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1. Introduction

The present paper discusses problems associated with in-
vestigations the possibilities, ways and efficiency of the
application of dynamic programming methods to solv-
ing dynamic optimization problems in parallel multitrans-
puter systems. Optimization computations were imple-
mented on the multitransputer SUPER NODE 1000 sys-
tem. The obtained results served to illustrate many essen-
tial problems associated with implementation of parallel
computations. In general, they refer to the influence of the
parallel system structure and the manner of organizing the
interprocessor communication upon the global efficiency
(speedup) of parallel computations. In a particular way,
dynamic programming methods are suitable for conduct-
ing such investigations, since they offer real possibilities
of parallelizing computations on different levels of algo-
rithms and, consequently, in the distribution of tasks, ob-
taining parallelism of a different granularity and various
communication requirements. The presented results were
obtained during investigations carried out by the author
at the Centre for Mathematical Software Research of the
University of Liverpool.

2. Parallel Systems and Computations

When planning parallel computations, it is possible to dis-
tinguish three basic groups of problems associated with
the architecture of parallel systems, formulation of paral-
lel computational algorithms and implementation of com-
putations in a concrete parallel system. In the classifica-

tion formulated by Flynn (1972), multitransputer systems
are in principle contained in the systems of the MIMD
type (Multiple Instruction stream—Multiple Data stream).
In general, digital systems, which belong to this group, are
built from two processors or a larger number of processor
units with comparable properties in which, depending on
the way the system is organized, all processors have ac-
cess to common memory (common memory systems), or
they are furnished with local private memories (distributed
memory systems). At the same time, these system proces-
sor units perform functions of node elements in the gener-
ated networks responsible for communication with other
elements, and for directly interconnected data exchange
between the elements for which they constitute indirect
nodes. In that case, an important problem is the way of
connecting (topology) particular elements in more com-
plex structures. The following types of structures belong
to the typical, most often applied solutions in this range:
linear chain, ring, square, tree or hypercube (Kozielski and
Szczerbínski, 1993; Sadecki, 2001).

MIMD systems with distributed memory have be-
come relatively popular recently. This results from the
possibility of connecting a large or very large, coming
up to several thousand, number of cheap processor el-
ements in parallel complex structures. This technique,
called “massive parallelism”, allows again and again to
achieve a good computing speedup in spite of increasing,
together with an increment in the number of connected
processors, the system load due to the use of communica-
tion and synchronization mechanisms based on message
transfer.
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In the 1980s and 1990s multitransputer systems
(Harp, 1989; Wysocki and Kwolek, 1994; TAN,
1989) (eg. the Super Node 1000 system (Interi, 1991))
became very popular in Europe. A transputer is
an integrated circuit, made in the VLSI technol-
ogy, designed to be utilized in parallel data pro-
cessing. The name itself, resulting from combin-
ing TRANSPUTER=TRANSmitter+comPUTER, em-
phasizes that this device is a one-circuit computer in
which utmost attention is paid to both computational and
communication problems. Special hardware solutions
found in it are used in the form of a communication sys-
tem handling 4 bidirectional, serial links utilized for di-
rect connections with other transputers. These connec-
tions serve the construction of multiprocessor systems,
implementing real parallel computations. The interfaces
of 4 transputer links operate independently of other links
and of the processor. In that case the processor, after initi-
ating a communication task, can proceed to performing
tasks associated with implementation of the successive
process.

Parallel processing, and in fact its substitute in the
form of concurrent processing implemented by the dis-
tribution of processor time, can be performed in a single
transputer. This is possible owing to the universal pro-
gramming language OCCAM, worked out for the needs of
parallel processing, taking message transfer into consid-
eration. Many functions which in other processors must
be emulated by means of software or executed by other
external devices are implemented by hardware in a trans-
puter. Hence transputers can also be applied successfully
to processing in real time. In a large family of transput-
ers which have been made by the British company IN-
MOS since 1985 there are a number of hardware solutions
which, having been improved, are characterized by better
and better possibilities in the range of both computing and
communication speeds. IMS T212, IMS T414, IMS T800
and IMS T9000 are the basic members of this family. In
Fig. 1, as an example, a general scheme of the inner archi-
tecture of the transputer IMS T800 is presented.

This transputer contains: a 32-bit processor with 64-
bit coprocessor capacity at the clock frequency of 30 MHz
amounting to 15 MIPS and 3.3 MFLOPS, 4 KB internal
memory, 4 bidirectional serial interfaces with the trans-
mission speed of 10/20 Mbit/s and external memory to
4GB. Four bidirectional serial interfaces, with which each
transputer is equipped, are utilized for creating complex
multitransputer structures via direct connections of many
different transputers. This task can be made much easier
by the application of special link-switching circuits de-
signed for this purpose, such as, e.g., switch chip C004
or switch chip C104, designed for cooperation with trans-
puters T9000 (TAN, 1989; Wysocki and Kwolek, 1994).
Transputer T9000 is characterized by much better param-
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Fig. 1. General scheme of the architecture of transputer T800.

eters than T800. It is composed of closely connected to-
gether units: a 32-bit arithmetic-logic unit (ALU) and a
64-bit floating-point unit (FPU) of computing power with
the clock frequency of 50 MHz of the order of 200 MIPS
and 25 Mflops (peak power) and 70 MIPS and 15 Mflops
(long-lasting power). It is equipped with a 16 KB internal
memory, 4 bidirectional serial interfaces with the trans-
mission rate to up 100 Mbit/s, a virtual channel processor
and external memory to up 4 GB.

A natural programming language of transputers is
OCCAM, a procedural concurrent programming language
worked out by INMOS (Occam 2, 1998; Wysocki and
Kwolek, 1994). It is characterized by exceptional simplic-
ity, allowing concise and effective applications for both
individual transputers and multitransputer systems to be
created. OCCAM is a language enabling a program to be
presented as a set of processes which operate concurrently
and intercommunicate through program channels. On the
other hand, in the case of a multitransputer system, this
communication consists in message transfer between pro-
cesses implemented by various transputers. The complex
implementation of a number of tasks associated with com-
pilation, configuration and putting programs into opera-
tion, written in the OCCAM language, can be performed
with the use of various kinds of tools. The following op-
erating systems are often applied here: HELIOS, TDS
(Transputer Development System), OCCAM-TOOLSET
or ANSI C-TOOLSET (TDS, 1988).

In the SUPER NODE system and in many other mul-
titransputer systems, owing to the application of special
switch systems, it is practically possible to implement
any structure of connections. This task, implemented
with the use of a program, consists in a mutual assign-
ment of four particular links of transputers entering into
the composition of a generated structure. The possibil-
ity of configuring the system is particularly important
when an optimized choice of the system structure is an-
alyzed for the solved problems and applied algorithms.
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The SUPER NODE 1000 system works under the Unix-
like Operating System IDRIS. It can contain from 16
to 1024 transputers, working at the maximum speed of
up to 1.600 Mflops. This system, in the version installed
at the Centre for Mathematical Software Research (Uni-
versity of Liverpool), is composed of 65 transputers of
the 4 MB T800 type, 24 transputers of the 256 KB T800
type and 16 transputers handling the VCR (Virtual Chan-
nel Router). The virtual channel system permits (from the
viewpoint of software) direct implementation of transmis-
sions between any pair of transputers occurring in a con-
figurated multitransputer structure (Debbageet al., 1991).

As for various advantages resulting from the paral-
lel way of data processing, we can mention the possibility
of a considerable computing speedup and the qualitatively
new possibilities of controlling rapid dynamic processes,
as well as simulation of real complex processes in technol-
ogy (Sadecki, 1996; 1999). The concept of parallel com-
putations is utilized for the description of a situation in
which many processor units, controlled centrally, work at
the same time to solve one problem. Before implementing
parallel computations, it is required to formulate a suit-
able algorithm ensuring that the intentional expectations
are fulfilled concerning, e.g., the computing speed, and
that the possibility of the applied hardware is employed in
an optimal way. The adaptation of a given algorithm to
implementation in a parallel system consists generally in
identifying a set of independent subtasks in it, which can
be solved in parallel, securing intercommunication when
computations are made. A set of such subtasks is called a
parallel algorithm. In general, the efficiency of implemen-
tation of parallel algorithms in a real system will depend
on the following factors:
• the architecture of a parallel system in which it is im-

plemented,

• the way of interchanging information between the
processor units,

• a suitable distribution of data in the elements of sys-
tem memory,

• a proper distribution of tasks between processor
units.

In the distribution of tasks, the best situation is cre-
ated by the possibility of equally loading all processors
in time. However, it is not always possible to satisfy this
condition. Generally, one can distinguish two basic ways
of distributing:
• static distribution of tasks: tasks are allocated once

before computations,

• dynamic distribution of tasks: tasks are allocated
to processors on-line, while the algorithm is imple-
mented.

In practice, algorithms for dynamically balancing the load
on particular processors, implemented in a dispersed man-

ner by all the processor elements of the system, are also
employed. These are relaxation algorithms, which suc-
cessively implement tasks tending towards equalizing the
load on all processors (Baker and Milner, 1991). They
constantly monitor each of the processors, their state and
their load (i.e., the number of tasks which are still to be
performed), and the state of the load on processors directly
connected with them in the system.

The analysis associated with formulating and com-
paring parallel algorithms requires the use of a uniform
measure selected according to the properties of these al-
gorithms. Most often it is carried out on the basis of the
so-called computing speedup factor (Brochard, 1989)

S(N,P ) =
T (N, 1)
T (N,P )

, (1)

where P denotes the number of processor units utilized
in computations, whereasN characterizes the numerical
quantity of the problem, i.e. its dimension or the number
of the processed data elements.

One should theoretically understand a timeT (N, 1)
as the time of the best existing sequential algorithm or the
time necessary for performing the algorithm adopted as
a model one. In practice, it often means the time of im-
plementation on one processor of a sequential algorithm,
submitted then to parallelisation or, if possible, the time of
implementation on one processor of a parallel algorithm.
On the other hand,T (N,P ) denotes the implementation
time of the analyzed parallel algorithm with the use ofP
processors.

3. Parallel Dynamic Programming
Algorithms

Computations concerning the problems analyzed in this
paper were implemented in the parallel multitransputer
SUPER NODE 1000 (SNODE) system. They were per-
formed with the use of OCCAM and they are associated
with the efficiency analysis of different parallel implemen-
tations of dynamic programming algorithms, as well as
the analysis of the influence of the parallel system struc-
ture and the way of organizing interprocessor communi-
cation upon the global efficiency (speedup) of computing.
The presented deliberations were based on some examples
of dynamic optimization problems which can be formu-
lated in the following way: A control process is given and
it is described by the system of state equations:

ẋ = f0

[
x(t),u(t), t

]
, t0 ≤ t ≤ tK , x(t0) = x0, (2)

where x is the n-dimensional state vector(x ∈ Rn),
u denotes them-dimensional control vector(u ∈ Rm),
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and f stands for then-dimensional vector function (non-
linear in general). The performance criterion is defined in
the form of the functional

J(x,u) =
∫ tK

t0

l0
[
x(t),u(t), t

]
dt + Ψ

[
x(tK), tK

]
, (3)

where l0 is a scalar cost function andΨ signifies a scalar
terminal cost function.

Moreover, some restrictions are imposed on the state
and control variables which can be generally formulated
as the following relations:

x(t) ∈ Ωx(t), Ωx ⊂ Rn,

u(t) ∈ Ωu

[
x(t), t

]
, Ωu ⊂ Rm.

(4)

The optimization task consists in finding a control vector
u(t) such that if (2) and (4) are satisfied, it minimizes the
performance criterion (3).

Application of a discrete version of the dynamic pro-
gramming method (DP) for solving the above problem
requires its prior discretization. By dividing the interval
〈t0, tK〉 into K subintervals of equal length of∆t =
(tK − t0)/K (t = t0 + k∆t, k = 0, 1, . . . ,K), the
problem (2)–(4) can be reformulated in a discrete form.
On the other hand, the state equations, a performance cri-
terion and constraints will be respectively determined by

x(k + 1) = f
[
x(k),u(k), k

]
,

k = 0, 1, . . . ,K − 1, x(0) = x0,
(5)

J
[
x(k),u(k)

]
=

K−1∑
k=0

l
[
x(k),u(k), k

]
+ Ψ

[
x(K),K

]
,

(6)

x(k) ∈ Ωx[k], Ωx ⊂ Rn, k = 0, 1, . . . ,K,

u(k) ∈ Ωu

[
x(k), k

]
, Ωu ⊂ Rm, k = 0, 1, . . . ,K − 1,

(7)

where

f
[
x(k),u(k), k

]
= x(k) + f0

[
x(k),u(k), k

]
∆t,

l
[
x(k),u(k), k

]
= l0

[
x(k),u(k), k

]
∆t.

In this case, the optimization task consists in search-
ing for a control sequence{u(0),u(1), . . . ,u(K − 1)}
satisfying (5) and (7) and minimizing the value of the per-
formance criterion (6). Application of the DP method to
solving the problem (5)–(7) is based on making use of the
principle of optimality (Findeisenet al., 1980). This prin-
ciple was formulated by Bellman (1957) for a wide range

of systems whose future behaviour can be fully (or statis-
tically) determined on the basis of the knowledge of their
present state. For the problems formulated above, it can
be expressed as follows (with the assumption that the op-
timal control exists):

The optimal strategy has a property such that re-
gardless of what the initial state or initial control
would be, the remaining controls must form the
optimal strategy from the viewpoint of the state
resulting from the first fragment of the control tra-
jectory.

A discrete version of the DP method can be applied
to solve either discrete by nature or discretized continuous
optimization problems. The application of the principle of
optimality to solving the problem described by the rela-
tions (5)–(7) leads to a recursive procedure for determin-
ing optimal control, which, in a mathematical notation,
assumes the form of the iterative functional equation

I
[
x(k), k

]
= min

u(k)∈Ωu

{
l
[
x(k),u(k), k

]
+ I

[
f

[
x(k),u(k), k

]
, k + 1

]}
, (8)

where k = 0, 1, . . . ,K − 1, and I[x(K),K] =
Ψ[x(K),K],x(k) ∈ Ωx. Here I[x(k), k] denotes the
so-called minimum cost function, defined as follows:

I
[
x(k), k

]
= min

u(j)∈Ωu,j=k,k+1,...,K−1
K−1∑
j=k

l
[
x(j),u(j), j

]
+ Ψ

[
x(K),K

] . (9)

This defines the minimum cost which can be obtained
when admissible controls are considered for the final seg-
ment of the trajectory starting at an arbitrary pointx(k) ∈
Ωx, k = 0, 1, . . . ,K − 1.

One of the advantages of the discrete DP method
is the possibility of including a wide class of constraints
imposed on both state and control variables. These con-
straints do not complicate the computations and can lead
to a decrease in the computational requirements associated
with implementation of the method. They determine the
areas of admissible states and admissible controls denoted
by Ωx(k) and Ωu(x, k), respectively. In numerical im-
plementation of the DP method, the process of solving (8)
requires prior discretization of the state variablesx(k)
and, with an enumerative approach to the minimization
process, discretization of the control variablesu[x(k), k]
as well (Larson, 1968; Sadecki, 1987).

The process of solving the functional equation (8)
consists in determining the values of the function
I[x(k), k] and those of the optimal control̂u[x(k), k]
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at all the discrete points of the state spaceΩx(k), with k
varying from k = K − 1 to k = 0. Then, on the basis of
the computed values of̂u[x(k), k] for given x(0) = x0

and for k varying from k = 0 to k = K, it is possible to
assign the optimal trajectorŷx(k) and the corresponding
optimal controlû(k), k = 0, 1, . . . ,K−1, which is a so-
lution to the problem (5)–(7). Since the computational re-
quirements associated with solving (8) are, particularly for
multidimensional problems, incomparably greater than
those associated with computing the optimal trajectory
from (5), they decide about the time-consumption of the
dynamic programming method. Hence, when parallel im-
plementation of this method is considered, most attention
is paid to solving (8) (Sadecki, 1987).

Considerable computational requirements of the DP
method, increasing with the dimension of the optimiza-
tion problem and significant requirements of this method
concerning the computer memory, have stimulated the au-
thor to seek new, amended versions of the DP algorithm.
Apart from the basic version of the dynamic programming
method discussed above, there is a wide group of its vari-
ants characterized by much better properties with respect
to the requirements of the computational process (Larson,
1968). Some of these algorithms do not differ practi-
cally in their applications from the basic version of the
DP method. The majority of them, however, are formu-
lated for a limited, strictly determined class of optimiza-
tion problems. One of such methods, permitting the re-
quirements to decrease considerably with respect to stor-
age, is the state increment dynamic programming method
(SIDP) (Larson, 1968; Sadecki, 1987). In this method the
value of incrementδt along the time variablet is not
constant as in the basic method (where this increment is
∆t), but can vary, assuming currently the values deter-
mined by the dependence:

δt = min
{

min
i=1,2,...,n

[
∆xi

|fi(x,u, t)|

]
, ∆t

}
, (10)

where∆xi is the increment resulting from discretizing
the i-th component ofx, ∆t is the increment resulting
from discretizing timet, andδt means the time interval
for which the control assumes a constant value. It is de-
termined as the minimum time in which one of the state
variables forming the vectorx changes about its full in-
crement∆xi resulting from discretizing the areaΩx.

For the SIDP method, the functional equation (8) as-
sumes the following form:

I(x, t) = min
u∈Ωu

{
l(x,u, t)δt

+ I
[
x + f(x,u, t)δt, t + δt

]}
. (11)

Assigning the values ofδt on the basis of the rela-
tion (10) assures that in the section ofδt, the quantity

xi, i = 1, 2, . . . , n can be altered at most as much as
∆xi. At the same time, the relationδt ≤ ∆t holds. Con-
sequently, the value ofI[x + f(x,u, t)δt, t + δt] can
be determined only on the basis of the value of the min-
imum cost function defined in the immediate vicinity of
the point x in which current computations are made, i.e.
in the areaxi − ∆xi ≤ xi ≤ xi + ∆xi, i = 1, 2, . . . , n
(for the stage oft + ∆t and/or the stage oft + 2∆t).
The presented approach permits the area ofΩx(t) to
be divided into(n + 1)-dimensional subdomains, called
blocks, of the minimum width with respect to the variable
xi, which is 2∆xi. In practice, the recommended width
with regard tot covers the range from5∆t to 15∆t. In
the computations made within one block, it is necessary
to store the value of the functionI(x, t), determined in
the same block, for one or several (according to the ap-
plied interpolation and extrapolation procedures) “previ-
ous” time stages, which considerably restricts storage re-
quirements in comparison with the basic DP algorithm. A
detailed discussion of the method of computations, made
in blocks and on their boundaries, is presented in (Larson,
1968; Sadecki, 1987; 1992). In Fig. 2 a simplified dia-
gram of computations implemented for the conventional
DP method and for the SIDP algorithm is presented.

�

�

����������

���

��� �∆�����

��� �∆�����

��� �∆�����

����������	
�	��� �∆�������������������������
���������������������������

δ����

δ����

�

�

����������

���

��� �∆�����

��� �∆�����

��� �∆�����

����	
�	��������������������
�������������

����	
�	��������������������
�������������

����������	
�	��� �∆�������������������������
���������������������������

(a) conventional DP algorithm (b) SIDP algorithm

Fig. 2. Diagram of computations implemented at a given
point (x∗, t∗) for the conventional DP method and
for the SIDP method (atn = 1, m = 1).

The idea of parallel data processing creates a ba-
sis for further considerable relaxing of the requirements
of the DP method with respect to the computation time,
through their distribution to many processor units and with
regard to memory requirements, via distribution of data
between local memory modules. When analyzing the pro-
cedure used for solving the functional equation (8), one
can notice that it consists of computations performed in
three basic iteration loops:

(i) in relation to the index of stagek = K − 1,K −
2, . . . , 2, 1, 0,

(ii) with regard to all the discrete values of the state vec-
tor x(k) ∈ Ωx(k), determined at a given stagek,

(iii) in respect to all the discrete values of the con-
trol vector (an enumerative approach)u[x(k), k] ∈
Ωu[x(k), k], determined at a given discrete point
x(k) ∈ Ωx(k).
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The above observation is a basis for the formulation
of different parallel versions of the dynamic programming
method, among which one can distinguish two basic ones
(Sadecki, 1987):

1. Parallel state algorithm (PSA): parallelizing compu-
tations within loop (ii),

2. Parallel control algorithm (PCA): parallelizing com-
putations within loop (iii).

As the least portion of tasks which can be distin-
guished in these algorithms we consider a set of opera-
tions associated with the computations of the values on
the right-hand side of (8) at one discrete point of the state
space—the PSA algorithm, and a set of operations con-
nected with the computations of the values on the right-
hand side of this equation at one discrete point of the state
space and for one discrete value of the control vector—
the PCA algorithm. These tasks are allocated to particular
processors at the beginning of the computing process with
the use of the static distribution method.

By formulating and analyzing the efficiency of par-
allel implementations of the DP method, use is made of
three basic parameters determining the volume of a dis-
crete optimization task, as well as a parameter determin-
ing the number of processors utilized in computations.
The following symbols are adopted:

N – the number of discrete values of the state vectorx,
specified in the setΩx(k), with the assumption that
N does not depend onk,

M – the number of discrete values of the control vector
u, specified in the setΩu[xxx(k),k], with the assump-
tion that M depends on neitherx, nor k,

K – the number of time stages(k = 0, 1, . . . ,K − 1),
P – the number of processors employed in the compu-

tations.

The PSA and PCA algorithms can be formulated as fol-
lows (Castiet al, 1973; Malinowski and Sadecki, 1986;
1990; Sadecki, 1987; Sadecki and Galewicz, 1991):

Parallel state algorithm (PSA):

(i) Each processor calculates the values ofI[x(k), k]
for N/P discrete values of the vectorx(k).

(ii) Each processor sends the computed values of
I[x(k), k] to all the other processors.

(iii) Steps (i) and (ii) are repeated for all time stages.

Parallel control algorithm (PCA):

(i) Each processor calculates the values ofI[x(k), k]
for M/P discrete levels of the vectoru[x(k), k]
(all the processors compute at the same pointx(k)),
choosing a locally optimal value of̂u∗[x(k), k] and
the corresponding value of̂I∗[x(k), k].

(ii) Each processor sends the computed values of
the function Î∗[x(k), k] and those of control
û∗[x(k), k] to the other processors in order to
choose globally optimal values of̂u[x(k), k] and
Î[x(k), k].

(iii) Steps (i) and (ii) are repeated for all discrete values
of x(k) and all time stages.

If in the above algorithms (N modP ) = 0 or, re-
spectively, (M modP ) = 0 occurs, then all the proces-
sors taking part in computations will be loaded with tasks
uniformly. Otherwise, some processors will be loaded
with one task more than the others.

Taking the PSA as an example, it is possible to for-
mulate parallel implementation for the SIDP method. To
this end, we propose to divide the area ofΩx into blocks,
the number of which will be equal to the number of the
processors utilized in computations. Thus each proces-
sor will implement computations in one block of the time
width K∆t. Some explanation is necessary here regard-
ing computations made on the boundaries of the blocks.
One of the possible approaches is the method consisting
in including, when the computations are made in a given
block (on its boundary), only such discrete controlsu for
which the value ofx + f(x,u, t)δt lies within the same
block. The other controlsu will be included in compu-
tations on the same boundary but from the side of an ad-
jacent block (Sadecki, 1987). However, in a parallel im-
plementation, such a solution would require a wider use
(as compared with the sequential version) of extrapola-
tion procedures. In the parallel implementation presented
in this paper a somewhat different approach is used. Prac-
tically, it does not differ from a sequential implementa-
tion of the algorithm. It introduces some delay, usually
one time stage, in implementation of computations within
particular blocks. Thus, for example, processorP1, af-
ter performing computations for the given stage, sends the
values of the functionI computed at the boundary points
to processors allocated to the neighbouring blocks. This
is necessary to begin computations in these blocks and,
at the same time, it is a signal to commence computa-
tions by these processors for the samek, when processor
P1 already initiates computations for the successive stage
k + 1. Thus the values ofI for the boundary points are
computed only by one of the processors associated with
the adjacent blocks. However, this algorithm still requires
implementation of more communication tasks associated
with sending some values ofI, calculated by particular
processors in the immediate vicinity of the block bound-
aries for the “earlier” stagek + 1, necessary for a correct
implementation of the SIDP method. Some delay intro-
duced within this algorithm makes the efficiency of the
parallel algorithm dependent upon the number of stages
K, whereas its influence upon the computational speedup
will decrease together with the increment ofK.
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In this case, the parallel SIDP algorithm can be for-
mulated in the following way:

Parallel state increment dynamic programming algo-
rithm:

(i) All processors, in succession, begin the computing
process of the values ofI[x(k), k] for N/P dis-
crete levels of vectorx(k) occurring within blocks
assigned to them with time shift, concerning blocks
in its immediate vicinity, equal to 1.

(ii) Each processor sends the computed values of
I[x(k), k] for x(k), lying on the block boundary,
to the processors associated with blocks in its imme-
diate vicinity.

(iii) Steps (i) and (ii) are repeated for all time stages.

All of the above algorithms were implemented in
the parallel SNODE system. At the same time, use was
made of the possibilities, inherent to the system, of prac-
tically configuring in any way. This forms a basis for the
analysis associated with examination of the influence of
the system configuration upon the efficiency of computa-
tions concerning parallel implementation of dynamic pro-
gramming algorithms. As has already been mentioned,
the SNODE system is equipped with the so-called virtual
channel router (Debbageet al, 1991), permitting direct
communication to be organized between any pair of sys-
tem elements (point-to-point), even if they are not physi-
cally connected with each other, without any necessity of
programming communication between intermediate sys-
tem nodes, and thus somehow independently of its real
configuration. This functionality facilitates the program-
ming of the communication tasks between any system el-
ements, since in reality, in order to implement a concrete
transmission task, it is sufficient to determine the number
of a destination processor (or a source one) independently
of the place in which this processor is situated, and to de-
fine data which are subject to transmission. The applica-
tion of a virtual channel router resulted in slowing down
the whole system and in some slowing down of data trans-
mission in comparison with the real capabilities of the
transputers. Communication time between processors not
connected directly is significantly longer than the trans-
mission time between the processors having such connec-
tions. As a consequence, the efficiency of the algorithms
taking full advantage of the point-to-point communication
is different than that of the algorithms using communica-
tions tasks concerning data transmission only between di-
rectly connected processors. In such a case, the influence
upon the efficiency of parallel implementations of the an-
alyzed algorithms will be exerted not only by the system
structure, but also by the way of organizing the communi-
cation tasks.

7 8 9

6 5 4

0 1 2 3

Communication processes for processorPi (i = 1, 2, . . . , P )

send: Pi
IIIi−→ Pj , j = 1, 2, . . . , i− 1, i + 1, . . . , P ,

receive: Pi

IIIj←− Pj , j = 1, 2, . . . , i− 1, i + 1, . . . , P .

Fig. 3. Square structure (P = 9) with a market scheme of
“full-exchange”, implemented between each pair of
system elements (operationssendandreceivemean
sending and receiving data, respectively).

For analysis, three basic types of system configura-
tion are considered: square (Fig. 3), linear chain (Fig. 4)
and ring (Fig. 5). In these figures we also show the way
of implementing the data exchange concerning transmis-
sion of some fragments of a vectorI formed from the
values of the functionI[x(k), k] computed by particular
processors between those processors. In the square struc-
ture, the total number of processors isP = PxPy, where
Px and Py denote the numbers of processors in a row
and in a column of the square considered, respectively.
When referring to this type of structure, it is assumed that
Px = Py, since for this variant the lowest value of the
maximal number of interprocessor connections between
the most distant processors in the structure (which is gen-
erally equal to (Px − 1) + (Py − 1)) is achieved. In each
of the above-mentioned structures, only processors with
numbers1, 2, . . . , P were used in the implementation of
the studied algorithms. The processor with number 0 is
almost exclusively utilized to manage the distribution of
tasks and resources, synchronization of time, and possible
collection of the results of computations. On the other
hand, communication tasks were implemented with the
use of one of the following three algorithms: communi-
cation of the “full-exchange” type, direct communication
implemented on the basis of a linear chain structure, when
only direct connections between processors were used,
and communication of the “master-slave” type.

Communication of the “full-exchange” type

This algorithm consists in implementing bidirectional data
transmission between each pair of elements, aiming to
create, in each of these elements, a full copy of all the
results computed parallelly by particular processors. This
manner of communication is utilized by the PSA. Denot-
ing by Ii the vector of the values ofI[x(k), k], deter-
mined while solving (8) by processorPi, it is assumed
that this processor sends the whole vectorIi, locally cal-
culated by itself, to all the other processors, obtaining in
turn the valuesIj , j = 1, 2, . . . , i − 1, i + 1, . . . , P , as
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computed by the remaining processors. From the soft-
ware viewpoint, utilizing possibilities which are offered
by the application of virtual channels to direct communi-
cation between any pair of system elements, such com-
munication tasks can be schematically formulated for the
i-th processor as follows:

PAR
PAR j = 1, 2, . . . , i− 1, i + 1, . . . , P

send (Pj , Ii)
PAR j = 1, 2, . . . , i− 1, i + 1, . . . , P

rec (Pj , Ij).

(12)

In order to obtain a clear notation, a simplified diagram
of thePAR construction with a replicator is applied here.
It is taken from the OCCAM language but it diverges a
little from the general convention of this language. The
constructionPAR j = 1, 2, . . . , P in (12) convention-
ally means that all the processes specified in successive
rows with a two-space indentation, identified by the value
of index j, will be implemented in parallel. On the other
hand, send (·, ·) and rec (·, ·) are communication proce-
dures implementing tasks of sending and receiving data,
respectively, at the same time; the first of the parameters
of these procedures determines the numbers of destina-
tion and source processors whereas the second parameter
identifies data subjected to transmission.

As a result of the communication task (12) carried-
out by all processorsPi, i = 1, 2, . . . , P , each of
them will have its own copy of the whole vectorI =
[I1, I2, . . . , IP ]T . In practice, however, it may appear
that in order to make the required computations at a given
discrete pointx(k) ∈ Ωx at stagek it is not neces-
sary to remember all the values of this function for stage
k + 1. In such a case, only those values of the func-
tion I[x(k + 1), k + 1] that are really indispensable to
computations can be transmitted between processors and
only for those processors which need these values. Such a
constrained manner of exchange, called optimal commu-
nication, was applied within the PSA. How many values
of the function I and to which processors they should
be sent depend on several factors such as, e.g., the form
of the state equations, the assumed discretization of the
state variablex(∆xi, i = 1, 2, . . . , n), and the assumed
value of the step∆t, as well as the number of the pro-
cessors used in computations. In general, in order to per-
form computations at any pointx∗(k) of the setΩx(k),
it is essential to remember the values of the function
I[x(k +1), k +1] only for such discrete pointsx(k +1)
belonging to the setΩ∗x(k+1) = {x(k+1) : x(k+1) =
f [x∗(k),u(k), k],x∗(k) ∈ Ωx(k),x(k + 1) ∈ Ωx(k +
1),u[x∗(k), k] ∈ Ωu}. If for each x∗(k) ∈ Ωx(k)
the equalityΩ∗x(k + 1) = Ωx(k + 1) is satisfied, then
communication will assume the form of “full exchange”,

whereas if points such asx∗(k) ∈ Ωx(k) are numerous
and other conditions, namelyΩ∗x(k+1) ⊂ Ωx(k+1) and
Ω∗x(k + 1) 6= Ωx(k + 1) are for them satisfied, then—
according to the remarks made above—communication
can be implemented in a more effective form. As will
be shown, optimal communication is very effective, but
it requires to assigna priori which of the values ofIi,
computed by particular processorsPi, should be sent to
which of the other processors and from which processors,
and what values should be received. Since the processors
communicating with each other cannot in general have di-
rect connection, the actual way of communication was im-
plemented with the use of virtual channels.

Communication of the “master-slave” type

In communication implemented according to the “master-
slave” scheme, each processor (slave)Pi, i =
1, 2, . . . , P transmits all the values of the functionI
(Ii), calculated locally by itself, to the coordination pro-
cessor (master) whose part can be played, e.g., by the
processor denoted by number 0 in Fig. 3 (or every other
processor in the system). The coordinating processor,
after receiving all the values ofIi, i = 1, 2, . . . , P ,
sends either the full vector of the values of the function
I or its fragment required by particular processors to the
remaining processors. Communication tasks defined in
such a way (making use of the virtual channel) can be
schematically formulated for processorP0 and proces-
sorsPi, i = 1, 2, . . . , P in the following way:

for processorP0:

SEQ
PAR i = 1, 2, . . . , P

rec (Pi, Ii)
PAR i = 1, 2, . . . , P

send
(
Pi, (I1, I2, . . . , Ii−1, Ii+1, . . . , IP )

)
,

(13)

for processorsPi, i = 1, 2, . . . , P :

SEQ
send (P0, Ii)
rec

(
P0, (I1, I2, . . . , Ii−1, Ii+1, . . . , IP )

)
.

The constructionSEQ, taken from the OCCAM language,
means that all the processes specified in successive rows
with a two-space indentation will be carried out sequen-
tially (in succession).

Direct communication (via line)

In the case of direct communication, data transmissions
are implemented with the use of only direct interproces-
sor connections. This algorithm can be practically imple-
mented in each of the structures specified above. How-
ever, within the linear chain structure it must occur in two
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cycles, differing in the direction of the information flow
(Fig. 4). At the same time, the cycles can be arranged in
a sequential order with respect to each other, or they can
be implemented, wholly or at least partially, in parallel
(according to the structure of interprocessor connections,
e.g., as a single or a double chain). The maximum number
of direct connections between the most distant processors
in the chain isP − 1. Direct communication is applied
with respect to the process of the parallel implementation
of the PSA and the PCA.

0 1 2 i P
.

Cycle 1: −−−−−−−−→ −−−−−−−−−→
IIIj , j=1,...,i−1

−−−−−−−→
IIIj , j=1,...,i

Cycle 2: ←−−−−−−−− ←−−−−−−−−
IIIj , j=i,...,P

←−−−−−−−−−−
IIIj , j=i+1,...,P

Fig. 4. Linear chain structure with a marked dia-
gram of direct exchange for the PSA.

Parallel state algorithm (PSA):

Cycle 1: Each processorPi (i = 1, 2, . . . , P − 1)
sends the values of the minimum cost function
(Ii), calculated by itself, and the values of this
function obtained from processorPi−1(Ij , j =
1, 2, . . . , i− 1) to processorPi+1,

Cycle 2: Each processorPi (i = 2, 3, . . . , P ) sends
the values of the minimum cost function(Ii),
computed by itself, and the values of this func-
tion obtained from processorPi+1 (Ij , j =
i + 1, i + 2, . . . , P ) to processorPi−1.

The communication task defined in such a way can
be schematically formulated for thei-th processor as fol-
lows (Fig. 4):

PAR
SEQ

rec
(
Pi−1, (Ij , j = 1, 2, . . . , i− 1)

)
send

(
Pi+1, (Ij , j = 1, 2, . . . , i− 1, i)

)
SEQ

rec
(
Pi+1, (Ij , j = i + 1, i + 2, . . . , P )

)
send

(
Pi−1, (Ij , j = i, i + 1, i + 2, . . . , P )

)
.

(14)

In order to limit the number of cycles of data ex-
change occurring in the PCA, its implementation is mod-
ified. Namely, it is assumed that the data exchange will
be implemented not every time after ending computations
at successive discrete points of the setΩx(k), but collec-
tively after making computations at allN discrete points
of this area at a given stagek. In such an implementa-
tion the number of cycles of data exchange will beK
(as in the PSA) and notNK, as in the basic implemen-
tation of this algorithm. An exchange algorithm in the

PCA will work in two cycles. The first cycle will im-
plement a search for the best solution from among those
determined by particular processors, whereas the task of
the second one will be to send the optimal values of the
function I[x(k), k] to all processors.

Parallel control algorithm (PCA):

Cycle 1: EachPi (i = 1, 2, . . . , P − 1) receives from
Pi+1 N locally optimal values of controls of
û∗i+1[x(k), k] and N corresponding values of
the function Î∗i+1[x(k), k], determined at all dis-
crete points of the setΩx(k) at a given stagek.
Next, the values are compared with own results
(û∗i [x(k), k], Î∗i [x(k), k]), better results are cho-
sen with respect to the adopted criterion and then
they are sent toPi−1. Consequently,P1 will
hold the globally optimal solution (̂u[x(k), k],
Î[x(k), k]),

Cycle 2: EachPi (i = 2, 3, . . . , P ) receivesN optimal
values of the minimum cost function̂I[x(k), k]
from Pi−1, and then sends them toPi+1 (the
values are indispensable to begin computations
at the successive stage).

The communication tasks presented above, determined for
the PCA, can be schematically formulated for thei-th pro-
cessor as follows:

SEQ

rec
(
Pi+1,

(
Î∗i+1

[
x(k), k

]
, û∗i+1[x(k), k]

))
,

min
[
(Î∗i+1, û

∗
i+1), (Î

∗
i , û∗i )

]
→ (Î∗i , û∗i )

send
(
Pi−1,

(
Î∗i

[
x(k), k], û∗i [x(k), k

]))
rec (Pi−1, Î)
send (Pi+1, Î).

(15)

Direct communication is also applicable to the PSA
(Fig. 5) and to the PCA, implemented in the system with
a ring structure. In this structure communication is im-
plemented in one cycle. For example, for the PSA, each
Pi (i = 1, 2, . . . , P ) sends toPi−1 at first the val-
ues of Ii computed by itself and next the values of
Ij , j = i + 1, i + 2, . . . , P, 1, 2, . . . , i − 1 received in
succession from processorPi+1. Communication ends
when each of the processors has collected all the values of
the functionI. The maximum direct connections between

Fig. 5. Ring structure with a marked diagram of exchange.
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the most distant processors in aP -element ring are0.5P ,
rounded down when the number of processors is odd.

In the communication algorithms discussed above,
implemented in the parallel system, it is possible to exe-
cute generally more than one communication task at the
same time. For example, for the PSA method imple-
mented in a linear chain structure it is possible to exe-
cute two transmission tasks (forP ≥ 3) at the same
time (data transmission in two different directions). For
the ring structure and the same method, the number of
such tasks isP in general. Moreover, it is possible to
parallelize some communication operations in relation to
computational tasks. If, for example, the processors differ
in the execution time of computational tasks (which often
happens in practice), then a processor receiving data from
another processor which has earlier executed its computa-
tional task can implement the task of data reception paral-
lelly with the executed computational task. For example,
a portion of the algorithm (14), supplemented by “compu-
tations” ensuring such a possibility, can be presented with
some simplification as follows:

SEQ
PAR

computations

rec
(
Pi−1, (Ij , j = 1, 2, . . . , i− 1)

)
send

(
Pi+1, (Ij , j = 1, 2, . . . , i− 1, i)

)
.

(16)

Below, numerical results obtained by practical im-
plementation of the presented methods and parallel al-
gorithms are presented. The estimation of the efficiency
of parallel computations is carried out on the basis of a
speedup factor determined by the relation (1). Denoting
the implementation time of the DP algorithm on one trans-
puter by tSEQ and, at the same time, parallel implemen-
tation time of this algorithm bytPAR with the use ofP
transputers, the value of the speedup factor is determined
as

S(P ) =
tSEQ

tPAR
. (17)

The computations presented in this paper were per-
formed using the example which follows.

4. Computational Example

The dynamic optimization problem concerns the system

ẋ(t) = u(t), 0 ≤ t ≤ 10, (18)

where

0 ≤ x(t) ≤ 8, −2 ≤ u(t) ≤ 2, x(0) = 8. (19)

We should find control and state trajectories so as to min-
imize the value of the performance criterion

min : J =
∫ 10

0

[
x2(t) + u2(t)

]
dt + 2.5

[
x(10)− 2

]2
.

(20)

The application of a discrete version of the DP
method to solve the above problem requires its discretiza-
tion in time, i.e. presenting it in the form of the equations
(5)–(7):

x(k + 1) = x(k) + u(k)∆t,

k = 0, 1, . . . ,K − 1, K = 10/∆t + 1,
(21)

0 ≤ x(k) ≤ 8, k = 0, 1, . . . ,K, x(0) = 8,

−2 ≤ u(k) ≤ 2, k = 0, 1, . . . ,K − 1,
(22)

min : J =
K−1∑

0

[
x2(k) + u2(k)

]
∆t + 2.5

[
x(K)− 2

]2
.

(23)

Furthermore, assuming the increments of∆x and ∆u,
one should also discretize the variablesx(k) and u(k),
obtaining N and M discrete levels, respectively, for
each of these variables, where

N = (8/∆x) + 1, M = (4/∆u) + 1. (24)

In order to solve such a discretized problem, we can
directly apply the parallel algorithms.
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S(N,P)
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M=80, K=50,
P=16,
P - number of processors.

Ideal speedup
Linear chain, communication: optimal
Linear chain, communication: via line
Ring, communication: via line - 1 direction
Square, communication: via line
Square, communication: full exchange
Square, communication: master-slave

.

Fig. 6. Parallel state algorithm (PSA).

In Fig. 6 the results obtained by means of parallel
implementation of the PSA withP = 16 transputers
are presented. This figure shows the values of a com-
puting speedup factor as the function ofN , where N
denotes the number of discrete values of the state vari-
able x (for constant values ofM = 80 and K = 50),
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since for the PSA the value ofN determines the number
of tasks allocated to particular processors. The plots are
given for all the configurations and ways of communica-
tion discussed above. As can be seen, the best results are
achieved for the linear chain structure and data exchange,
determined above by the notion of optimal communica-
tion. The results obtained for the master-slave communi-
cation are also presented. However, this manner of com-
putations appeared comparatively the least effective for
transputer systems. In general, one should emphasize—
which is very promising at the same time—that the values
of the computing speedup obtained for the best variants of
the parallel algorithms achieve a high level for 16 proces-
sors, reaching the value of 15.5.
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Fig. 7. Parallel control algorithm (PCA).

In Fig. 7 the results obtained by means of a paral-
lel implementation of the PCA with the same number of
P = 16 transputers are presented. This figure shows the
values of the computing speedup factor as a function of
M , where M denotes the number of discrete values of
the control variableu (for constant values ofN = 80
and K = 50), since for the PCA the value ofM de-
termines the number of tasks allocated to particular pro-
cessors. These diagrams concern the presented configu-
rations and ways of communication, whereas in the PCA
the search for the optimal values of̂u and Î is imple-
mented together with the exchange of data. The best re-
sults are obtained here, similarly to the case of the PSA,
for the linear chain structure. The diagrams provided with
the comment “minimization via line” correspond to the
discussed implementation of the PCA method for direct
communication. On the other hand, some comment is re-
quired by the diagram denoted by “binary minimization”.
In this method, the choice of the best solution from among
those obtained by particular processors is implemented by
executing transmission tasks and comparing the local so-
lutions between the determined pairs of processors. At the
same time, many such tasks can be executed at a given mo-

ment. It is assumed that each of the processors, after per-
forming computation tasks allocated to it at a given stage
of the algorithm, will send the local values of̂u∗ and Î∗

as found by itself (each time computing and choosing a
better solution by the processor receiving data), in turn, to
the first, second, fourth, eighth, sixteenth, etc. processor
in the chain (i.e. processorPi will send data to proces-
sors Pi+1, Pi+2, Pi+4, Pi+8, etc.). A complete imple-
mentation of such a manner of communication requires
a programmed closure of the chain structure into a ring
one. As a result of exchange, afterl = log2 P cycles
(rounded up ifP is not an integer power of 2) each of the
processors will have the optimal values ofû and Î. This
algorithm requires ensuring the possibility of communica-
tion between any pair of the system elements, which was
achieved by using the virtual channel router.

The values of the computing speedup obtained for
such a manner of communication are not much worse
than those achieved for the linear chain structure with
direct communication. In general, the results obtained
for the PCA are clearly worse than those achieved with
the application of the PSA (the values of the computing
speedup for the PCA method achieved the level of 14.6
with 16 processors, which is not a bad result). This gener-
ally results from the fact that in the PCA method, together
with data exchange, the algorithm of choosing the best so-
lution is implemented.
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Fig. 8. Comparison of parallel DP algorithms.

In Fig. 8, for some versions of the algorithms dis-
cussed above, the relations of the computing speedup fac-
tor as a function of the number of employed transput-
ers for constant values ofN = 200, M = 200 and
K = 100 are presented. At the same time, a much
higher number of transputers than before is used, namely,
P = 5, 10, 15, 20, . . . , 50. In much the same way as
before, the PSA turned out to be comparatively better (the
computing speedup withP = 50 processors achieved the
value of S = 47). The parallel SIDP algorithm approxi-
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mates the PCA in respect of the achieved speedup. Some
non-uniformity in diagrams (“steps”) results from the fact
that it is not possible to obtain a uniform distribution of
tasks for every number of processors used in computa-
tions.

As can be seen from the presented results for both the
PSA and PCA, the best outcomes in terms of the achiev-
able real computing speedup are obtained when the algo-
rithms are implemented in the system of a linear chain
structure, with the information interchange constrained
to data transmission only between the system elements
which have a direct connection. Hence structures of this
type and communication are adopted as fundamental ones
in the further analysis associated with more detailed com-
putations concerning the investigation of the efficiency of
the parallel implementation of the DP method.

The investigations were concerned with the PSA, the
PCA, the parallel SIDP algorithm and the PSA with opti-
mized communication with respect to the amount of trans-
mitted data. The results are presented in Figs. 9–14, with
Figs. 9–11 concerning the PSA and PCA and Figs. 12–14
referring to the SIDP algorithm. The PSA with optimal
communication is denoted by PSA-O in the figures. These
figures represent the influence of the number of proces-
sors used for computations upon the computing speedup
for different values of parametersN , M and K deter-
mined by the quantities of the adopted digitizing steps for
the state variable∆x, the control variable∆u and the
stage variable (time one)∆t.

The alterations to the quantitiesN and M are of
essential importance for both the PSA and PCA. In the
case of the PSA, the change inM is associated with al-
teration to the number of computations (time consump-
tion) performed by particular processors when preserv-
ing unchanged, in this case, communication requirements
associated with the value ofN in this method. On the
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Fig. 9. The PSA and PCA algorithms:S = S(P ),
M = 100, K = 100, N = 100, 200.
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Fig. 10. The PSA and PCA algorithms:S = S(P ),
N = 100, K = 100, M = 100, 200.
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Fig. 11. The PSA and PCA algorithms:S = S(P ),
N = 100, M = 100, K = 100, 200.
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Fig. 12. The parallel SIDP algorithm and the PSA
with optimal communication (PSA-O):S =
S(P ), M = 100, K = 100, N = 100, 200.
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Fig. 13. The parallel SIDP algorithm and the PSA
with optimal communication (PSA-O):S =
S(P ), N = 100, K = 100, M = 100, 200.
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Fig. 14. The parallel SIDP algorithm and the PSA
with optimal communication (PSA-O):S =
S(P ), N = 100, M = 100, K = 100, 200.

other hand, the change inN brings about a change in the
number of computations implemented by particular pro-
cessors, together with a change (having the same direc-
tion) in communication requirements. In the case of the
PCA, together with data exchange, the choice of the best
solution is implemented. This data exchange can be im-
plemented in two ways depending on its place in the algo-
rithm, namely, each time after executing the computations
at given discrete point in the setΩx(k), or collectively af-
ter computing at all the discrete points of the setΩx at
a given stagek. In principle, these variants are identi-
cal with respect to the volume of exchanged data. They
differ, however, in the number of exchange cycles occur-
ring at every stage. If in the first variant, at every stage,
one should performN exchange cycles, whereas in the
second variant only one cycle, then the second method is

applied to computations as being more effective. The es-
sential difference between the PSA and the PCA consists
in determining the task distribution. In the case of the PSA
method, this distribution takes place on the highest level
of the algorithm (a larger granulation of the local tasks),
whereas in the case of the PCA method—on a lower level
(a smaller granulation of the local tasks).

As a supplement to the analyzed results, some addi-
tional explanations can be provided. In order to concen-
trate on the configuration and communication problems,
the exemplary computations presented in this paper con-
cern only a one-dimensional optimization problem in both
state and control variables. However, in general, this does
not restrict the analysis since, as results from both the the-
oretical reasons and previous investigations, the efficiency
of parallel DP algorithms generally depends on the values
of N , M (and P ), while the dimensions of vectorsx
and u for which those values were determined are not so
much significant (Sadecki, 1987). As can be seen from
the presented diagrams, the influence of the values ofK,
N , M or P upon the computational speedup factor is
very significant and, at the same time, it depends on the
version of the adopted parallel algorithm. For example,
the effect of the value ofK on the computing speedup
of the parallel PSA and PCA algorithms is negligible in
practice, but it is very significant for the parallel SIDP al-
gorithm and the PSA algorithm with optimal communi-
cation (Sadecki, 1987). On the other hand, the effect of
the value ofM on the computing speedup of the parallel
SIDP and the PSA with optimal communication is neg-
ligible, but it is very significant for the parallel PSA and
PCA algorithms. In general, the best results were obtained
for the most complicated algorithm as regards the organi-
zation of interprocessor communication, namely the PSA
with optimal communication. Next there are the STN and
SIDP algorithms. The worst results were obtained for the
PCA; this generally results from the fact that for that al-
gorithm, the data exchange is implemented together with
the choice of the best solution.

The above single-dimensional results have been con-
firmed in the analysis made for more complex examples,
involving multidimensional systems in both state and con-
trol variables (Sadecki, 2002).

A natural supplement to the discussed results are
Figs. 15–17, in which the values of time for parallely
solving the task from the example on the multitransputer
SNODE system considered are presented for the PSA and
PCA methods (with different values ofK, N , M and
P ). These results, taken in conjunction with those pre-
sented in Figs. 9–14, give a whole picture of computa-
tional requirements for the parallel algorithms under con-
sideration.
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Fig. 15. Computation time t[s] for the PSA: t =
t(N), t = t(M), t = t(K), P = 50.
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Fig. 16. Computation timet[s] for the PCA: t =
t(N), t = t(M), t = t(K), P = 50.
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Fig. 17. Computation timet[s] for the PSA and the PCA:t =
t(P ), N = 100, 200, M = 100, 200, K = 100.

5. Conclusions

This paper is concerned with the investigation of the pos-
sibilities of real implementations of a selected group of

parallel dynamic programming algorithms. Some exam-
ples of parallel implementations of these algorithms in the
multitransputer SNODE 1000 system of different config-
urations of connections between its elements as well as
many different problems arising in computations of this
type are presented. It is shown that both the proper choice
of the system structure and the way of organizing inter-
processor communication can considerably affect the ef-
ficiency of parallel computations and consequently the
computing speedup factor. In principle, the obtained re-
sults point out very serious possibilities of improving the
efficiency of implementation of the DP method through its
parallelization. This also demonstrates the suitability of
this method for parallelizing. In many cases, the obtained
values of the computing speedup factor are not consider-
ably different from the value ofS(P ) = P , theoretically
the best one to be obtained. The discussed models of par-
allel computations can be easily applied to other optimiza-
tion methods and algorithms, and to other types of numer-
ical algorithms, since in parallel implementations many
of these algorithms consist of cycles of computations and
data exchange. At the same time, the exchange often con-
sists of communication tasks, aiming at creating complete
copies of certain sets of data allocated in parallel by the
other processors present in the system.
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