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Computing, in its usual sense, is centered on manipulation of numbers and symbols. In contrast, computing with words,
or CW for short, is a methodology in which the objects of computation are words and propositions drawn from a natural
language, e.g.,small, large, far, heavy, not very likely, the price of gas is low and declining, Berkeley is near San Francisco,
it is very unlikely that there will be a significant increase in the price of oil in the near future, etc. Computing with
words is inspired by the remarkable human capability to perform a wide variety of physical and mental tasks without any
measurements and any computations. Familiar examples of such tasks are parking a car, driving in heavy traffic, playing
golf, riding a bicycle, understanding speech and summarizing a story. Underlying this remarkable capability is the brain’s
crucial ability to manipulate perceptions – perceptions of distance, size, weight, color, speed, time, direction, force, number,
truth, likelihood and other characteristics of physical and mental objects. Manipulation of perceptions plays a key role in
human recognition, decision and execution processes. As a methodology, computing with words provides a foundation for a
computational theory of perceptions – a theory which may have an important bearing on how humans make – and machines
might make – perception-based rational decisions in an environment of imprecision, uncertainty and partial truth.

A basic difference between perceptions and measurements is that, in general, measurements are crisp whereas percep-
tions are fuzzy. One of the fundamental aims of science has been and continues to be that of progressing from perceptions
to measurements. Pursuit of this aim has led to brilliant successes. We have sent men to the moon; we can build computers
that are capable of performing billions of computations per second; we have constructed telescopes that can explore the far
reaches of the universe; and we can date the age of rocks that are millions of years old. But alongside the brilliant successes
stand conspicuous underachievements and outright failures. We cannot build robots which can move with the agility of
animals or humans; we cannot automate driving in heavy traffic; we cannot translate from one language to another at the
level of a human interpreter; we cannot create programs which can summarize non-trivial stories; our ability to model the
behavior of economic systems leaves much to be desired; and we cannot build machines that can compete with children in
the performance of a wide variety of physical and cognitive tasks.

It may be argued that underlying the underachievements and failures is the unavailability of a methodology for rea-
soning and computing with perceptions rather than measurements. An outline of such a methodology – referred to as a
computational theory of perceptions – is presented in this paper. The computational theory of perceptions, or CTP for short,
is based on the methodology of computing with words (CW). In CTP, words play the role of labels of perceptions and,
more generally, perceptions are expressed as propositions in a natural language. CW-based techniques are employed to
translate propositions expressed in a natural language into what is called the Generalized Constraint Language (GCL). In
this language, the meaning of a proposition is expressed as a generalized constraint,X isr R, whereX is the constrained
variable,R is the constraining relation and isr is a variable copula in whichr is a variable whose value defines the way in
which R constrainsX. Among the basic types of constraints are: possibilistic, veristic, probabilistic, random set, Pawlak
set, fuzzy graph and usuality. The wide variety of constraints in GCL makes GCL a much more expressive language than
the language of predicate logic.

In CW, the initial and terminal data sets, IDS and TDS, are assumed to consist of propositions expressed in a natural
language. These propositions are translated, respectively, into antecedent and consequent constraints. Consequent con-
straints are derived from antecedent constraints through the use of rules of constraint propagation. The principal constraint
propagation rule is the generalized extension principle. The derived constraints are retranslated into a natural language, yiel-
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ding the terminal data set (TDS). The rules of constraint propagation in CW coincide with the rules of inference in fuzzy
logic. A basic problem in CW is that of explicitation ofX, R and r in a generalized constraint,X isr R, which represents
the meaning of a proposition,p, in a natural language.

There are two major imperatives for computing with words. First, computing with words is a necessity when the
available information is too imprecise to justify the use of numbers; and second, when there is a tolerance for imprecision
which can be exploited to achieve tractability, robustness, low solution cost and better rapport with reality. Exploitation of
the tolerance for imprecision is an issue of central importance in CW and CTP. At this juncture, the computational theory of
perceptions – which is based on CW – is in its initial stages of development. In time, it may come to play an important role
in the conception, design and utilization of information/intelligent systems. The role model for CW and CTP is the human
mind.

1. Introduction

In the fifties, and especially late fifties, circuit theory was
at the height of importance and visibility. It played a piv-
otal role in the conception and design of electronic circuits
and was enriched by basic contributions of Darlington,
Bode, McMillan, Guillemin, Carlin, Youla, Kuh, Desoer,
Sandberg and other pioneers.

However, what could be discerned at that time was
that circuit theory was evolving into a more general theory
– system theory – a theory in which the physical identity
of the elements of a system is subordinated to a mathemat-
ical characterication of their input/output relations. This
evolution was a step in the direction of greater generality
and, like most generalizations, it was driven by a quest for
models which make it possible to reduce the distance be-
tween an object that is modeled – the modelizand – and its
model in a specified class of systems.

In a paper published in 1961 entitled “From Cir-
cuit Theory to System Theory,” (Zadeh, 1961) I discussed
the evolution of circuit theory into system theory and ob-
served that the high effectiveness of system theory in deal-
ing with mechanistic systems stood in sharp contrast to
its low effectiveness in the realm of humanistic systems
– systems exemplified by economic systems, biological
systems, social systems, political systems and, more gen-
erally, manmachine systems of various types. In more spe-
cific terms, I wrote:

There is a fairly wide gap between what might
be regarded as “animate” system theorists and
‘inanimate’ system theorists at the present time,
and it is not at all certain that this gap will
be narrowed, much less closed, in the near fu-
ture. There are some who feel that this gap
reflects the fundamental inadequacy of con-
ventional mathematics – the mathematics of
precisely-defined points, functions, sets, proba-
bility measures, etc. – for coping with the analy-
sis of biological systems, and that to deal effec-
tively with such systems, which are generally

orders of magnitude more complex than man-
made systems, we need a radically different
kind of mathematics, the mathematics of fuzzy
or cloudy quantities which are not describable
in terms of probability distributions. Indeed, the
need for such mathematicsis becoming increas-
ingly apparent even in the realm of inanimate
systems, for in most practical cases thea priori
data as well as the criteria by which the perfor-
mance of a man-made system are judged are far
from being precisely specified or having accu-
ratelyknown probability distributions.

It was this observation that motivated my develop-
ment of the theory of fuzzy sets, starting with the 1965
paper “Fuzzy Sets” (Zadeh, 1965), which was published
in Information and Control.

Subsequently, in a paper published in 1973, “Outline
of a New Approach to the Analysis of Complex Systems
and Decision Processes,” (Zadeh, 1973) I introduced the
concept of a linguistic variable, that is, a variable whose
values are words rather than numbers. The concept of a
linguistic variable has played and is continuing to play a
pivotal role in the development of fuzzy logic and its ap-
plications.

The initial reception of the concept of a linguistic
variable was far from positive, largely because my advo-
cacy of the use of words in systems and decision analysis
clashed with the deep-seated tradition of respect for num-
bers and disrespect for words. The essence of this tradition
was succinctly stated in 1883 by Lord Kelvin:

In physical science the first essential step in the
direction of learning any subject is to find prin-
ciples of numerical reckoning and practicable
methods for measuring some quality connected
with it. I often say that when you can mea-
sure what you are speaking about and express
it in numbers, you know something about it; but
when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a
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meagre and unsatisfactory kind: it may be the
beginning of knowledge but you have scarcely,
in your thoughts, advanced to the state of sci-
ence, whatever the matter may be.

The depth of scientific tradition of respect for num-
bers and derision for words was reflected in the intensity
of hostile reaction to my ideas by some of the prominent
members of the scientific elite. In commenting on my first
exposition of the concept of a linguistic variable in 1972,
Rudolph Kalman had this to say:

I would like to comment briefly on Professor
Zadeh’s presentation. His proposals could be
severely, ferociously, even brutally criticized
from a technical point of view. This would
be out of place here. But a blunt question re-
mains: Is Professor Zadeh presenting impor-
tant ideas or is he indulging in wishful think-
ing? No doubt Professor Zadeh’s enthusiasm
for fuzziness has been reinforced by the pre-
vailing climate in the U.S. one of unprecedented
permissiveness. ‘Fuzzification’ is a kind of sci-
entific permissiveness; it tends to result in so-
cially appealing slogans unaccompanied by the
discipline of hard scientific work and patient ob-
servation.

In a similar vein, my esteemed colleague Professor
William Kahan – a man with a brilliant mind – offered
this assessment in 1975:

“Fuzzy theory is wrong, wrong, and perni-
cious.” says William Kahan, a professor
of computer sciences and mathematics at Cal
whose Evans Hall office is a few doors from
Zadeh’s. “I can not think of any problem that
could not be solved better by ordinary logic.”
What Zadeh is saying is the same sort of things
‘Technology got us into this mess and now it
can’t get us out.’ Well, technology did not get
us into this mess. Greed and weakness and am-
bivalence got us into this mess. What we need
is more logical thinking, not less. The danger of
fuzzy theory is that it will encourage the sort of
imprecise thinking that has brought us so much
trouble.”

What Lord Kelvin, Rudolph Kalman, William Ka-
han and many other brilliant minds did not appreciate is
the fundamental importance of the remarkable human ca-
pability to perform a wide variety of physical and mental
tasks without any measurements and any computations.
Familiar examples of such tasks are parking a car; driving
in heavy traffic; playing golf; understanding speech and
summarizing a story.

Underlying this remarkable ability is the brain’s cru-
cial ability to manipulate perceptions – perceptions of
size, distance, weight, speed, time, direction, smell, color,
shape, force, likelihood, truth and intent, among others. A
fundamental difference between measurements and per-
ceptions is that, in general, measurements are crisp num-
bers whereas perceptions are fuzzy numbers or, more
generally, fuzzy granules, that is, clumps of objects in
which the transition from membership to nonmembership
is gradual rather than abrupt.

The fuzziness of perceptions reflects finite ability of
sensory organs and the brain to resolve detail and store
information. A concomitant of fuzziness of perceptions is
the preponderant partiality of human concepts in the sense
that the validity of most human concepts is a matter of
degree. For example, we have partial knowledge, partial
understanding, partial certainty, partial belief and accept
partial solutions, partial truth and partial causality. Fur-
thermore, most human concepts have a granular structure
and are context-dependent.

Fig. 1. Informal and formal definitions of a granule.

In essence, a granule is a clump of physical or men-
tal objects (points) drawn together by indistinguishability,
similarity, proximity or functionality (Fig. 1). A granule
may be crisp or fuzzy, depending on whether its bound-
aries are or are not sharply defined. For example, age may
be granulated crisply into years and granulated fuzzily
into fuzzy intervals labeled very young, young, middle-
aged, old and very old (Fig. 2). A partial taxonomy of
granulation is shown in Figs. 3(a) and 3(b).

Fig. 2. Examples of crisp and fuzzy granulation.

In a very broad sense, granulation involves a parti-
tioning of whole into parts. Modes of information gran-
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(a)

(b)

Fig. 3. (a) Partial taxonomy of granulation;
(b) Principal types of granules.

ulation (IG) in which granules are crisp play important
roles in a wide variety of methods, approaches and tech-
niques. Among them are: interval analysis, quantiza-
tion, chunking, rough set theory, diakoptics, divide and
conquer, Dempster-Shafer theory, machine learning from
examples, qualitative process theory, decision trees, se-
mantic networks, analog-to-digital conversion, constraint
programming, image segmentation, cluster analysis and
many others.

Important though it is, crisp IG has a major blind
spot. More specifically, it fails to reflect the fact that most
human perceptions are fuzzy rather than crisp. For ex-
ample, when we mentally granulate the human body into
fuzzy granules labeled head, neck, chest, arms, legs, etc.,
the length of neck is a fuzzy attribute whose value is a
fuzzy number. Fuzziness of granules, their attributes and
their values is characteristic of ways in which human con-
cepts are formed, organized and manipulated. In effect,
fuzzy information granulation (fuzzy IG) may be viewed
as a human way of employing data compression for rea-
soning and, more particularly, making rational decisions
in an environment of imprecision, uncertainty and partial
truth.

The tradition of pursuit of crispness and precision in
scientific theories can be credited with brilliant successes.
We have sent men to the moon; we can build computers
that are capable of performing billions of computations

per second; we have constructed telescopes that can ex-
plore the far reaches of the universe; and we can date the
age of rocks that are millions of years old. But alongside
the brilliant successes stand conspicuous underachieve-
ments and outright failures. We cannot build robots which
can move with the agility of animals or humans; we can-
not automate driving in heavy traffic; we cannot translate
from one language to another at the level of a human inter-
preter; we cannot create programs which can summarize
non-trivial stories; our ability to model the behavior of
economic systems leaves much to be desired; and we can-
not build machines that can compete with children in the
performance of a wide variety of physical and cognitive
tasks.

What is the explanation for the disparity between the
successes and failures? What can be done to advance the
frontiers of science and technology beyond where they are
today, especially in the realms of machine intelligence and
automation of decision processes? In my view, the fail-
ures are conspicuous in those areas in which the objects
of manipulation are, in the main, perceptions rather than
measurements. Thus, what we need are ways of dealing
with perceptions, in addition to the many tools which we
have for dealing with measurements. In essence, it is this
need that motivated the development of the methodology
of computing with words (CW) – a methodology in which
words play the role of labels of perceptions.

Fig. 4. Conceptual structure of compu-
tational theory of perceptions.

Computing with words provides a methodology for
what may be called acomputational theory of percep-
tions(CTP) (Fig. 4). However, the potential impact of the
methodology of computing with words is much broader.
Basically, there are four principal rationales for the use of
CW:

1) The don’t know rationale. In this case, the val-
ues of variables and/or parameters are not known
with sufficient precision to justify the use of conven-
tional methods of numerical computing. An example
is decision-making with poorly defined probabilities
and utilities.
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2) The don’t need rationale. In this case, there is a
tolerance for imprecision which can be exploited to
achieve tractability, robustness, low solution cost and
better rapport with reality. An example is the prob-
lem of parking a car.

3) The can’t solve rationale. In this case, the problem
cannot be solved through the use of numerical com-
puting. An example is the problem of automation of
driving in city traffic.

4) The can’t define rationale. In this case, a concept that
we wish to define is too complex to admit of defini-
tion in terms of a set of numerical criteria. A case in
point is concept of causality. Causality is an instance
of what may be called an amorphic concept.

The basic idea underlying the relationship between
CW and CTP is conceptually simple. More specifically,
in CTP perceptions and queries are expressed as proposi-
tions in a natural language. Then, propositions and queries
are processed by CW-based methods to yield answers to
queries. Simple examples of linguistic characterization of
perceptions drawn from everyday experiences are:

Robert is highly intelligent
Carol is very attractive
Hans loves wine
Overeating causes obesity
Most Swedes are tall
Berkeley is more lively than Palo Alto
It is likely to rain tomorrow
It is very unlikely that there will be a significant

increase in the price of oil in the near future

Examples of correct conclusions drawn from percep-
tions through the use of CW-based methods are shown in
Fig. 5(a). Examples of incorrect conclusions are shown in
Fig. 5(b).

Perceptions have long been an object of study in psy-
chology. However, the idea of linking perceptions to com-
puting with words is in a different spirit. An interesting
system-theoretic approach to perceptions is described in
a recent work of R. Vallée (1995). A logic of percep-
tions has been described by H. Rasiowa (1989). These
approaches are not related to the approach described in
our paper.

An important point that should be noted is that clas-
sical logical systems such as propositional logic, predi-
cal logic and modal logic, as well as AI-based techniques
for natural language processing and knowledge represen-
tation, are concerned in a fundamental way with proposi-
tions expressed in a natural language. The main difference
between such approaches and CW is that the methodol-
ogy of CW – which is based on fuzzy logic – provides a
much more expressive language for knowledge represen-
tation and much more versatile machinery for reasoning
and computation.

(a)

(b)

Fig. 5. (a) Examples of reasoning with perceptions;
(b) Examples of incorrect reasoning.

In the final analysis, the role model for computing
with words is the human mind and its remarkable ability
to manipulate both measurements and perceptions. What
should be stressed, however, is that although words are
less precise than numbers, the methodology of computing
with words rests on a mathematical foundation. An expo-
sition of the basic concepts and techniques of computing
with words is presented in the following sections. The
linkage of CW and CTP is discussed very briefly because
the computational theory of perceptions is still in its early
stages of development.

2. What is CW?

In its traditional sense, computing involves for the most
part manipulation of numbers and symbols. By con-
trast, humans employ mostly words in computing and rea-
soning, arriving at conclusions expressed as words from
premises expressed in a natural language or having the
form of mental perceptions. As used by humans, words
have fuzzy denotations. The same applies to the role
played by words in CW.

The concept of CW is rooted in several papers start-
ing with my 1973 paper “Outline of a New Approach
to the Analysis of Complex Systems and Decision Pro-
cesses,” (Zadeh, 1973) in which the concepts of a linguis-
tic variable and granulation were introduced. The con-
cepts of a fuzzy constraint and fuzzy constraint propaga-
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tion were introduced in “Calculus of Fuzzy Restrictions,”
(Zadeh, 1975a), and developed more fully in “A Theory
of Approximate Reasoning,” (Zadeh, 1979b) and “Outline
of a Computational Approach to Meaning and Knowledge
Representation Based on a Concept of a Generalized As-
signment Statement,” (Zadeh, 1986). Application of fuzzy
logic to meaning representation and its role in testscore se-
mantics are discussed in “PRUF – A Meaning Represen-
tation Language for Natural Languages,” (Zadeh, 1978b),
and “Test-Score Semantics for Natural Languages and
MeaningRepresentation via PRUF,” (Zadeh, 1981). The
close relationship between CW and fuzzy information
granulation is discussed in “Toward a Theory of Fuzzy
Information Granulation and its Centrality in Human Rea-
soning and Fuzzy Logic (Zadeh, 1997).”

Although the foundations of computing with words
were laid some time ago, its evolution into a distinct
methodology in its own right reflects many advances in
our understanding of fuzzy logic and soft computing – ad-
vances which took place within the past few years. (See
References and Related Papers.) A key aspect of CW is
that it involves a fusion of natural languages and compu-
tation with fuzzy variables. It is this fusion that is likely
to result in an evolution of CW into a basic methodology
in its own right, with wide-ranging ramifications and ap-
plications.

We begin our exposition of CW with a few defini-
tions. It should be understood that the definitions are dis-
positional, that is, admit of exceptions.

As was stated earlier, a concept which plays a pivotal
role in CW is that of a granule. Typically, a granule is a
fuzzy set of points drawn together by similarity (Fig. 1).
A word may be atomic, as inyoung, or composite, as in
not very young(Fig. 6). Unless stated to the contrary, a
word will be assumed to be composite. The denotation of
a word may be a higher order predicate, as in Montague
grammar (Hobbs, 1978; Partee, 1976).

Fig. 6. Words as labels of fuzzy sets.

In CW, a granule,g, which is the denotation of a
word, w, is viewed as a fuzzy constraint on a variable.
A pivotal role in CW is played by fuzzy constraint prop-
agation from premises to conclusions. It should be noted
that, as a basic technique, constraint propagation plays im-
portant roles in many methodologies, especially in math-
ematical programming, constraint programming and logic
programming. (See References and Related Papers.)

As a simple illustration, consider the proposition
Mary is young, which may be a linguistic characteriza-
tion of a perception. In this case, young is the label of a
granule young. (Note that for simplicity the same symbol
is used both for a word and its denotation.) The fuzzy set
youngplays the role of a fuzzy constraint on the age of
Mary (Fig. 6).

As a further example consider the propositions

p1 = Carol lives near Mary

and

p2 = Mary lives near Pat.

In this case, the wordslives nearin p1 and p2 play
the role of fuzzy constraints on the distances between the
residences of Carol and Mary, and Mary and Pat, respec-
tively. If the query is: How far is Carol from Pat?, an
answer yielded by fuzzy constraint propagation might be
expressed asp3, where

p3 = Carol lives not far from Pat.

More about fuzzy constraint propagation will be said
at a later point.

A basic assumption in CW is that information is con-
veyed by constraining the values of variables. Further-
more, information is assumed to consist of a collection of
propositions expressed in natural or synthetic language.
Typically, such propositions play the role of linguistic
characterization of perceptions.

A basic generic problem in CW is the following.

We are given a collection of propositions expressed
in a natural language which constitute theinitial data set,
or IDS for short.

From the initial data set we wish to infer an answer
to a query expressed in a natural language. The answer,
also expressed in a natural language, is referred to as the
terminal data set, or TDS for short. The problem is to
derive TDS from IDS (Fig. 7).

A few problems will serve to illustrate these con-
cepts. At this juncture, the problems will be formulated
by not solved.
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Fig. 7. Computing with words as a transformation of an initial
data set (IDS) into a terminal data set (TDS).

1) Assume that a functionf , f : U → V , X ∈ U ,
Y ∈ V , is described in words by the fuzzy if-then rules

f : if X is smallthenY is small

if X is mediumthenY is large

if X is large thenY is small

What this implies is thatf is approximated to by a
fuzzy graphf∗ (Fig. 8), where

f∗ = small × small+medium× large+ large × small

In f∗, + and× denote respectively, the disjunction
and cartesian product. An expression of the formA×B,
whereA and B are words, will be referred to as aCarte-
sian product, Cartesian granule. In this sense, a fuzzy
graph may be viewed as a disjunction of cartesian gran-
ules. In essence, a fuzzy graph serves as an approximation
to a function or a relation (Zadeh, 1974; 1996a). Equiva-
lently, it may be viewed as a linguistic characterization of
a perception off (Fig. 9).

Fig. 8. Fuzzy graph of a function.

In the example under consideration, the IDS consists
of the fuzzy rule-setf . The query is: What is the maxi-
mum value off (Fig. 10)? More broadly, the problem is:
How can one compute an attribute of a function,f , e.g.,
its maximum value or its area or its roots if is described
in words as a collection of fuzzy if-then rules? Determi-
nation of the maximum value will be discussed in greater
detail at a later point.

Fig. 9. A fuzzy graph of a function represented by a rule-set.

Fig. 10. Fuzzy graph of a function defined by a fuzzy rule-set.

2) A box contains ten balls of various sizes of which
several are large and a few are small. What is the probabil-
ity that a ball drawn at random is neither large nor small?
In this case, the IDS is a verbal description of the contents
of the box; the TDS is the desired probability.

3) A less simple example of computing with words
is the following.

Let X and Y be independent random variables tak-
ing values in a finite setV = {v1, . . . , vn} with proba-
bilities p1, . . . , pn and q1, . . . , qn, respectively. For sim-
plicity of notation, the same symbols will be used to de-
note X and Y and their generic values, withp and q
denoting the probabilities ofX and Y , respectively.

Assume that the probability distributions ofX and
Y are described in words through the fuzzy if-then rules
(Fig. 11):

P : if X is smallthenp is small

if X is mediumthenp is large

if X is large thenp is small

and

Q : if Y is smallthenq is large

if Y is mediumthenq is small

if Y is large thenq is large

where the granulessmall, mediumand large are values of
linguistic variablesX andY in their respective universes
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of discourse. In the example under consideration, these
rule-sets constitute the IDS. Note thatsmall in P need
not have the same meaning assmall in Q, and likewise
for mediumandlarge.

Fig. 11. A fuzzy graph representation of a
granulated probability distribution.

The query is: How can we describe in words the joint
probability distribution ofX and Y ? This probability
distribution is the TDS.

For convenience, the probability distributions ofX
and Y may be represented as fuzzy graphs:

P : small× small+ medium× large + large× small

Q : small× large+ medium× small + large× large

with the understanding that the underlying numerical
probabilities must add up to unity.

Since X and Y are independent random variables,
their joint probability distribution(P,Q) is the product
of P and Q. In words, the product may be expressed as
(Zadeh, 1996a):

(P,Q) : small× small×(small∗ large)

+ small× medium×(small∗ small)

+ small× large×(small∗ large)

+ · · ·+ large× large×(small∗ large),

where ∗ is the arithmetic product in fuzzy arithmetic
(Kaufmann and Gupta, 1985). In this example, what we
have done, in effect, amounts to a derivation of a linguis-
tic characterization of the joint probability distribution of
X and Y starting with linguistic characterizations of the
probability distribution ofX and the probability distribu-
tion of Y .

A few comments are in order. In linguistic char-
acterizations of variables and their dependencies, words

serve as values of variables and play the role of fuzzy
constraints. In this perspective, the use of words may be
viewed as a form of granulation, which in turn may be
regarded as a form of fuzzy quantization.

Granulation plays a key role in human cognition. For
humans, it serves as a way of achieving data compression.
This is one of the pivotal advantages accruing through the
use of words in human, machine and man-machine com-
munication.

The point of departure in CW is the premise that the
meaning of a proposition,p, in a natural language may be
represented as an implicit constraint on an implicit vari-
able. Such a representation is referred to as acanonical
form of p, denoted asCF(p) (Fig. 12). Thus, a canonical
form serves to make explicit the implicit constraint which
resides inp. The concept of a canonical form is described
in greater detail in the following section.

Fig. 12. Canonical form of a proposition.

Fig. 13. Conceptual structure of computing with words.

As a first step in the derivation of TDS from IDS,
propositions in IDS are translated into their canoni-
cal forms, which collectively representantecedentcon-
straints. Through the use of rules for constraint propa-
gation, antecedent constraints are transformed intocon-
sequentconstraints. Finally, consequent constraints are
translated into a natural language through the use oflin-
guistic approximation(Freuder and Snow, 1990; Mam-
dani and Gaines, 1981), yielding the terminal data set
TDS. This process is schematized in Fig. 13.

In essence, the rationale for computing with words
rests on two major imperatives. First, computing with
words is a necessity when the available information is too
imprecise to justify the use of numbers. And second, when
there is a tolerance for imprecision which can be exploited
to achieve tractability, robustness, low solution cost and
better rapport with reality.

In computing with words, there are two core issues
that arise. First is the issue of representation of fuzzy con-
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straints. More specifically, the question is: How can the
fuzzy constraints which are implicit in propositions ex-
pressed in a natural language be made explicit. And sec-
ond is the issue of fuzzy constraint propagation, that is,
the question of how can fuzzy constraints in premises, i.e.,
antecedent constraints, be propagated to conclusions, i.e.,
consequent constraints.

These are the issues which are addressed in the fol-
lowing.

3. Representation of Fuzzy Constraints,
Canonical Forms and Generalized
Constraints

Our approach to the representation of fuzzy constraints
is based on test-score semantics (Zadeh, 1981; 1982). In
outline, in this semantics, a proposition,p, in a natural
language is viewed as a network of fuzzy (elastic) con-
straints. Upon aggregation, the constraints which are em-
bodied inp result in an overall fuzzy constraint which can
be represented as an expression of the form

X is R

where R is a constraining fuzzy relation andX is the
constrained variable. The expression in question is the
canonical form ofp. Basically, the function of a canonical
form is to place in evidence the fuzzy constraint which is
implicit in p. This is represented schematically as

P → X is R

in which the arrow→ denotes explicitation. The variable
X may be vector-valued and/or conditioned.

In this perspective, the meaning ofp is defined by
two procedures. The first procedure acts on a so-called ex-
planatory database, ED, and returns the constrained vari-
able, X. The second procedure acts on ED and returns
the constraining relation,R.

An explanatory database is a collection of relations
in terms of which the meaning ofp is defined. The re-
lations are empty, that is, they consist of relation names,
relations attributes and attribute domains, with no entries
in the relations. When there are entries in ED, ED is said
to beinstantiatedand is denoted EDI. EDI may be viewed
as a description of a possible world in possible world se-
mantics (Cresswell, 1973), while ED defines a collection
of possible worlds, with each possible world in the col-
lection corresponding to a particular instantiation of ED
(Zadeh, 1982).

As a simple illustration, consider the proposition

p = Mary is not young.

Assume that the explanatory database is chosen to be

ED = POPULATION [Name; Age]+ YOUNG [Age;µ]

in which POPULATION is a relation with arguments
Name and Age; YOUNG is a relation with arguments Age
and µ; and + is the disjunction. In this case, the con-
strained variable is the age of Mary, which in terms of ED
may be expressed as

X = Age (Mary)= AgePOPULATION [Name= Mary].

This expression specifies the procedure which acts
on ED and returnsX. More specifically, in this proce-
dure, Name is instantiated to Mary and the resulting rela-
tion is projected on Age, yielding the age of Mary. The
constraining relation,R, is given by

R = (2YOUNG)′

which implies that the intensifiervery is interpreted as a
squaring operation, and the negationnot as the operation
of complementation (Zadeh, 1972).

Equivalently,R may be expressed as

R = YOUNG [Age;1− µ2].

As a further example, consider the proposition

p = Carol lives in a small city near San Francisco

and assume that the explanatory database is:

ED = POPULATION [Name; Residence]

+ SMALL [City; µ] + NEAR [City1; City2;µ]

In this case,

X = Residence (Carol)

= ResidencePOPULATION [Name= Carol]

and

R = SMALL[City, µ]

∩City1 NEAR [City2= San_Francisco]

In R, the first constituent is the fuzzy set of small cities;
the second constituent is the fuzzy set of cities which are
near San Francisco; and∩ denotes the intersection of
these sets.

So far we have confined our attention to constraints
of the form

X is R.
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In fact, constraints can have a variety of forms. In
particular, a constraint – expressed as a canonical form –
may be conditional, that is, of the form

if X is R thenY is S

which may also be written as

Y is S if X is R.

The constraints in question will be referred to asbasic.

For purposes of meaning representation, the richness
of natural languages necessitates a wide variety of con-
straints in relation to which the basic constraints form
an important though special class. The so-called gener-
alized constraints (Zadeh, 1986) contain the basic con-
straints as a special case and are defined as follows. The
need for generalized constraints becomes obvious when
one attempts to represent the meaning of simple proposi-
tions such as

Robert loves women

John is very honest

checkout time is 11 am

slimness is attractive

in the language of standard logical systems.

A generalized constraint is represented as

X isr R,

where isr, pronounced “ezar”, is a variable copula which
defines the way in whichR constrainsX. More specif-
ically, the role of R in relation to X is defined by the
value of the discrete variabler. The values ofr and their
interpretations are defined below:

e : equal (abbreviated to=);

d : disjunctive (possibilistic) (abbreviated to blank);

ν : veristic;

p : probabilistic;

γ : probability value;

u : usuality;

rs : random set;

rfs : random fuzzy set;

fg : fuzzy graph;

ps : rough set (Pawlak set);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As an illustration, whenr = e, the constraint is an
equality constraint and is abbreviated to=. Whenr takes
the valued, the constraint isdisjunctive(possibilistic) and
isd abbreviated to is, leading to the expression

X is R

in which R is a fuzzy relation which constrainsX by
playing the role of the possibility distribution ofX. More
specifically, if X takes values in a universe of discourse,
U = {u}, then Poss{X = u} = µR(u), where µR is
the membership function ofR, and ΠX is the possibil-
ity distribution of X, that is, the fuzzy set of its possible
values (Zadeh, 1978a). In schematic form:

X is R

{
ΠX = R

Poss {X = u} = µR(u)

Similarly, when r takes the valueν, the constraint
is veristic. In the case,

X isv R

means that if the grade of membership ofu in R is µ,
then X = u has truth valueµ. For example, a canonical
form of the proposition

p = John is proficient in English, French and German

may be expressed as

Proficiency (John) isv (1|English+ 0.7|French

+ 0.6|German)

in which 1.0, 0.7 and 0.6 represent, respectively, the truth
values of the propositionsJohn is proficient in English,
John is proficient in French and John is proficient in Ger-
man. In a similar vein, the veristic constraint

Ethnicity (John) isv (0.5|German+ 0.25|French

+ 0.25|Italian)

represents the meaning of the propositionJohn is half
German, quarter French and quarter Italian.

When r = p, the constraint isprobabilistic. In this
case,

X ispR

means thatR is the probability distribution ofX. For
example

X ispN(m,σ2)

means thatX is normally distributed with meanm and
varianceσ2. Similarly,

X isp
(
0.2\a + 0.5\b + 0.3\c

)
means thatX is a random variable which takes the val-
ues, a, b and c with respective probabilities 0.2, 0.5
and 0.3.
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The constraint
X isuR

is an abbreviation for

usually(X is R)

which in turn means that

Prob{X is R} is usually.

In this expressionX is R is a fuzzy event andusuallyis
its fuzzy probability, that is, the possibility distribution of
its crisp probability.

The constraint

X isrsP

is a random set constraint. This constraint is a combina-
tion of probabilistic and possibilistic constraints. More
specifically, in a schematic form, it is expressed as

X ispP

(X, Y ) is Q

Y isrsR,

whereQ is a joint possibilitistic constraint onX and Y ,
and R is a random set. It is of interest to note that the
Dempster-Shafer theory of evidence (Shafer, 1976) is, in
essence, a theory of random set constraints.

Fig. 14. Representation of meaning in test-score semantics.

In computing with words, the starting point is a col-
lection of propositions which play the role of premises. In
many cases, the canonical forms of these propositions are
constraints of the basic, possibilistic type. In a more gen-
eral setting, the constraints are of the generalized type,
implying that explicitation of a proposition,p, may be
represented as

p → X isr R,

whereX isr R is the canonical form ofp (Fig. 14).

As in the case of basic constraints, the canonical
form of a proposition may be derived through the use of
testscore semantics. In this context, the depth ofp is,
roughly, a measure of the effort that is needed to explic-
itate p, that is, to translatep into its canonical form. In
this sense, the propositionX isr R is a surface constraint
(depth=zero), with the depth of explicitation increasing
in the downward direction (Fig. 15). Thus a proposition
such asMary is youngis shallow, whereasit is unlikely
that there will be a substantial increase in the price of oil
in the near future, is not.

Fig. 15. Depth of explicitation.

Once the propositions in the initial data set are ex-
pressed in their canonical forms, the groundwork is laid
for fuzzy constraint propagation. This is a basic part of
CW which is discussed in the following section.

4. Fuzzy Constraint Propagation and
the Rules of Inference in Fuzzy Logic

The rules governing fuzzy constraint propagation are, in
effect, the rules of inference in fuzzy logic. In addition
to these rules, it is helpful to have rules governing fuzzy
constraint modification. The latter rules will be discussed
at a later point in this section.

In a summarized form, the rules governing fuzzy
constraint propagation are the following (Zadeh, 1996a).
(A and B are fuzzy relations. Disjunction and conjunc-
tion are defined, respectively, as max and min, with the
understanding that, more generally, they could be defined
via t-norms ands-norms (Klir and Yuan, 1995; Pedrycz
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and Gomide, 1998). The antecedent and consequent con-
straints are separated by a horizontal line.)

Conjunctive Rule 1:

X is A

X is B

X is A ∩B

Conjunctive Rule 2:(X ∈ U, Y ∈ B, A ⊂ U,
B ⊂ V )

X is A

Y is B

(X, Y ) is A×B

Disjunctive Rule 1:

X is A

or

X is B

X is A ∪B

Disjunctive Rule 2:(A ⊂ U, B ⊂ V )

A is A

Y is B

(X, Y ) is A× V ∪ U ×B,

where A × V and U × B are cylindrical extensions of
A and B, respectively.

Conjunctive Rule for isv:

X isv A

X isv B

X isv A ∪B

Projective Rule:

(X, Y ) is A

Y is projV A,

where projV A = supu A.

Surjective Rule:

X is A

(X, Y ) is A× V

Derived Rules:

Compositional Rule:

X is A

(X, Y ) is B

Y is A ◦B,

whereA ◦B denotes the composition ofA and B.

Extension Principle(mapping rule) (Zadeh, 1965;
1975b):

X is A

f(X) is f(A),

where f : U → V , and f(A) is defined byµf(A)(ν) =
sup

u|ν=f(u)

µA(u).

Inverse Mapping Rule:

f(X) is A

X is f−1(A),

whereµf−1(A)(u) = µA(f(u)).

Generalized modus ponens:

X is A

if X is B thenY is C

Y is A ◦
(
(¬B)⊕ C

)
,

where the bounded sum¬B⊕C represents Lukasiewicz’s
definition of implication.

Generalized Extension Principle:

f(X) is A

q(X) is q
(
f−1(A)

)
,

whereµq(ν) = supu|ν=q(u) µA(f(u)).
The generalized extension principle plays a pivotal

role in fuzzy constraint propagation. However, what is
used most frequently in practical applications of fuzzy
logic is thebasic interpolative rule, which is a special
case of the compositional rule of inference applied to a
function which is defined by a fuzzy graph (Zadeh, 1974;
1996a). More specifically, iff is defined by a fuzzy rule
set

f : if X is Ai thenX is Bi, i = 1, . . . , n

or equivalently, by a fuzzy graph

f is
∑

i

Ai ×Bi
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and its argument,X, is defined by the antecedent con-
straint

X is A

then the consequent constraint onY may be expressed as

Y is
∑

i

mi ∧Bi,

wheremi is a matching coefficient,

mi = sup(Ai ∩A)

which serves as a measure of the degree to whichA
matchesAi.

Syllogistic Rule:(Zadeh, 1984)

Q1A’s areB’s

Q2(A andB)’s areC ’s

(Q1 ⊗Q2)A’s are(B andC)’s,

where Q1 and Q2 are fuzzy quantifiers;A, B and C
are fuzzy relations; andQ1 ⊗ Q2 is the product ofQ1

and Q2 in fuzzy arithmetic.

Constraint Modification Rules: (Zadeh, 1972;
1978b)

X is mA → X is f(A),

wherem is a modifier such asnot, very, more or less, and
f(A) defines the way in whichm modifies A. Specifi-
cally,

if m = not thenf(A) = A′ (complement)

if m = verythenf(A) = 2A (left square),

whereµ 2A(u) = (µA(u))2. This rule is a convention and
should not be constructed as a realistic approximation to
the way in which the modifiervery functions in a natural
language.

Probability Qualification Rule:(Zadeh, 1979b)

(X is A) is Λ → P is Λ,

where X is a random variable taking values inU with
probability densityp(u); Λ is a linguistic probability ex-
pressed in words likelikely, not very likely, etc.; andP is
the probability of the fuzzy eventX, expressed as

P =
∫

U

µA(u)p(u) du.

The primary purpose of this summary is to under-
score the coincidence of the principal rules governing
fuzzy constraint propagation with the principal rules of
inference in fuzzy logic. Of necessity, the summary is

not complete and there are many specialized rules which
are not included. Furthermore, most of the rules in the
summary apply to constraints which are of the basic, pos-
sibilistic type. Further development of the rules governing
fuzzy constraint propagation will require an extension of
the rules of inference to generalized constraints.

As was alluded to in the summary, the principal rule
governing constraint propagation is the generalized exten-
sion principle which in a schematic form may be repre-
sented as

f(X1, . . . , Xn) is A

q(X1, . . . , Xn) is q
(
f−1(A)

)
.

In this expression,X1, . . . , Xn are database variables;
the term above the line represents the constraint induced
by the IDS; and the term below the line is the TDS ex-
pressed as a constraint on the queryq(X1, . . . , Xn). In
the latter constraint,f−1(A) denotes the preimage of
the fuzzy relationA under the mappingf : U → V ,
whereA is a fuzzy subset ofV and U is the domain of
f(X1, . . . , Xn).

Expressed in terms of the membership functions of
A and q(f−1(A)), the generalized extension principle re-
duces the derivation of the TDS to the solution of the con-
strained maximization problem

µq(X1, . . . , Xn)(ν) = sup
(u1,...,un)

(
µA

(
f(u1, . . . , un)

))
in which u1, . . . , un are constrained by

ν = q(u1, . . . , un).

The generalized extension principle is simpler than
it appears. An illustration of its use is provided by the
following example.

The IDS is:

most Swedesaretall

The query is:What is the average height of Swedes?

The explanatory database consists of a population
of N Swedes, Name1, . . . ,NameN . The database
variables areh1, . . . , hN , where hi is the height of
Namei, and the grade of membership ofNamei in tall
is µtall(hi), i = 1, . . . , n.

The proportion of Swedes who are tall is given by the
sigma-count (Zadeh, 1978b)∑

Count (tall – Swedes / Swedes)=
1
N

∑
i

µtall(hi)

from which it follows that the constraint on the database
variables induced by the IDS is

1
N

∑
i

µtall(hi) is most.
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In terms of the database variablesh1, . . . , hN , the average
height of Swedes is given by

have =
1
N

∑
i

hi.

Since the IDS is a fuzzy proposition,have is a fuzzy
set whose determination reduces to the constrained maxi-
mization problem

µhave
(ν) = sup

h1,...,hN

(
µmost

( 1
N

∑
i

µtall(hi)
))

subject to the constraint

ν =
1
N

∑
i

hi.

It is possible that approximate solutions to problems of
this type might be obtainable through the use of neuro-
computing or evolutionary-computing-based methods.

As a further example, we will return to a problem
stated in an earlier section, namely, maximization of a
function, f , which is described in words by its fuzzy
graph,f∗ (Fig. 10). More specifically, consider the stan-
dard problem of maximization of an objective function in
decision analysis. Let us assume – as is frequently the
case in real-world problems – that the objective function,
f , is not well-defined and that what we know about can be
expressed as a fuzzy rule-set

f : if X is A1 then Y is B1

if X is A2 then Y is B2

.......................................

if X is An then Y is Bn

or, equivalently, as a fuzzy graph

f is
∑

i

Ai ×Bi.

The question is: What is the point or, more generally, the
maximizing set (Zadeh, 1998) at whichf is maximized,
and what is the maximum value off?

The problem can be solved by employing the tech-
nique of α-cuts(Zadeh, 1965; 1975b). With refererence
to Fig. 16, if Aiα

and Biα
are α-cutsof Ai and Bi,

respectively, then the correspondingα-cut of f∗ is given
by

f∗
α =

∑
i

Aiα
×Biα

.

From this expression, the maximizing fuzzy set, the
maximum fuzzy set and maximum value fuzzy set can
readily be derived, as shown in Figs. 16 and 17.

Fig. 16. α-cuts of a function described by a fuzzy graph.

Fig. 17. Computation of maximizing set, max-
imum set and maximum value set.

A key point which is brought out by these exam-
ples and the preceding discussion is that explicitation and
constraint propagation play pivotal roles in CW. This role
can be concretized by viewing explicitation and constraint
propagation as translation of propositions expressed in a
natural language into what might be called thegeneral-
ized constraint language(GCL) and applying rules of con-
straint propagation to expressions in this language – ex-
pressions which are typically canonical forms of propo-
sitions expressed in a natural language. This process is
schematized in Fig. 18.

The conceptual framework of GCL is substantively
differently from that of conventional logical systems, e.g.,
predicate logic. But what matters most is that the expres-
sive power of GCL – which is based on fuzzy logic – is
much greater than that of standard logical calculi. As an
illustration of this point, consider the following problem.

A box contains ten balls of various sizes of which
several are large and a few are small. What is the probabil-
ity that a ball drawn at random is neither large nor small?

To be able to answer this question it is necessary to be
able to define the meanings oflarge, small, several large
balls, few small ballsandneither large nor small. This is
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Fig. 18. Conceptual structure of computing with words.

a problem in semantics which falls outside of probability
theory, neurocomputing and other methodologies.

An important application area for computing with
words and manipulation of perceptions is decision anal-
ysis since in most realistic settings the underlying proba-
bilities and utilities are not known with sufficient precision
to justify the use of numerical valuations. There exists an
extensive literature on the use of fuzzy probabilities and
fuzzy utilities in decision analysis. In what follows, we
shall restrict our discussion to two very simple examples
which illustrate the use of perceptions.

First, consider a box which contains black balls and
white balls (Fig. 19). If we could count the number of
black balls and white balls, the probability of picking a
black ball at random would be equal to the proportion,r,
of black balls in the box.

Fig. 19. A box with black and white balls.

Now suppose that we cannot count the number of
black balls in the box but our perception is that most of
the balls are black. What, then, is the probability,p, that
a ball drawn at random is black?

Assume thatmost is characterized by its possibility
distribution (Fig. 20). In this case,p is a fuzzy number
whose possibility distribution ismost, that is,

p is most.

Next, assume that there is a reward ofa dollars if the
ball drawn at random is black and a penalty ofb dollars

Fig. 20. Membership function ofmost.

if the ball is white. In this case, ifp were known as a
number, the expected value of the gain would be:

e = ap− b(1− p).

Since we know notp but its possibility distribution,
the problem is to compute the value ofe when p is most.
For this purpose, we can employ the extension principle
(Zadeh, 1965; 1975b), which implies that the possibility
distribution, E, of e is a fuzzy number which may be
expressed as

E = a most− b(1−most).

For simplicity, assume thatmosthas a trapezoidal possi-
bility distribution (Fig. 20). In this case, the trapezoidal
possibility distribution ofE can be computed as shown
in Fig. 21.

Fig. 21. Computation of expectation through
use of the extension principle.

It is of interest to observe that if the support ofE is
an interval [α, β] which straddles O (Fig. 22), then there
is no non-controversial decision principle which can be
employed to answer the question: Would it be advanta-
geous to play a game in which a ball is picked at random
from a box in which most balls are black, anda and b
are such that the support ofE contains O.

Next, consider a box in which the ballsb1, . . . , bn

have the same color but vary in size, withbi, i =
1, . . . , n having the grade of membershipµi in the fuzzy
set of large balls (Fig. 23). The question is: What is the
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Fig. 22. Expectation of gain.

Fig. 23. A box with balls of various sizes
and a definition of large ball.

probability that a ball drawn at random is large, given the
perception that most balls are large?

The difference between this example and the preced-
ing one is that the eventthe ball drawn at random is large
is a fuzzy event, in contrast to the crisp eventthe ball
drawn at random is black.

The probability of drawingbi is 1/n. Since the
grade of membership ofbi in the fuzzy set of large balls
is µi, the probability of the fuzzy eventthe ball drawn at
random is largeis given by (Zadeh, 1968)

P =
1
n

∑
µi.

On the other hand, the proportion of large balls in the
box is given by the relative sigma-count (Zadeh, 1975b;
1978b)∑

Count (large.balls / balls.in.box) =
1
n

∑
µi.

Consequently, the canonical form of the perception
most balls are largemay be expressed as

1
n

∑
µi is most

which leads to the conclusion that

P is most.

It is of interest to observe that the possibility distribution
of P is the same as in the preceding example.

If the question were: What is the probability that a
ball drawn at random issmall, the answer would be

P is
1
n

∑
νi

where νi, i = 1, . . . , n, is the grade of membership of
bi in the fuzzy set of small balls, given that

1
n

∑
µi is most.

What is involved in this case is constraint propaga-
tion from the antecedent constraint on theµi to a conse-
quent constraint on theνi. This problem reduces to the
solution of a nonlinear program.

What this example points to is that in using fuzzy
constraint propagation rules, application of the extension
principle reduces, in general, to the solution of a nonlinear
program. What we need – and do not have at present – are
approximate methods of solving such programs which are
capable of exploiting the tolerance for imprecision. With-
out such methods, the cost of solutions may be excessive
in relation to the imprecision which is intrinsic in the use
of words. In this connection, an intriguing possibility is
to use neurocomputing and evolutionary computing tech-
niques to arrive at approximate solutions to constrained
maximization problems. The use of such techniques may
provide a closer approximation to the ways in which hu-
man manipulate perceptions.

5. Concluding Remarks

In our quest for machines which have a high degree of ma-
chine intelligence (high MIQ), we are developing a bet-
ter understanding of the fundamental importance of the
remarkable human capacity to perform a wide variety of
physical and mental tasks without any measurements and
any computations. Underlying this remarkable capability
is the brain’s crucial ability to manipulate perceptions –
perceptions of distance, size, weight, force, color, num-
bers, likelihood, truth and other characteristics of physical
and mental objects. A basic difference between percep-
tions and measurements is that, in general, measurements
are crisp whereas perceptions are fuzzy. In a fundamental
way, this is the reason why to deal with perceptions it is
necessary to employ a logical system that is fuzzy rather
than crisp.

Humans employ words to describe perceptions. It is
this obvious observation that is the point of departure for
the theory outlined in the preceding sections.

When perceptions are described in words, manipu-
lation of perceptions is reduced to computing with words
(CW). In CW, the objects of computation are words or,
more generally, propositions drawn from a natural lan-
guage. A basic premise in CW is that the meaning of a
proposition, p, may be expressed as a generalized con-
straint in which the constrained variable and the constrain-
ing relation are, in general, implicit inp.
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In coming years, computing with words and percep-
tions is likely to emerge as an important direction in sci-
ence and technology. In a reversal of long-standing atti-
tudes, manipulation of perceptions and words which de-
scribe them is destined to gain in respectability. This
is certain to happen because it is becoming increasingly
clear that in dealing with real-world problems there is
much to be gained by exploiting the tolerance for impre-
cision, uncertainty and partial truth. This is the primary
motivation for the methodology of computing with words
(CW) and the computational theory of perceptions (CTP)
which are outlined in this paper.
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