condition that guarantees that control
is active on a large enough portion of γ. One can assume γ0 to be empty, otherwise
it is assumed that the uncontrolled region satisfies the standard geometric condition:

(x1, x2) · n ≤ 0 on γ0, (1)

where n denotes the unit outward normal vector to γ (in the plane x3 = 0).
Due to the incompressibility, the fluid velocity q satisfies

divq = 0 on Ω×
� +

and the assumption that the fluid is irrotational (inviscid) implies that

curlq = 0 on Ω×
� + .

Consequently ,

q = ∇Φ, where ∆Φ = 0 on Ω×
� + . (2)

Matching velocities of the fluid and membrane at x3 = 0 leads to

∂Φ

∂n
=

{

0 on Γ0 ×
� + ,

wt on ω ×
� + .

(3)
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Actually, if velocities are matched on the deformed boundary ω, we obtain a
free boundary problem. However, since small vibrations are under consideration, we
linearize by matching velocities on the boundary of the (fixed) equilibrium domain
Ω. Henceforth, Ω and its boundary will be assumed to be fixed, as is the case in all
the papers mentioned earlier.

The energy E(t) is the sum of the kinetic K(t) and potential P(t) energies
where

K =
1

2

∫

Ω

ρ|∇3Φ|
2 dΩ +

1

2

∫

ω

|wt|
2 dω, P =

1

2

∫

ω

|∇2w|
2 dω,

∇k being the gradient in the first k coordinate directions.

The equations of motion can be obtained from Hamilton’s principle. That is,
the first variation, with respect to a class of admissible variations, of the Lagrangian

L =
∫ T

0 (K−P) dt is set to zero. The class of variation functions {ŵ, Φ̂} we consider

includes those that satisfy the constraints (2), (3), ŵ
∣

∣

γ
= 0, and vanish near t = 0

and t = T . We obtain

0 =

∫ T

0

{
∫

ω

wtŵt −∇w∇ŵ dω + ρ

∫

Ω

∇Φ∇Φ̂ dΩ

}

dt

=

∫ T

0

∫

ω

{

(−wtt +∆w)ŵ +Φŵt
}

dω dt

=

∫ T

0

∫

ω

{

(−wtt +∆w − ρΦt)ŵ dω
}

dt. (4)

Note that since Φ̂ is determined by a Neumann problem,
∫

ω ŵt dω =
∫

ω ∂Φ̂/∂x3 dω =
0. Therefore

∫

ω ŵ dω is constant and equal to its initial value. Thus

∫

ω

ŵ dω = 0, ∀t ≥ 0.

Consequently, the equations (in the strong form) are only determined up to an additive
constant (denoted by C).

In the strong form the equations of motion become

wtt + ρΦt −∆w = C in ω ×
� + , (5)

∆Φ = 0 in Ω×
� + , (6)

∂Φ

∂n
=

{

0

wt

on Γ0 ×
� + ,

on ω ×
� + ,

(7)

w =

{

0

f

on γ0 ×
� + ,

on γ1 ×
� + .

(8)
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Initial conditions are of the form

(w,wt)
∣

∣

t=0
= (w0, w1), where

∫

ω

w1 dω = 0. (9)

Due to (7) we have
∫

ω w dω =
∫

ω w0 dω. One can rewrite the equations in terms of
w̃ = w − w∗, where w∗ is the steady state solution determined by (5) and (8) (with
zero boundary data) and the condition

∫

ω w
∗ dω =

∫

ω w0 dω. Thus, without loss of
generality,

∫

ω

w0 dω = 0. (10)

The natural energy space E for the system is

E =
{

(w,wt,Φ) ∈ H̃
1
0 (ω)× L̃

2(ω)× (H1(Ω)/C) : Φ satisfies (6), (7)
}

, (11)

where H̃10 (ω) and L̃2(ω) denote the subspaces of functions in H10 (ω) and L2(ω),
respectively, which are orthogonal to constants. The space H1(Ω)/C denotes the
equivalence classes of functions in H1(Ω) that are identified up to an additive con-
stant.

As regards the uncontrolled system, we will prove the following:

Theorem 1. Assume that f = 0 and (w0, w1) ∈ H̃10 (ω)× L̃
2(ω). Then (5)–(8), (9)

have a unique solution with

(w,wt,Φ) ∈ C
(

[0,∞);E
)

. (12)

Moreover, the energy E(t) = K(t) + P(t) is conserved along solution trajectories. If,
in addition, (w0, w1) ∈ V := H2(ω) ∩ H̃1(ω)× H̃10 (ω), then

(w,wt) ∈ C
(

[0,∞);V
)

. (13)

We will, however, wish to utilize a control f ∈ L2((0, T ) × γ1) and hence it is
necessary to work with weak solutions defined on V ′ (the dual of V relative to an inner
product defined on H; see Section 2). Later we will show that for f ∈ L2((0, T )×γ1)
and any initial condition (w0, w1) ∈ V ′ there is a unique weak solution that satisfies

(w,wt) ∈ C
(

[0, T );V ′
)

.

Regarding our control problem, under all the geometric conditions described
earlier, we have the following main result.

Theorem 2. There exists ρ0 > 0 such that if 0 ≤ ρ < ρ0, then the system (5)–(8)
is exactly controllable on the space L̃2(ω)× H̃−1(ω). That is, for T large enough, if
0 ≤ ρ < ρ0, given any initial data {w0, w1} ∈ V ′, there exists an f ∈ L2((0, T )× ω)
such that {w,wt}

∣

∣

t=T
= {0, 0} and Φ

∣

∣

t=T
is constant.

Remark 1. Clearly, due to the time-reversibility of the system, one can equivalently
find an L2 control which drives the given initial state to any desired terminal state
in V ′ in the same time.
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Remark 2. Actually, we will prove the following “observability inequality”, which by
duality (i.e., “Hilbert’s Uniqueness Method”, cf. (Lions, 1988)) is equivalent to the
controllability in Theorem 2: Let {w0, w0} ∈ H̃10 (ω)× L̃

2(ω) and suppose that T and
ρ are as in Theorem 2. Let w denote a solution to (5)–(10) with f = 0. Then there
exists c > 0 such that

∫ T

0

∫

γ1

∣

∣

∣

∂w

∂n

∣

∣

∣

2

dγ dt ≥ cE(0). (14)

Remark 3. It unknown whether ρ0 in Theorem 2 can be taken arbitrarily large, or
whether the control time T is as small as that of the uncoupled wave equation on ω.
On the other hand, the proof provides an explicit lower bound for ρ0 in terms of the
geometry of Ω and an explicit estimate for T in terms of ρ and the geometry of Ω.

2. Existence, Uniqueness and Regularity

In this section we prove the well-posedness of the coupled elastic-fluid system.

2.1. Regularity of Fluid Pressure on the Beam

We first discuss some properties of the Neumann problem for the Laplacian. We
assume that Ω is a bounded domain in

� 3 with boundary Γ.

Consider the following Neumann problem:











∆Φ = 0 in Ω,

∂Φ

∂n
= f on Γ.

(15)

The solvability condition for (15) is
∫

Γ

f dΓ = 0. (16)

It is well-known that when Γ and f are regular and f satisfies (16), there exist
classical solutions to (15) which are unique up to an arbitrary additive constant. If f
or Γ is less regular, then variational solutions may be defined in some cases. For our
purposes the following regularity results (Necas, 1967) will be sufficient.

Proposition 1. For (15), (16) suppose that Γ is Lipschitz and −1 ≤ s ≤ 0. If
f ∈ Hs(Γ), (with zero average), then Φ ∈ Hs+3/2(Ω)/C and Φ

∣

∣

Γ
∈ Hs+1(Γ)/C,

where X/C denotes the quotient space of functions in X identified up to an additive
constant.

For φ ∈ L̃2(ω) define the Neumann to Dirichlet map Λ by

Λφ = Φ
∣

∣

ω
,
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where

∆Φ = 0 in Ω,

Φ = 0 on Γ0,

∂Φ

∂n
= φ on ω.

Proposition 2. Assume that Γ is Lipschitz. Then Λ : L̃2(ω) → H1(ω)/C continu-
ously and

‖Λφ‖H̃1(ω) ≤ CΩ‖φ‖L2(ω), ∀φ ∈ L̃
2(ω). (17)

Furthermore, Λ is positive and self-adjoint on L̃2(ω) in the sense that

∫

ω

(Λφ)ψ dω =

∫

ω

(Λψ)φ dω, ∀φ, ψ ∈ L̃2(ω), (18)

∫

ω

(Λφ)φ dω ≥ 0, ∀φ ∈ L̃2(ω). (19)

Proof. The estimate (17) follows immediately from Proposition 1. To prove the second
part, let F and G be harmonic functions on Ω with

∂F

∂n
=

{

0 on Γ0,

φ on ω,
and

∂G

∂n
=

{

0 on Γ0,

ψ on ω.
(20)

Integration by parts, using the definition of Λ yields

∫

ω

(Λφ)ψ dω =

∫

ω

F
∂G

∂n
dω =

∫

Ω

∇F∇G dω =

∫

ω

φΛψ dω. (21)

The same equations with ψ = φ establish the positivity in (19). This completes the
proof.

We now can, at least formally, rewrite the system (5)–(8) as

wtt + ρ(Λwt)t −∆w = C in ω ×
� + , (22)

w =

{

0

f

on γ0 ×
� + ,

on γ1 ×
� + .

(23)
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2.2. Finite Energy Solutions

In this section we use the semigroup theory to prove the existence and uniqueness of
finite energy solutions to (22)–(23).

Let us define Cρ : L̃2(ω)→ L2(ω)/C by

Cρφ = φ+ ρΛφ.

From Proposition 2 it is clear that Cρ is positive and self-adjoint for ρ ≥ 0 in the
same sense Λ is in (18), (19). For this reason it is convenient to identify the space
L̃2(ω) with its dual L2(ω)/C. Under this identification each element φ ∈ L2(ω)/C
is identified with an element φ0 ∈ L̃2(ω) by φ0 = φ+C0, where C0 is picked so that
∫

ω
(φ+C0) dω = 0. Thus Cρ is positive and self-adjoint on L̃2(ω) in the usual sense.

Define the following forms:

(φ, ψ) =

∫

ω

φ · ψ̄ dω, ∀φ, ψ ∈
(

L2(ω)
)3
,

〈φ, ψ〉ρ =

∫

ω

(Cρφ)ψ̄ dω, ∀φ, ψ ∈ L̃
2(ω),

〈

{φ1, φ2}, {ψ1, ψ2}
〉

E
= (∇φ1,∇ψ1) + 〈φ2, ψ2〉ρ, ∀{φ1, φ2}, {ψ1, ψ2} ∈ H.

Due to Poincaré’s inequality and the above mentioned properties of the operator Cρ,

(∇· ,∇·) is easily seen to be an inner product on H̃10 (ω). Likewise, 〈· , ·〉ρ is an inner

product on L̃2(ω). Consequently, 〈· , ·〉E is an inner product on the finite energy space
H.

Define y = w and v = wt. The first-order form of (22) is

d

dt

(

y

v

)

=

(

0 I

C−1ρ ∆C 0

)(

y

v

)

=: A{y, v}, (24)

where we have written ∆C to emphasize that the range must be considered as a
quotient space, or equivalently, we set ∆Cφ = ∆φ + C such that ∆φ + C has zero
average (as is done when L̃2(ω) is identified with its dual L2(ω)/C).

Also, define the spaces

H = H̃10 (ω)× L̃
2(ω), V =

(

H2(ω) ∩ H̃10 (ω)
)

× L̃2(ω).

Proposition 3. Let ρ > 0. The operator A is the generator of a strongly continuous
group of isometries with respect to the energy inner product 〈·, ·〉E on the finite energy
space H. Consequently, given the initial conditions

{

y(0), v(0)
}

= {y0, v0} ∈ H, (25)

there exists a unique solution {y, v} to (24) that satisfies

{y, v} ∈ C(
�
;H). (26)
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Proof. With D(A) = V it is clear that A is densely defined. Let us verify that A is
closed. We let {φn, ψn} → {φ, ψ} in H, with {φn, ψn} ∈ V . Assume that {yn, vn} :=
A{φn, ψn} → {y, v} in H. We need to see that {φ, ψ} ∈ V and A{φ, ψ} = {y, v}.
Since yn = ψn → y in H̃10 (ω) and ψn → ψ in L̃2(ω), it follows that ψ = y ∈ H̃10 (ω).
For the other variable we have vn = C

−1
ρ ∆Cφn → v in L̃2(ω) and φn → φ in

H̃10 (ω). First note that −∆C is associated with a coercive symmetric quadratic form
on H̃10 (ω) since for all f , g in H

2(ω) ∩ H̃10 (ω) one has
∫

ω

−∆Cfg dω =

∫

ω

∇f · ∇g dω = −

∫

ω

f∆Cg dω.

The form is strictly positive since

min
u∈H̃1

0
(ω)

(∇u,∇u)

‖u‖2L2
≥ min
u∈H1

0
(ω)

(∇u,∇u)

‖u‖2L2
= λ1 > 0,

where λ1 is the first eigenvalue of −∆ (the usual Laplacian operator with homoge-
neous Dirichlet boundary conditions). From the Lax-Milgram theorem it follows that
∆C is an isomorphism from H2(ω) ∩ H̃10 (ω) to L̃

2(ω). Due to the positivity of Λ,
Cρ is also an isomorphism on L̃2(ω). From this we conclude that {φn} is convergent

in H2(ω). Since φn → φ in H̃10 (ω), we see that φ = limn→∞∆
−1
C Cρvn = ∆

−1
C Cρv.

Thus A is closed.

To show that A generates a group, we apply the Lumer-Phillips theorem (see
e.g., Pazy, 1983) to A and −A, i.e., it is enough to show that A, A∗, −A, −A∗

are all dissipative. However, this follows if we show that A is anti-Hermitian with
respect to the energy inner product. For all {yi, vi} ∈ V , i = 1, 2 we calculate

〈

A{y1, v1}, {y2, v2}
〉

E

=
〈

{v1, C
−1
ρ ∆Cy1}, {y2, v2}

〉

E
= (∇v1,∇y2) + 〈C

−1
ρ ∆Cy1, v2〉ρ

= −(v1,∆y2) + (∆Cy1, v2) = −(v1,∆Cy2) + (∆y1, v2)

= −(Cρv1, C
−1
ρ y2)− (∇y1,∇v2) = −〈v1, C

−1
ρ y2〉ρ − (∇y1,∇v2)

= −
〈

{y1, v1},A{y2, v2}
〉

E
. (27)

Thus A is antisymmetric and D(A) ⊂ D(A∗). However, as we have previously shown,
Cρ∆C is an isomorphism from H2(ω)∩H̃10 (ω) to L̃

2(ω). It follows that A is surjective
from V to H and hence D(A) = D(A∗). Thus the semigroup generated by A is
actually a group and is easily shown to be unitary. The other statements in the
theorem are immediate consequences.

2.3. Weak Solutions

Let us denote by H̃−1(ω) the dual space to H̃10 (ω) relative to 〈·, ·〉ρ. Since we have
proven that A : V → H is one to one and onto, when V is endowed with the graph
norm ‖{y, v}‖V = ‖A{y, v}‖E , A becomes a topological isomorphism as well. We
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can define by duality an extension of A, temporarily denoted by Â, from H to
(D(A∗))′ = (D(A))′ =: V ′ as follows:

〈

Â{y, v}, {Y, V }
〉

E
=
〈

{h, v},−A{Y, V }
〉

E
, ∀ {Y, V } ∈ V .

Since (∇y,∇Y ) = (y,∆CY ) for all y ∈ H̃10 (ω) and all Y ∈ H
2(ω) ∩H10 (ω), we see

that the first component of (D(A))′ is L̃2(ω). The second component is the dual
space to H̃10 (ω) relative to 〈·, ·〉ρ. Denote this by H̃

−1(ω).

The extended operator Â can be shown to be the generator of a strongly con-
tinuous semigroup of unitary operators isomorphic to the original one. Henceforth we
make no distinction between A and its possible extensions. As regards the system (24)
or, equivalently, (22)–(23) with f = 0, we have the following:

Corollary 1. The semigroup defined in Proposition 3 extends continuously to a
strongly continuous, unitary group on the space V ′ := L̃2(ω)×H̃−1(ω). Consequently,
given the initial data {y0, v0} ∈ V ′, there is a uniquely defined solution to (22), (23)
with f = 0 which satisfies

y ∈ C
(

(−∞,∞), L̃2(ω)
)

∩ C1
(

(−∞,∞), H̃−1(ω)
)

.

The nonhomogeneous system we are interested in is

Cρwtt −∆w = C in ω × (0,∞), (28)

w = f on γ0 × (0,∞), (29)

w = 0 on γ1 × (0,∞), (30)

{w,wt}
∣

∣

t=0
= {w0, w1} ∈ L̃2(ω)× H̃−1(ω). (31)

To define a weak solution, we write w = w0 + z, where w0 satisfies (28)–(31) with
f = 0 in (29) and z satisfies (28)–(31) with, however, {w0, w1} = {0, 0}. Formally
multiplying (28) (with z in place of w) by a smooth function φ with

φ ∈ C
(

[0, T ], H2(ω) ∩ H̃10 (ω)
)

∩ C1
(

[0, T ], H̃10(ω)
)

results in

0 =

∫ T

0

∫

ω

Cφ dx dt =

∫ T

0

∫

ω

(Cρzttφ−∆zφ) dx dt

=

∫

ω

(

Cρzt(T )φ(T )− Cρz(T )φt(T )
)

dx dt+

∫ T

0

∫

γ0

f
∂φ

∂n
dγ dt

+

∫

QT

z(Cρφtt − z∆φ) dx dt.
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Hence, if φ is a solution to the dual system

Cρφtt −∆φ = C in ω × (−∞,∞), (32)

φ = 0 on γ0 × (−∞,∞), (33)

φ = 0 on γ1 × (−∞,∞), (34)

{φ, φt}
∣

∣

t=T
= {φ0, φ1} (35)

with {φ0, φ1} ∈ H2(ω) ∩ H̃10 (ω)× H̃
1
0 (ω), we obtain the identity

〈

zt(T ), φ
0
〉

ρ
−
〈

z(T ), φ1
〉

ρ
= −

∫ T

0

∫

γ0

f
∂φ

∂n
dγ dt. (36)

We see that for f ∈ L2((0, T )× (γ0)) we have

∣

∣

∣

∫ T

0

∫

γ0

f
∂φ

∂n
dγ dt

∣

∣

∣
≤ K‖f‖

L2
(

γ0×(0,T )
)

∥

∥

∥

∂φ

∂n

∥

∥

∥

L2(γ0×(0,T ))

≤ K‖f‖
L2
(

γ0×(0,T )
)

∥

∥{φ0, φ1}
∥

∥

V
,

where K is a constant that may change from line to line, and where we have used
Proposition 3. Consequently, the right-hand side of (36) can be viewed as a con-
tinuous linear functional acting on the space (H2(ω) ∩ H̃10 (ω)) × H̃

1
0 (ω). Therefore,

by considering all possible {φ0, φ1} ∈ (H2(ω) ∩ H̃10 (ω)) × H̃
1
0 (ω), the identity (36)

defines a unique element {z(T ), zt(T )} as an element of the dual space. If we de-
fine H̃−2(ω) = (H2(ω) ∩ H̃10 (ω))

′, where the duality is with respect to 〈·, ·〉ρ, we see

that for 0 ≤ t ≤ T (36) defines a unique solution z with z ∈ C([0, T ], H̃−1(ω)
and zt ∈ L∞(H̃−2(ω)). Results on “regularity lifting” actually provide that zt ∈
C([0, T ], H̃−2(ω)). We therefore have the following (suboptimal) result, which will be
improved shortly.

Proposition 4. Let {w0, w1} ∈ V ′ and f ∈ L2((0, T )× γ0). Then there is a unique
weak solution w to (28)–(31) for which

w ∈ C
(

[0, T ], H̃−1(ω)
)

∩ C1
(

[0, T ], H̃−2(ω)
)

. (37)

3. Optimal Regularity

We will see that the regularity in (37) of Proposition 4 can actually be improved
by one degree. This occurs in the (uncoupled) wave equation with Dirichlet control
and the usual argument involves multiplying the wave equation wtt − ∆w = 0 by
the multiplier h · ∇w, where h is a C2(ω̄) vector field which is equal to the normal
to γ on γ. However, in the present situation the equation of motion occurs in a
quotient space and hence, in addition to the previous conditions on the multiplier
h · ∇w, we need

∫

ω
h · ∇w dx = 0. For smooth solutions w = 0 on γ, and hence we

need equivalently
∫

ω
w∇h dx = 0 for each solution w. A sufficient condition, since
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solutions w have zero average value, is that
∫

ω
∇·h dx = C, where C is any constant.

Fortunately, the problem of obtaining such a multiplier h is solved in (Galdi, 1994).
We thus have the following:

Lemma 1. Under our assumptions on ω (ω is a bounded domain in
� 2 with C2

boundary) there exists a vector field h : ω̄ →
� 2 such that

(i) h is C2 on ω̄,

(ii) h = n on γ, where n is the outward unit normal vector to γ,

(iii) ∇ · h = C on ω, where C is a constant.

Using the multiplier from Lemma 1 applied to the homogeneous system (32)–(35),
we obtain the following result:

Proposition 5. Let φ be a solution to the homogeneous backwards problem (32)–(35)
with the data {φ0, φ1} given in V. Then there exist K1 > 0, K2 > 0 independent of
T and the data such that

∫ T

0

∫

γ

∣

∣

∣

∂φ

∂n

∣

∣

∣

2

≤ (K1 +K2T )
∥

∥{φ0, φ1}
∥

∥

2

E
. (38)

Proof. Let us introduce the notation

∫∫

ψ =

∫

ω×(0,T )

ψ dω dt,

∫

ψ =

∫

γ×(0,T )

ψ dγ dt. (39)

Also, write

X = (φt + ρΛφt, h · ∇φ)
∣

∣

T

0
, Y = (φt +Λρφt, φ)

∣

∣

T

0
,

where (ψ, φ) =
∫

ω ψφ dω.

Let φ be as in the hypothesis and h as in Lemma 1. Using Lemma 1 and
integration by parts, we calculate the following:

0 =

∫∫

{

(Cρφtt −∆φ+ C)(h · ∇φ)
}

= X −

∫

{∂φ

∂n
h · ∇φ

}

+

∫∫

{

∇φ∇(h · ∇φ)− Cρφt(h · ∇φt)
}

= X −

∫

{
∣

∣

∣

∂φ

∂n

∣

∣

∣

2}

+

∫∫

{

∇φ∇(h · ∇φ)− Cρφt(h · ∇φt)
}

. (40)
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Let us define the gradient of a vector h = (hi) to be the matrix ∇h = ((∇h)ij ),
where (∇h)ij = ∂hi/∂xj . Then we have

∫∫

{

∇φ · ∇(h · ∇φ)} =

∫∫

{∇φ · (∇h∇φ) +
1

2
∇|∇φ|2 · h

}

=

∫∫

{

∇φ · (∇h∇φ) −
1

2
(∇ · h)|∇φ|2

}

+
1

2

∫

|∇φ|2

=

∫∫

{

∇φ · (∇h∇φ) −
1

2
(∇ · h)|∇φ|2

}

+
1

2

∫

∣

∣

∣

∂φ

∂n

∣

∣

∣

2

, (41)

where we have used the fact that φ vanishes on γ in the last line.

Define the operator M initially on H̃10 (ω) by

Mψ = Λ(h · ∇ψ)− h · ∇Λψ. (42)

We also have
∫∫

(Cρφt)h · ∇φt =

∫∫

(φt + ρΛφt)h · ∇φt

=

∫∫

{1

2
h · ∇φ2t +

ρ

2
h · ∇(φtΛφt)

+
ρ

2
(h · ∇φt)Λφt − φth · ∇(Λφt)

}

=
−C1
2

[
∫∫

{

φ2t + ρ(Λφt)φt
}

]

+
ρ

2

∫∫

φtMφt

=

∫ T

0

{−C1
2
〈φt, φt〉ρ +

ρ

2
(φt,Mφt)

}

dt. (43)

In the previous lines, C1 is the constant of Lemma 1. Putting (41) and (43) together,
we obtain
∫

∣

∣

∣

∂φ

∂n

∣

∣

∣

2

= 2X + 2

∫∫

{∇φ · (∇h)∇φ}

+ C1

∫ T

0

{

〈φt, φt〉ρ − (∇φ,∇φ)
}

dt− ρ

∫ T

0

(φt,Mφt) dt. (44)

Multiplication of the dual system (32)–(35) by φ followed by integration by parts
gives

∫∫

(Cρφtt −∆φ− C)φ = C

∫∫

φ = 0

= (Cρφt, φ)
∣

∣

T

0
−

∫∫

φtCρφt +

∫∫

|∇φ|2.
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Therefore
∫ T

0

{

〈φt, φt〉ρ − (∇φ,∇φ)
}

dt = (Cρφt, φ)
∣

∣

T

0
= Y. (45)

Combining (44) and (45), we obtain
∫

∣

∣

∣

∂φ

∂n

∣

∣

∣

2

= 2X + C1Y +

∫∫

{2∇φ · ∇h∇φ− ρφtMφt}. (46)

Each of the terms on the right-hand side of (46) can be bounded by a multiple of the
energy E(T ) := ‖{φ0, φ1}‖E . For example, with Y we use conservation of energy and
Poincaré’s inequality. Let K1 be such that

∫

ω

|ψ|2 dω ≤ K1

∫

ω

|∇ψ|2 dω.

We obtain

|Y | =
∣

∣〈φt(T ), φ(T )〉ρ − 〈φt(0), φ(0)〉ρ
∣

∣

≤ 〈φt, φt〉
1/2
ρ 〈φ, φ〉

1/2
ρ {|t=T + |t=0}

≤ 〈φt, φt〉
1/2
ρ

(

1 + ρ‖Λ‖
)1/2
(φ, φ)1/2{|t=T + |t=0}

≤ E1/2
(

K1(1 + ρ‖Λ‖)
)1/2

(

∫

ω

|∇φ|2 dω
)1/2

{|t=T + |t=0}

≤ 2
(

K1(1 + ρ‖Λ‖)
)1/2
E(T ) =: C2E(T ). (47)

For |X | we use the fact that h is bounded on ω̄ and similar estimates to obtain

|X | ≤ C3E(T ). (48)

Since h is C2 on ω̄, the matrix norm of ∇h is bounded. Consequently, there exists
C4 such that

∫∫

∇φ · ∇h∇φ ≤ TC4E(T ). (49)

To estimate the term involving M, we first note that for ψ ∈ H̃10 we have

(ψ,Mψ) = (ψ,Λ(h · ∇ψ)− h · ∇Λψ)

= (hΛψ,∇ψ)− (ψ, h · ∇Λψ)

= −
(

∇ · (hΛψ), ψ
)

− (h · ∇Λψ, ψ)

= −
(

h · ∇Λψ + (∇ · h)Λψ, ψ
)

− (h · ∇Λψ, ψ)

= −2(h · ∇Λψ, ψ)− C1(Λψ, ψ), (50)

where C1 is again the constant in Lemma 1. By Proposition 1 the operator Λ is
continuous from L̃2(ω) to H̃1(ω)/C and hence h · ∇Λ is continuous from L̃2(ω) to
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L2(ω). It follows that M extends to a continuous operator on L̃2(ω) (when L̃2(ω)
is identified with its dual). We then have that there exists a C such that

∫∫

φtMφt ≤ CTE(T ). (51)

Combining (47)–(51) with (46), we obtain
∫

∣

∣

∣

∂φ

∂n

∣

∣

∣

2

≤ K1E(T ) + TK2E(T ) = (K1 + TK2)E(0), (52)

where the constants K1 and K2 are independent of T and the initial data. This
completes the proof.

From this estimate one can easily prove the following:

Corollary 2. If {φ0, φ1} ∈ V, then ∂φ/∂n satisfies (52). Equivalently, the observa-
tion operator Ψ : V → L2((0, t) × γ) defined by Ψ{φ0, φ1} = ∂φ/∂n

∣

∣

γ×(0,t)
extends

continuously to E.

4. Exact Controllability

Consider the homogeneous problem

ytt + ρ(Λyt)t −∆y = C in ω ×
� + , (53)

y = 0 on γ × (0, T ), (54)

{y, yt}
∣

∣

t=0
= {y0, y1} given in H̃10 (ω)× L̃

2(ω). (55)

The dual problem to the control problem (5)–(8) (equivalently, (28)–(31)) consists
of (53), (54) with terminal data specified in H̃10 (ω)× L̃

2(ω) together with the obser-
vation

z =
∂y

∂n
on γ1. (56)

Due to the time-reversibility of the problem, we may equivalently consider (53), (54)
with the initial data given at time 0 as in (55).

The goal is to prove the exact observability of (53)–(56), i.e., that for some c > 0
one has

∫ T

0

∫

γ1

|z|2 dγ dt ≥ cE(0). (57)

We apply the standard multiplier (x) · ∇y (Lions, 1988) to solutions of (53)–(55).

Let (ψ, φ) =
∫

ω
ψφ dω and set

X = (yt + ρΛyt,x · ∇y)
∣

∣

T

0
, Y = (yt + ρΛyt, y)

∣

∣

T

0

Mψ = Λ(x · ∇ψ)− x · ∇(Λψ).



Exact controllability of an elastic membrane coupled with a potential fluid 1245

Using the notation in (39), we multiply (53) by the standard multiplier x · ∇y
to obtain

0 = X −

∫∫

{

(yt + ρΛyt)x · ∇yt + (∆y)x · ∇y
}

= X − T1 − T2, (58)

where

T1 =
1

2

∫∫

{

x · ∇(yt)
2 + ρx · ∇(ytΛyt) + ρ(x · ∇yt)Λyt − ρx · ∇(Λyt)yt

}

= −
n

2

∫∫

{

yt + ρ(Λyt)yt
}

+
ρ

2

∫∫

{ytMyt},

T2 =

∫

{ ∂y

∂n
x · ∇y

}

−

∫∫

{

∇y · (x · ∇y)
}

=

∫

∂y

∂n
x · ∇y −

1

2

∫

x · n|∇y|2 +
n− 2

2

∫∫

|∇y|2

=
1

2

∫

{ ∂y

∂n

2

x · n
}

+
n− 2

2

∫∫

|∇y|2,

n being the dimension of ω, which is 2 for the present situation. In the calculation
of T2, we have used the fact that y = 0 on γ to combine the boundary terms.

Recall the energies

P(t) =
1

2

∫

ω

|∇w|2 dω, K(t) =
1

2

∫

ω

(wt + ρΛwt)wt dω,

E(t) = ‖{w,wt}‖
2
E = 2

(

P(t) +K(t)
)

.

Combining them with (58), we obtain

0 = X + n

∫ T

0

K(t) dt− (n− 2)

∫ T

0

P(t) dt

= X + (n− 1)

∫ T

0

K(t)−P(t) dt+
1

2

∫ T

0

E(t) dt

−
ρ

2

∫∫

ytMyt −
1

2

∫

x · n
∣

∣

∣

∂y

∂n

∣

∣

∣

2

= X +
n− 1

2
Y +
1

2
TE(0)−

ρ

2

∫∫

{ytMyt} −
1

2

∫

x · n
∣

∣

∣

∂y

∂n

∣

∣

∣

2

,

where the last line results from the identity

0 =

∫∫

(

ytt + ρ(Λy)tt −∆y + C
)

y = Y +

∫∫

(

|∇y|2 − yt(yt + ρΛyt)
)

= Y + 2

∫ T

0

(P −K) dt.
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Next we use the geometrical condition on the control region. On γ0 we have x ·n ≤ 0,
and on γ1 we have x · n ≤ R := maxx∈γ1 |x|. Therefore we obtain

T

2
E(0) ≤

n− 1

2
|Y |+ |X |+

ρ

2

∣

∣

∣

∫∫

ytMyt

∣

∣

∣
+
R

2

∫

γ1×(0,T )

∣

∣

∣

∂y

∂n

∣

∣

∣

2

dγ dt. (59)

Let s1 be the first eigenvalue of −Cρ∆C and let λ1 be the first eigenvalue of
the Dirichlet Laplacian on ω. We get

s1 = min
u∈H2(ω)∩H̃1

0
(Ω)

(∇u,∇u)

〈u, u〉ρ
≥ min
u∈H2(ω)∩H̃1

0
(Ω)

(∇u,∇u)

‖Cρ‖〈u, u〉L2

≥ min
u∈H2(ω)∩H1

0
(ω)

(∇u,∇u)

‖Cρ‖〈u, u〉L2
=

λ1
‖Cρ‖

.

Hence one has the following estimate:

〈u, u〉ρ ≤
‖Cρ‖

λ1
(∇u,∇u). (60)

Using (60) together with fact that 〈· , ·〉ρ is an inner product gives the estimate

∣

∣(Cρyt, y)
∣

∣ ≤
1

2
(Cρyt, yt) +

1

2
(Cρy, y)

≤
1

2
(Cρyt, yt) +

‖Cρ‖

2λ1
(∇y,∇y). (61)

From (61) one easily obtains the following bound on Y :

|Y | ≤
‖Cρ‖

λ1
E(0). (62)

Similarly, |X | can be bounded in terms of the energy:

|X | ≤ R‖Cρ‖E(0). (63)

Finally, the term involving M can be handled in the same way that the corresponding
term was handled in (50) in the proof of Proposition 5. One obtains the estimate

∣

∣

∣

∫∫

ytMyt| ≤ T
(

n‖Λ‖+RCΩ
)

E(0), (64)

where (recall n = 2 here) CΩ is the constant appearing in Proposition 2.

Combining (59)–(64), we see that

R

∫ T

0

∫

γ1

∣

∣

∣

∂y

∂n

∣

∣

∣

2

dγ dt ≥

(

T − ρT
(

RCΩ + n‖Λ‖
)

− (n− 1)
‖Cρ‖

λ1
− 2R‖Cρ‖

)

E(0)

=
(

T (1− ρ/ρ0)−K
)

E(0), (65)

where

ρ0 =
(

RCΩ + n‖Λ‖
)−1

, K = (n− 1)
‖Cρ‖

λ1
+ 2R‖Cρ‖. (66)
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Thus, for ρ < ρ0, the observability estimate (57) for (53)–(56) holds provided that

T >
Kρ0
ρ0 − ρ

. (67)

Finally, the exact controllability of Theorem 2 follows by duality. This completes the
proof of Theorem 2.

5. Concluding Remarks

We have shown that the classical multiplier argument used to establish the exact con-
trollability of the wave equation with Dirichlet boundary control can also be applied
to the coupled fluid-elastic system (5)–(8) to obtain the necessary observability esti-
mate mentioned in Remark 2, provided at least that the fluid density ρ is sufficiently
small.

As has been mentioned in Remark 3, it is unknown whether exact controllability
holds for all ρ. However, in the sufficient condition that ρ < ρ0, ρ0 exhibits the same
inverse dependence upon the geometric constant CΩ that was obtained in (Hansen
and Lyashenko, 1997), where the moment method was applied (for the case where ω
is one-dimensional).

It is almost certainly true that the control time T can be improved. In the limit
as ρ→ 0, the control time obtained here tends to 2R+(n− 1)/λ1, which is the value
obtained in (Lions, 1988) for the wave equation. (This value can in turn be improved
to the optimal value of 2R in various ways that do not apply here, cf. see (Lions,
1988).)

As for the geometry of Ω, we have taken Ω to be simply connected to obtain
the existence of a velocity potential Φ. However, this constraint can be eliminated
as in (Hansen and Lyashenko, 1997) by working directly with the pressure instead.
Of course, the simple connectivity of Ω does not imply that ω need be simply
connected. If control is active only on a portion of the boundary γ1, we have taken
γ̄1 ∩ γ̄0 = ∅ to avoid a discussion of singularities. In the case of boundary control of
the wave equation, various methods have been developed to eliminate the necessity
of the geometric condition (1), e.g., results on “propagation of singularities” (Bardos
et al., 1992).

In the present problem, many properties of hyperbolic partial differential equa-
tions, e.g., unique continuation properties, finite propagation speed, etc., do not apply
due to the nonlocal nature of the incompressibility constraint. Thus the extent to
which the results available for the wave equation apply to the system of this paper is
unclear.
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the Insitut Élie Cartan, Univ. Nancy, France, in June of 2000. The author is grateful



1248 S. Hansen
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