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THE ENERGY METHOD FOR ELASTIC PROBLEMS
WITH NON-HOMOGENEOUS BOUNDARY CONDITIONS
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In this paper we propose the weighted energy method as a way to study estimates of solutions of boundary-value problems
with non-homogeneous boundary conditions in elasticity. First, we use this method to study spatial decay estimates in two-
dimensional elasticity when we consider non-homogeneous boundary conditions on the boundary. Some comments in the
case of harmonic vibrations are considered as well. We also extend the arguments to a class of three-dimensional problems
in a cylinder. A section is devoted to the study of an ill-posed problem. Some remarks are presented in the last section of
the paper.
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1. Introduction ary conditions. The main idea was to introduce a weight
function in the energy function. This kind of procedure
resembles the one used by Straughan (1982), and Galdi
and Rionero (1985) in the study of unbounded domains,

The energy method is an appropriate tool in the study of
the behaviour of solutions of partial differential equations.
There is an important amount of literature on this method \nan we allow for unbounded behaviour at the infinity. It
with references to the case of problems with homoge- g \yorth noticing that our weight functions concern only

neous boundary conditions. This is not the case when theyq,nqeqd directions. Here, we try to extend these methods
boundary conditions are not homogeneous. If we restrict, ihe system of elasticity. In this situation things seem

our attention to the study of spatial estimates of solutions \,ore difficult than for the Laplace equation or the heat
of elliptic partial differential equations, we only know a gqation. We have to restrict our attention to a particu-
few contributions (Ames and Payne, 2000; Horgan and |5 tamjly of isotropic and homogeneous materials. It is

Payne, 1992; Knops and Payne, 1998; Quintanilla, 1997&nqwn that considerations of positive definite energy re-
1997b; 1998). If we take a look at the history of these giict the range of Poisson’s ratio tol < v < 1/2, but

studies, we can recall the paper of Lin and Payne on two ,,+ method only applies when < 1/4.
lI-posed parabolic problems (Lin and Payne, 1993), see As the results that we present here are related to the

also (Franchi and Straughan, 1994). In that paper, an idea_ . e L .
was outlined that inspired the contribution in the refer- Saint-Venant principle, it is worth recalling the references

ence (Quintanilla, 1997a). The main thought was to con- (Horgan, 1989; 1996; Horgan and Knowl_es, 1983), where
sider estimates on smaller domains in several directions. "€ Nistory and the state of the art of this study are well
When the boundary conditions were known, an alterna- described.
tive method (Horgan and Payne, 1992) was proposed in It is worth noticing that the results hold for solutions
their studies concerning the stability with respect to the havinga priori suitable behaviour at the spatial infinity
geometry of the cross-section. (e.g. going to zero or having derivative going to zero), and
Some contributions to the Laplace equation and the to eliminate this restrictions seems a (fundamental) open
biharmonic equation were obtained by Ames and PayneProblem.
in the recent work (Ames and Payne, 2000). Some con- In Section 2 we recall some preliminaries related to
tributions to the elasticity system were obtained in the inequalities of Poincaré’s type. The evolution of the so-
references (Knops and Payne, 1998; Quintanilla, 1997b;lutions of a non-homogeneous ordinary differential equa-
1998). In (Quintanilla, 2000), the author proposed an ap- tion is also recalled. Section 3 is devoted to the study of
proach to this kind of questions also based on the energythe solutions of the Navier equations in the case of a strip,
methods in order to deal with non-homogeneous bound-when we assume non-homogeneous boundary conditions
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in a great part of the boundary. In Section 4 we consider aFrom (6) and (8) we see that

similar question for the solutions of the amplitude terms of

the steady-state vibrations. The extension to the case of aF(z) < E(0) exp(—Az) 4+ R(z)

cylinder is developed in Section 5. The last section of the =

paper considers the case where we have no information on - (R(O) - / exp(A&)r(€) g) exp(—Az),
a part of the boundary. 0

z2>0. (9)

2. Preliminaries In this paper we will use several inequalities of
Poincaré’s type. Let us recall that there exists a positive

Summation and differentiation conventions will be used .
constant)\; such that the estimate

throughout this paper. We recall that summation over re-

peated indices is implied and that the suffix’ ‘denotes 1 1
d/0x;. / ru’dr < A / z(u)? dz (10)
. i 0 0
We recall that the functionsin7z satisfies the
clamped eigenvalue problem is satisfied for any function. that vanishes wher = 1,
and v and its derivative are bounded at= 0. We may
Ap+Ap=0, (0,1), 1) recall that) is the first eigenvalue of the Sturm-Liouville

singular problem
¢ =0, {0,1}. 2)
We shall denote byg|y 1) the eigenfunction that satis-
fies sup;y ¢ = 1. We know that ifz # 0,1, then
ép0,11(x) > 0. Thus, for all0 < € < 1 we may define the

(zu) + Azu =0, (0,1),

u(1) = 0,u(0) bounded andvu’(z) — 0 asx — 0.

subdomain This first eigenvalue agrees with the square of the first zero
© of the Bessel functio/y(z) (Weinberger, 1995, pp. 176—
[0,1]') = {2 € [0,1], .11 (x) > €} 3) 180). Approximations to this constant are well known in

. . . . the literature. We have/\; = 2.4048. ..
In the next sections we will obtain estimates of the , o i i
We also need another differential inequality of this

form
dE kind. We know that there exists a positive constant such
-1
B(z) < -4 FPa R(z), ) that the estimate
where R(z) is a given function. If we want to study the 1 1
asymptotic behaviour of the functioB(z), we may use / u’dr < p / z(u')? dw (11)
0 0

exp(— Az) d (exp(Az) (z)) < AR(2). (5) is satisfied for every functiom: that vanishes when =
1, andu and its derivative are boundedat= 0. Itis well

After a quadrature, it follows that known that this constant corresponds to the first eigen-
value of the singular Sturm-Liouville eigenvalue problem
< —
B(:) < (B0)+ A [ exp(AR(E) de) exp(~42) ) 4 0, (0.1), "
12
z>0. (6) u(0),2/(0) bounded, andu(1) = 0.
Equation (4) will appear (in several points) in the
case where there exists a functiofr) such that . .
. 3. Problem in a Strip
R(z) = /Z r(7)dr. (7) We consider a problem modelled by the system of the ho-
) . ) ) mogeneous and isotropic linear elasticity (Navier's sys-
After integration by parts, we obtain the equality tem):
i, jj +augji = 0, (13)

A [ exp(ag)R(e) g exp(-A2) = R(2)
0

in the semi-infinite strip(0, o) x (0, 1). Here u; are the
components of the displacement with respect to a given

_ ( R(0) — / : exp(A&)r(€) 5) exp(—Az). (8) Cartesian coordinates system alf_ad_s a posi_tive constant.
0 We assume thabd < o < 2, but it is possible to extend
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the arguments to some cases wher< 0. We recall the
relation
a=(1-2v)"L (14)

Here v is the Poisson ratio. Thus the range of the applica-
bility of our approach requires the Poisson ratio to satisfy
v<1/4.

We assume the boundary conditions

ui(21,0) = fi(w1), wi(z1,1) = gi(z1), (15)

and
u;(0,22) = hi(z2).

The functionsf;, g;, h; are data. We assume that
fi(0) = hi(0),  gi(0) = hy(1).

For later use, we recall that i is a function that de-
pends only on the variable, and (u;) is an arbitrary so-
lution of the two-dimensional version of the system (13),
the relation

(16)

[¢(2ui,j + adijug i + Oéuj,z‘)uz} ,

)]

-« {(¢U1u2),2 — Quy Uz — ¢U1U2,2} )

)

= OF (ui 5, ui ;) — ¢"usu; — aduj

);

2

+ {q&’(uiui + auj a7

)

is satisfied.
It is worth noticing that wheneved < o < 2, the
function

Fugj,ui5) = 2u; jug j + o jug g + aug jug,  (18)
satisfies
Fugj,ui5) > (2 — @)ug jug j + augug g,

(19)

which is positive. Thus it can be used to define a measure
on the solutions.

In this section we assume that the energy

oo pl
E(O):/O /0 bro,1) [ F(ui g, ui )

+ 72 (usu; + ou3)] da (20)
is bounded and that the asymptotic condition
1
lim ¢[071](2ui,1ui + Qug U1 + auy U,
xr1—00
+OL’UJLQUQ + Oéul’u,gg) d.ng = O (21)
is satisfied.

os JEe

If we define

oo prl
E(z) = / /0 blo,1) [ F(uij, uij)
+ 72 (usu; + ou3)] da, (22)

the use of the divergence theorem allows us to obtain the
relation

1
E(z) = —/ Bro,1] (2w 1us + oug pur + g u;
0

+ aug gug + auqug2) deg

+7T/

We also have

o0

((ff+97)+(1+a)(f7 +g3))d€. (23)

dE !
P */0 ®0,1] [F (s, u;5)

+ 72 (usu; + ou3)] das. (24)

In the next step we estimatE(z) in terms of its spatial
derivative and the boundary conditions. It will be useful
to consider the integrals

1
I = —2/ Glo,1Ui,1u; dwa, (25)
0
1
I, = —a/ Ppo,1)0uk, kU dag, (26)
0
1
I3 = —a/ ¢[0,1]U1,iui dxo, (27)
0
1
Iy = —a/ Plo,1u1,2u2 dz2, (28)
0
and
1
Is = —a/ Gpo,1)u1u2,2 dTs. (29)
0

The Holder inequality and the arithmetic-geometric
mean inequality imply

1 1/2 1 1/2
L < 2(/¢[0,1]Ui,1ui,1 d1‘2> </¢[o,1]uiui d1‘2>
0 0

1
< (61/ ®l0,1)%i,1%i,1 T2
0

1 1
+— [ ¢pyuiu;des
€1 .Jo

)

(30)
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1/2 1/2
I, /¢ 0,1]%i,i;, d$2 /¢ 0,1]%1 d$2)

1
€
< 04(52/0 Glo,1)Uiiujj dzo
1 1
E/o 915[071]“%01332), (31)
1 1/2 1/2
I3 < a</¢[0,1]ul,iul,id$2 /925[0 1) Uil dxz)
0
€3 !
< a(5/0 Gro,11U1,:u1,; dwo
1t
+£/ Plo,1 Ui d$2)7 (32)
0
1 1/2 1 ) 1/2
Iy < a(/¢[0,1]ul,2ul,z d;v2> (/¢[0,1]U2 d932)
0 0
€4 !
< 06(5/ Po,1)u1,2u1,2 dzo
0
.
+ Z/o ¢[0,1]U% d$2>7 (33)
and
1 ) 1/2 1 ) 1/2
Is < Oé(/¢[o,1]“2,2 d502) (/¢[0,1]U1 dxz)
0 0

1
€
a(f/ qb[o’uu%zdmg
0

265 / ¢5[0 1 u1 d$2 (34)

Here ¢;, i« = 1,...,5 are arbitrary positive constants.
One would like to optimize these quantities in order to
make a comparison with (22).

values for the parametess.

For instance, if we takey = €3 = ¢4 = 5 = 1 and
€1 = weq/2, it follows that

Z I; <Oé/ ¢[Olu11uzjdx2

1<i<5

o [
+§/ bl0,1) Wi iuj,j dza
0

L (3
2

2 1
+ ) / ¢[0,1]uiui dl‘g. (35)
@/ Jo

It does not seem an
easy task, because it involves solving nonlinear equations
(polynomials). Thus we obtain an estimate by taking some

As « > 0, we have

ZL‘S—

1<i<5

oF (36)

where

M = max (a(2 ) %,77_1(3704 + Z)) . (37

From (23) and (36), we obtain

< —Maﬁ + S(2),

E(2) P

(38)

where
S@=n [ (54t +Q+a)fE+ o) de. @9)

As (38) is an estimate of the type (4), we deduce the esti-
mate

E(2) < E(0)exp(—M~12) + §(z) — (5(0)

- [ e € d6) expl-112), - (40)
where
s(8) = 7 (OGO + 1 +) (O +63(9) ). 4D

Thus we have proved the following result:

Theorem 1. Let (u;) be a solution to the problem defined
by the system (13), boundary conditions (15) and asymp-
totic conditions (19), (20). Then the energy function de-
fined in (22) satisfies the estimate (40).

If we assume that there exist two positive constants
K, andw such that|s(§)| < K exp(—w¢), we conclude
a decay of exponential type for the functid(z).

If we write

oo
E(e, 2) =/ / {F(Ui,jvui,j)
z {¢[0,1]Z€}

+ 72 (usu; + Oéﬂ'%ﬁ%)} da, (42)
we see that
E(e,2) = e 'E(2). (43)

Estimates (40) and (43) give an estimate for the decay uni-
form in the domains of the fornfiz1, co) x {¢(0,1] > €}.

As the estimate used in (19) could be improved, we
may conclude that the estimate (40) could be also im-
proved. We do not consider this analysis to save cum-
bersome calculations.
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If we assume thay,; = 0, we could consider an alter-  is bounded and that the asymptotic condition
native approach. In this case we can use the weight func-

. . 1
tion ¢ = zo. We have¢” = 0, and relation (17) reduces. lim / 10,11 (203.10; -+ VR K01 + OVL1;
Assuming suitable asymptotic conditions, we define e A ’ o

-t + Qv 2v2 + 041)111272) dzo =0 (50)
D= [ [ eFsde @
z JO is satisfied. If we define the function

We can adapt the arguments proposed previously in this
situation, but we need to use some kind of the Poincaré / / P, 1] F(v; j,vi5)

inequality. In this sense, we can recall the estimate (10).

We could obtain an estimate of the type (40) after obtain- ( 202)1;1@1 + om%g] da, (51)
ing the fit constants in this case.

It is also worth considering another measure on the
solutions. We write

we have

1
Ec(z) = —/¢[0,1] (2%1% + vy kU1 + QU1 0,
0

z) = / / u;u; da. (45)
z 0 + QU1 202 + Oé’l}111272) dxg
Using estimates (11) and (19), we obtain o0 5 o
[ ((ifitoig) +alr3+62) ae (62

W(2) < (2 0) 'y B (2). (46)
and
The results obtained by Horgan and Payne (1992)
apply to the problem considered here. Nevertheless, in _ _/ o | F(vig,vig)
our approach the measure considered is different from that dz 0 ’ R
used in (Horgan and Payne, 1992).

+ (72 = 20%)v;v; + om2v§} dzo. (53)

4. Steady-State Vibrations in a Strip We can reproduce the arguments developed in the
previous section. Doing so, we obtain
Now, we look at a problem of the steady-state vibrations

of the form Ec(2) < Bo(0) exp(—Ma12) + S(z) — (5(0)
w;(t, z,y) = vi(z,y) exp(ist), (47) 2 ~ _
- [ exp(Mz1)s(6)de) exp(-Mg'2). (54
whereg is a strictly positive constant. The amplitude term 0
(v;) satisfies the system where
v jj + avjj; + C?v; = 0. (48) s(&) = 7 (fi(€) (&) + 9:(€)g: () + a(£3(€) + 95(9))) ,
Here C can be obtained in terms of the Lamé constant S(z) = /oo o) e
the mass density and . In fact, we have R '
2 2,1 Here the constand/ is defined as in (31), but changing
er the constantr by v72 — 2C2.
In this section, we consider a problem determined by sys- If we set
tem (48) and boundary conditions (15) and (16). oo
From now on, we assume thaC? < 72. Let us €2 / /¢ >e} Vig» Vi)
consider the weight functio, ;;, analysed in Section 3. 0
In this section we assume that the energy + (7* — 2C?)v;v; + ar?v3] da, (55)
oo 1 we see that
0) = /o /0 Pp0,1] {F(Ui,jvvi,j) Ec(e,2) = e 'Ec(2). (56)

Estimates (54) and (56) give an estimate for the decay uni-
+ (7% — 2C%)vv; + a7r2v§} da (49) form in domains of the fornjz,, 00) x {¢p,1) > €}.
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If we assume thaty; = 0, we can consider an al- Here §;; is the Kronecker symbol, and indicgs and ~
ternative approach. Let the weight function lge = are restricted to values 2 and 3. It is worth noticing that,
sinv/2Cz,. We may use similar results as in the previ- when ¢ depends only on the variable,, this equality
ous section, but in this case we need to work with the first reduces to
eigenvaluesX? and 1) of the singular problems
[q{)(Qui,j + aéijuk,k + auj,i)ui} )

5J

(¢(x))" + Ap(z)u =0, (0,1),

u(1) = 0,u(0) bounded, andcu/(z) — 0 asz — 0, - a[(¢ulu2),,6’ — duq 2uz — ¢U1U2,2} )
and
(d(x)u') + ug' (x)u =0, (0,1), = OF (ui g, ui ;) — A pouit; — ap 2915
(57)
’LL(O), u’(O) bounded' and(l) = 07 + %(d{guiui) + a%((ﬁ,gﬂﬁl@). (61)
respectively. ? ?
This also allows us to obtain decay estimates in the Our goal in this section is to develop our study in a
L? measure of the solutions. similar way to the one followed in Section 3. Due to (60),
we have to make some changes in the approach.
5. The Case of the Cylinder In the sequel we are going to work with non-negative

functions ¢(x5, x3) that satisfy the following conditions:

It is not difficult to extend our arguments to three dimen- () #(z2,23) = 0 ifand only if (x2,23) € D1,

sions in some cases, but the geometry of the cross-sectiofiii) there exists a positive constagta) such that
produces some difficulties in many situations. We con-

s?der a problem determined _by the thr(_ae-dimensippa] ver- [¢(2—04)(fﬂ,vfﬁ,v)—Aéf)(ﬁngﬁg)—aﬁb,ﬁvﬁﬁfv} da
sion of the system of equations (13) in the semi-infinite D

cylinder (0, 00) x D, where D is a two-dimensional re-

gion (not necessarily bounded) such that we can apply the > C(Oé)/ D(€pEpy + & +E€3)da (62)
divergence theorem. We assume that the boundart® of b
can be expressed as the union of two subggtsand Dy, for every vector field(&,, &) that vanishes irD..

where D1 N Dy = (). The boundary conditions are
! 2= y Condition (ii) on the functione is imposed to guar-

filzy, wo,m3) if (22,23) € Dy, antee that the function
Ui(xl,l’27l’3){ . (58)
0 It (22, 23) € Dy, / <¢F(ui7j,ui,j) — Aguu; — a¢ﬂgugu7> da (63)
and b
u; (0, 29, x3) = hi(x2,x3). (59) can be seen as a measure on the solutions of the three-
dimensional version of the system (13), satisfying the

boundary conditions (58) and (59).

Here we assume that

fi(0,29,23) = hi(x,x3) If (z2,23) € Dy, ) )

. Example 1. Let us assume thaD is the unit square
hi(zs,23) = 0 if (z2,23) € D (0,1)2 and D; is the point of the form(zy, x3), 0 <
x3 < 1 and x5 = 0 or1. We may consider the function
@(x9,x3) = sinwxy. The conditions are satisfied for ev-
ery a < 2. When D, is the subset of points of the form

(0, x3), the function¢(z2, x3) = xo Works. ¢

If ¢ is a function that depends only on the variables
(z2,23) and (u;) is an arbitrary solution of the three-
dimensional version of the system (13), the following re-

lation holds:
Example 2. In caseD = (0,1) x (—o0,0) and D; =
{¢(2ui’j +adigu ke + auj’i)ui} J oD, we may consider aE;ain) the( functio;ﬁ(:cz,xg) =
sinmzy. Furthermore, ifS is a subset in the interior of
- a[(¢uluﬁ),ﬂ — Quy gug — durug g . (0,1) x (=00, 00), D = (0,1) x (—o0,00) — S and D,
' is the set of poinfxs, x3), x2 = 0 or 1, we may consider
= OF (u; 5, u; j) — APujtl; — ad g UgUy the same function. It is worth remarking that in this case

the cross-section is unbounded. Again/Jf is the set of

+i(¢ ﬁuiui)+ai(¢ Jugiy).  (60) points of the form(0, x3), the function ¢(z2, 23) = x5
Org " Oz works. ¢
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Example 3. Let 0 < a < b be two arbitrary positive It is clear that we can extend this process whenevet

constants and = {(z2,73),a < r < b}, wherer? = 1/2, because whem = 1/2, the corresponding equation
(3 + 23), and D; = 9D. If we consider the function is
32 + 62% + 62 — 15 = 0.
¢=(r—a)b—r), (64) , _ . .
One thinks that alternative selections of the function
we have could open many other possibilities. In this case the region
Saar? — D is not simply connected. ¢
b9y = —205, + P (a4b). (65)
r Now, we extend the arguments of Section 3 to the
Thus +b three-dimensional case.
a
Ap=—-4+ ! (66) We assume that the energy
and the matrix(A¢dgy + a¢ gy) Is 0
. - Ey(0) = / / (¢F(Ui,j7 Uij)
R m m 0 D
M= 11 12 ’ (67)
Mmo1  Mag — Ajuu; — a(b,,guguv) dv  (68)
where is bounded and that the asymptotic condition
_ (a+b) 3
mi = —d=2a T L+ “ ) lim ¢{2ui71ui + aug pur + aug u;
T1—00 D
_ T1X9
mio = OZ(CL =+ b) TS 9 + O‘ulﬂuﬁ _|_ au1u675:| da = O (69)
12 . - . .
mo1 = —a(a + b)rTv is satisfied. If we define the function
9 (oo}
b - o
mn =~ 20s O (10, 2o = [ [ (0P Gusim)
T T
Whenever this matrix is negative definite, condition (ii) is — Adu;u; — Oz(bﬁ,gu,@u,y) dv, (70)
satisfied. As the trace ab/ is r~(2 + a)(a + b — 47)
and the determinant is the use of the divergence theorem and the boundary con-

ditions allow us to see that

b\2 b

(4-20)% + (ﬂ) (1+a) — (4—20a)(240) 222,

" " Ey(z) = —/ ¢|:2ui,lui + o Uy + oty U
D

the matrix M/ is negative definite whenevér< 3a and

2
(4— 2a)2 + (GT‘*‘b) (1+a) — (4—2@)(24—@)@7%. + auq gug + au1ug’g} da
In order to illustrate the possibilities of the example, 7/0@/ (¢ sngfifitad v”ﬁfﬂfv) da, (71)
we consider some particular cases. Whenr= 1/3, we 2 Jpp 7
have

N2 4 /atb\2 T0a+b where ng are the components of the outward nornaal
3 + 3 ; -3 , to the boundary ofD.

_ L . ¢ i In this situation, it is not very difficult to reproduce
which is always positive if2/b is greater than the unique 4 arguments of Section 3. If we write

positive solution of the equation

4o 4 82% 4+ 14 — ? o I = — /D 2¢u;,1u; da, (72)
This solution is I, = _a/ pauy, xuq da, (73)
D
2 409 + 15(763)'/3
3t 392/3 Is = 70[/ Pt da, 7
D
13

- = (.934491.
3(2(409 + 151/763))1/3 Iy = fa/ puy pug da, (75)
D
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Is = —a/ ouiug gda, (76)
D

then, after some calculations similar to those followed in
Section 3, we see that

Z[igNd,

i=1,5

O0F,
— 77
o (77
where Ny is a constant that is easily computable. We

obtain
dE,

dz

E4(z) = —Ny + P(2), (78)

where
Pe)=- [ [ (banstisitadonafaf;)da. @9

Thus we have proved the following result:

Theorem 2. Let (u;) be a solution to the problem deter-
mined by the system (13), boundary conditions (58), (59)
and asymptotic conditions (69). Then the energy function
defined in (70) satisfies the estimate

Ey(z) < By(0) exp(~N; '2) + P(z) (P(O)

- exp(N; 1 p(€) de ) exp(~ N3 2).  (80)
where
w0 == [ (oomsfifit avsmafuf;)al @)
Defining the domains
D(e) = {x € D.¢(x) > ¢}, (82)
and setting
Ey(e,z) = /Z /D(E) (ch(Ui,j’uz‘,j)
— Adugu; — a(bﬁgUguv) dv, (83)
we obtain
Ey(e,2) < € 1 Ey(2). (84)

Estimates (79) and (84) give a uniform decay in the do-
mains of the form[z1, 00) x D(e).

In the remainder of this paper, we consider the case
where D = (0,1)? and D, is the set of the points of the
form (0, z3), where0 < z3 < 1. If we define

W(z):/ /Duiuidv,

(85)

estimates (11) and (19) allow us to obtain

W(z) < (2= a) ' pi " Eay(2). (86)

Then (79) and (85) allow us to obtain the estimate

W) < @ a) ! (E (0) exp(~ M=)

z

4 Pu(e) = (P~ [ ew())

0

<O (M) @)
The constant)/,,, that arises in this estimate can be ob-
tained as the one determined in Section 3 for the decay of
E*(z) and

P, (§) /D (fifi + afafs)dl.

This estimate is uniform on the whole cross-section

It seems possible to extend the arguments used to
study the steady-state vibrations in the case of a cylinder.

Remark 1. In order to possess a more explicit knowl-
edge of the estimates (75) and (82), it is suitable to ob-
tain an upper bound for the tert,, (0) in terms of the
boundary conditions. We do it whenever we assume that
hi(o,l‘g) = fi(0,0,JU;g) =0 forall 0 < r3 < 1.

We see that
Ez2 (0) S (2 + Ol)/ /(ui,jui’j + aui,iuj,j) dv. (88)
0 D
The integral on the right-hand side of (88) was studied
in (Quintanilla, 1997b). In this situation the solution to
the problem determined by conditions (58) and (59) is the
sum of the solutionsi; and u; that correspond to the

case whenf; = 0 and h; = 0, respectively. Thus we see
that

o0
/ /(uz‘,jum‘ + au; juj, ;) dv
0 D

= / / ((ﬁm‘ + i ) (Ui g + Ui j)
0 D

+a(l + 1) (U5 + ﬁj,j)) dv

o0
< 2(/ / (i35 + atiy i1;,5) dv
0 D

+ / / ('&i,jﬁi,j + Ot’lli,iaj}j) dU) (89)
0 D
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To calculate these integrals, we can use the arguments prewe obtain
sented in (Quintanilla, 1997b). We obtain

o0
/ / (51,5 + Qily;ig,5) dv
0 D

<(1+ 3@)/ (hi2hi2 + hish;3) da/ hih; da,
D D

oo pl
S(z1,23) = —/ / 22 (2u; 3u; + quy pus
zZ1 0

+ aug ;ug + qug 2uz + ausus 2) da

1,1
— / / 22 (2u; 1u; + Qug pur + aug juq
z3 0

(90)
+ aug ;ug + quy 2u2 + aujug 2) da
and

oo pl
. + [ [ si+aspia (95)

/ / (ﬂi,jﬂi,j + Ozﬂm’lljJ‘) dv z1 Jz3

o Jp
oo prl on 1 r1

<(1+ 3a)(/ / (firfin+ fisfiz)da F = —/ /0 o F(u; 5, u, ;) da, (96)

0 0 Z3

+/Om/01fif¢da>. (91) and

The combination of the estimates (88)—(91) gives the de-
sired upper bound.

)y e
7o = —/Z1 /O 2o F'(u; 5,1, ;) da. (97)

From (95)—(97) we can obtain an estimate of the form

oY 0%
6. An lll-Posed Problem %< M, (821 + azg) +Q (%8)
This section is devoted to the study of spatial estimates forWhere -
an ill-posed problem determined by the three-dimensional Q= / / (fifs + af?) da. (99)
version of the system of equations (13) and the boundary 21 Jzg
conditions If we integrate (98) along the lines of the form
Ui(x1,$27 1) = 07 zZ1 — Z? = 23 — Zg, (100)
ui(r1,0,73) = fi(22,73), (92)

we obtain the estimate

ui(xla 1,$3) = Oa
(21,21 + zg — z?)

but we have no information on the displacement on the < Z(z?,zg)exp( _Mx—;(zl — Z?)) + Mz;l
part of the boundary consisting of the points of the form
(z1,22,0). This result will be an extension of the one
obtained in (Quintanilla, 1997a), when we allow for non-
homogeneous boundary conditions on a part of the lateral
surface. xexp (— My (21 — 27)), 21 > 2{. (101)

x(/ Cexp (M (6~ 20)Q(E.€ + 2 z‘f)di)

0
1

We assume that _
Thus we have proved the following result:

%(0,0) = / / o F(u; 5,u, ;) dv < o0, (93) Theorem 3. Let (u;) be a solution to the problem deter-
0 JD mined by the system (13), boundary conditions (92) and
asymptotic conditions (69). Then the energy function de-

and the asymptotic conditions (68) are satisfied. If we de- fined in (94) satisfies the estimate (101)

fine the function
This result is a natural extension of that obtained in (Quin-

co pl 1 .
E(Zl, 23) _ / / / ‘T2F(Ui7j,ui,j) dv, (94) tanilla, 1997a).
zZ1 z3 0
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7. Some Remarks Flavin J.N., Knops R.J. and Payne L.E. (198Bgcay estimates
) ) for the constrained elastic cylinder of variable cross sec-
In (Quintanilla, 2000) the author proposed to apply en- tion. — Quart. Appl. Math., Vol. XLVII, No. 2, pp. 325—

ergy arguments when non-homogeneous conditions are  350.

?mposed on the whole boundary. But we COU_|d not do granchiF. and Straughan B. (19948patial decay estimates and
it (in general) due to the term of the form, ;; in the continuous dependence on modelling for an equation from
Navier system of equations (13). Furthermore, this is the dynamo theory— Proc. Roy. Society. Lond. A, Vol. 445,

reason why we have to restrict our attention to the cases of pp. 437-451.

a < 2. We have also seen by means O_f aremark that theg,4i . and Rionero S. (1985)Weigthed Energy Methods in
COHdItIOﬂ on«o ShOU|d be more restrictive When the I’e|- Fluid Dynamics and E|ast|c|ty_ Berlin: Sp“nger

ative geome_try of the cross-section anq_the subset of theHorgan C.0.(1989): Recent developments concerning Saint-
boundary with non-homogeneous conditions are complex. Venant's principle: An update— Appl. Mech. Rev.

We can recall that in other contributions of this kind Vol. 42, No. 11, pp. 295-303.
in elasticity the restriction is more relaxed (see, €.9., Horgan C.0.(1996): Recent developments conceming Saint-
Flavin et al., 1989, Horgan and Payne, 1992, Qu|ntan|"a, Venant's princip|e: A second update_ App| Mech. Rev.,
1997a). Thus there are some natural open questions: Vol. 49, No. 10, pp. 101-111.
1. Extension of the energy arguments to the case whereorgan C.0. and Knowles J.K. (1983)Recent developments
the non-homogeneous boundary conditions are im- concerning Saint-Venant's principlén: Advances in Ap-
posed in the whole of the boundary. plied Mechanics (J.W. Hutchinson, Ed.). — New York:

2. Analysis whena > 2. Academic Press, pp. 179-269.

3. The results hold for solutions haviregpriori suitable ~ Horgan C.O. and Payne L.E. (1992)he influence of geometric
behaviour at the spatial infinity. For instance, it is as- perturbations on the decay of Saint-Venant end effects in

. linear isotropic elasticityIn: Partial Differential Equations
sumed that the. SOIUtIQn.S tend t(.) zero..A_(fundamentaI) with Real Analysis (H. Begrehr and A. Jeffrey, Eds.). —
open problem is to eliminate this restriction.

Essex: Longman, pp. 187-218.

~ Itis worth remarking that the anti-plane deforma- Knops R.J. and Payne L.E. (1998patial behaviour of energy
tions of an isotropic and homogeneous elastic solid are in partially constrained thick elastic plates— Atti dei
governed by the Laplace equation. This equation was Convegni Lincei, Vol. 140, pp. 77-104.

studied in (Quintanilla, 2000) and it was proved there |y c. and Payne L.E. (1993): On the spatial decay of ill-
that we may obtain spatial decay estimates when the non- posed parabolic problems— Math. Mod. Meth. Appl.
homogeneous conditions are imposed on the whole of the Sci., Vol. 3, No. 4, pp. 563-575.

boundary. We also note that the weight functions used Quintanilla R. (1997a): Spatial decay estimates and upper

here concern only bounded directions. bounds in elasticity for domains with unbounded cross-
sections— J. Elasticity, Vol. 46, No. 3, pp. 239-254.

Quintanilla R. (1997b): Directions of spatial decay in linear
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