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A novel approach to designing stable fuzzy controllers with perception-based information using fuzzy-arithmetic-based
Lyapunov synthesis in the frame of computing with words (CW) is presented. It is shown that a set of conventional fuzzy
control rules can be derived from the perception-based information using the standard-fuzzy-arithmetic-based Lyapunov
synthesis approach. On the other hand, a singleton fuzzy controller can be devised by using a constrained-fuzzy-arithmetic-
based Lyapunov synthesis approach. Furthermore, the stability of the fuzzy controllers can be guaranteed by means of the
fuzzy version of Lyapunov stability analysis. Moreover, by introducing standard and constrained fuzzy arithmetic in CW,
the “words” represented by fuzzy numbers could be efficiently manipulated to design fuzzy controllers. The results obtained
are illustrated with the design of stable fuzzy controllers for an autonomous pole balancing mobile robot.
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1. Introduction

In many applications of fuzzy control systems, fuzzy if-
then rules areheuristicallyobtained from human experts.
How to systematically, rather than heuristically, design
and justify a fuzzy controller has been proved to be an
extremely challenging problem for the design and analysis
of fuzzy control systems. Recently, several different meth-
ods to design and analyse fuzzy controllers have been pro-
posed. The model-based fuzzy control approaches usu-
ally yield a non-fuzzy controller that will lead to the loss
of linguistic interpretability, which is the most important
property of fuzzy systems. For the fuzzy rules derived
from a human operator, it is usually difficult to implement
and hard to justify. For control knowledge acquisition,
the most common problem is that the human could only
express the control actions in a natural language. Thus,
transferring human empirical knowledge to a controller
may turn out to be a difficult task. The importance of
the language and speech to human intelligence has been
recognised for many years. If a computer is to implement
artificial intelligence (AI), it must understand the language
and speech of human intelligence as a prerequisite (Wang,
2000). Zadeh (1996; 1999) originated the phrase “com-
puting with words (CW).” It is believed that CW is capable
of delivering the quality of services in at least two very im-
portant areas (Wang, 2000; Zadeh and Kacprzyk, 1999):

intelligent information systems and intelligent control sys-
tems.

In this paper, rather than considering how to control
a plant, we look at the way humans devise their control
strategies with the perception-based information on the
plant and control objectives. We should notice that in per-
forming control tasks, for most of the cases, humans use
perceptionsrather than measurements. The computational
theory of perceptions (CTP) (Zadeh, 2001) is inspired by
the remarkable human capability to operate on, and reason
with, perception-based information. A basic difference
between perceptions and measurements is that, in general,
measurements are crisp (e.g., manipulation of numbers
and symbols) whereas perceptions are fuzzy (e.g., manip-
ulation of words and propositions drawn from a natural
language).

In this paper, we look at a novel approach to design
fuzzy controllers from perceptions rather than plant mod-
els using a fuzzy-type Lyapunov function (Guptaet al.,
1986; Margaliot and Langholz, 1999; 2000) by means
of fuzzy arithmetic in the frame of CW. Classical Lya-
punov synthesis suggests the design of a controller that
should guaranteeV̇ (x) < 0 for a Lyapunov function
V (x). Fuzzy Lyapunov synthesis follows the same idea
but the linguistic description (perception-based informa-
tion) of the plant and control objective is utilized by means
of CW. The basic assumption of the fuzzy Lyapunov syn-
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thesis is that, for a Lyapunov functionV (x), if the lin-
guistic value of V̇ (x) is Negative, then V̇ (x) < 0,
so the stability can be guaranteed. As an example, for
V̇ (x) = Negative · Negative + Positive · u, we may
chooseu = Positive Big to make V̇ (x) = Negative.
But this is again aheuristicmethod! An important point
addressed here is thatV̇ (x) might not beNegativeunless
there exists a set of suitable linguistic variables and their
arithmetic operations to guarantee this. On the other hand,
for the fuzzy Lyapunov synthesis approach proposed by
Magaliot and Langholz (1999; 2000), only the sign of the
fuzzy linguistic value, such as “Negative” or “ Positive”,
was used. Its magnitude was not considered. This means
it ignores the changes in states. It could be considered as
a very crude estimator of the derivative. Hence, the infor-
mation extracted from the perceptions could be very lim-
ited. Also, it seems difficult to derive more fuzzy rules as
there are only a limited number of linguistic terms, such
asNegativeandPositive, which are utilised. The number
of fuzzy rules is therefore limited.

To solve the above problems, a fuzzy Lyapunov syn-
thesis approach in connection with fuzzy numbers and
their arithmetic operations was investigated in our previ-
ous study (Zhou, 2001; Zhou and Ruan, 2002). However,
the standard fuzzy arithmetic does not take into account
all the available information, and the obtained results are
more imprecise than necessary or, in some cases, even in-
correct. On the other hand, the perception-based infor-
mation used for fuzzy controller design is not always re-
liable. To overcome the above deficiencies, in this paper
the constrained fuzzy arithmetic (Klir, 1997; Klir and Pan,
1998) is introduced for “word” manipulation of the fuzzy-
arithmetic-based Lyapunov function.

The theory of fuzzy numbers was introduced by Nah-
mias (1977), Dubois and Prade (1982), and many others.
The concept of a fuzzy number led to what has come to
be called fuzzy arithmetic. In the Foreword of the first
book on fuzzy arithmetic theory and applications by Kauf-
mann and Gupta (1991), Professor L.A. Zadeh wrote: “As
a language, fuzzy arithmetic may be expressed in lin-
guistic terms, making it possible tocompute with words
rather than numbers. Furthermore, the membership func-
tion of a fuzzy number may be fuzzy set valued, leading
to the concept of a fuzzy number of type 2 or, equiva-
lently, an ultrafuzzy number. In this way, the fuzziness of
a fuzzy number provides an additional degree of freedom
for representing various types of uncertainty as nonuni-
form possibility distributions over the real line.” The re-
search conducted in this paper is highly motivated by Pro-
fessor Zadeh’s inspirational comments on fuzzy numbers
and CW. We found that it is possible to systematically,
rather than heuristically, design a fuzzy controller mod-
elled on perception-based information by means of both
standard and constrained fuzzy arithmetic in the domain
of CW.

In the following section, a brief introduction of the
standard fuzzy arithmetic in the framework of CW is
given. In Section 3, an inverted pendulum balancing sys-
tem is used as a benchmark to demonstrate a system-
atic method to design a fuzzy controller from perception-
based information using the standard-fuzzy-arithmetic-
based Lyapunov synthesis approach. In Section 4, a defi-
ciency of the standard fuzzy arithmetic in fuzzy controller
design is identified, and the constrained-fuzzy-arithmetic-
based Lyapunov approach is proposed. The practical im-
plementation of fuzzy control to the pole-balancing mo-
bile robot is given in Section 5 to verify the proposed
method. This is followed by some discussions and con-
cluding remarks.

2. Standard Fuzzy Arithmetic Operations
for CW

As was mentioned in the Introduction, Computing with
Words (CW) provides a mathematical model for natural
language theory. Its foundation lies in the concepts of
fuzzy sets and fuzzy logic (Zadeh, 1996; 1999). In CW,
the objects of computing are words rather than numbers,
with words playing the role of labels of granules. Let us
look at the following example of reasoning with percep-
tions (Zhou and Ruan, 2002):

Perceptions:(propositions expressed in a natural lan-
guage)

p1 = Motor 1 isslow,

p2 = Motor 2 isa few rpw fasterthan Motor 1,

p3 = Motor 3 isa few rpw slowerthan Motor 1.

Conclusion:(propositions expressed in a natural lan-
guage)

q1 = Motor 2 is (slow+ few),

q2 = Motor 3 is (slow− few).

In this example,slowandfewcould be expressed as fuzzy
numbers;+ and− could be fuzzy arithmetic operations.

When the fuzzy numbers represent linguistic con-
cepts, such asbig, smalland so on, as interpreted in a par-
ticular context, the resulting constructs are usually called
linguistic variables (Klir and Yuan, 1995; Zadeh, 1973).
Each linguistic variable is fully characterized by a quin-
tuple (v, T , X, g, m) in which v is the name of the
variable, T is the set of linguistic terms ofv that refers
to base variable linguistic terms whose values range over
a universal setX, g is a syntactic rule for generating lin-
guistic terms, and is a semantic rule that assigns to each
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linguistic term t ∈ T its meaning,m(t), which is a fuzzy
set onX (i.e., m: T → F (X)).

Given a fuzzy setA and a real numberα ∈ [0, 1],
the crisp setαA = {x ∈ R | A(x) ≥ α} is called theα-
cut of A. The crisp setSupp (A) = {x ∈ R | A(x) > 0}
is called the support ofA. In the following, some relevant
concepts and notation on fuzzy numbers and their arith-
metic operations (Kaufman and Gupta, 1991; Klir and
Yuan, 1995) are briefly introduced.

Definition 1. A fuzzy number A is a fuzzy set inR
that is convex and normal. Recall thatA is convex if
for any x1, x2 ∈ X ⊂ R, and λ ∈ [0, 1], µA(λx1 +
(1− λ)x2) ≥ min(µA(x1), µA(x2)), and A is normal if
Supx∈XµA(x) = 1.

The requirement of convexity implies that the points
of the real line with the highest membership values are
clustered around a given interval (or point). This fact al-
lows us to easily understand the semantics of a fuzzy num-
ber by looking at its distribution and to associate it with a
properly descriptive syntactic label. On the other hand, the
requirement of normality implies that among the points
of the real line with the highest membership value, there
exists at least one which is completely comparable with
the predicate associated with the considered fuzzy num-
ber (Kaufman and Gupta, 1991).

In this paper, the discussion will be based on the tri-
angular fuzzy numbers (TFNs) as shown in Fig. 1. We can
represent this type of TFN by a tripleA = 〈a, b, c〉 (see
Fig. 2), where itsα-cut is αA = [a+(b−a)α, c−(c−b)α].
In Fig. 1, we havePB = 〈2, 3, 4〉, PM = 〈1, 2, 3〉,
PS = 〈0, 1, 2〉, ZE = 〈−1, 0, 1〉, NS = 〈−2,−1, 0〉,
NM = 〈−3,−2,−1〉, NB = 〈−4,−3,−2〉.

   -4           -3           -2          -1   0     1            2            3            4

NB NM ZENS PS PM PB
x
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Fig. 1. Triangular fuzzy numbers with seven terms: PB (Pos-
itive Big), PM (Positive Medium), PS (Positive Small),
Z (Zero), NS (Negative Small), NM (Negative Medium),
NB (Negative Big).
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Fig. 2. A triangular membership functionA = 〈a, b, c〉.

To deal with linguistic variables, we need not only
the various set theoretic operations, but also arithmetic
operations on linguistic variables and, specifically, fuzzy
numbers in this paper. There are two common ways of
defining fuzzy arithmetic operations (Klir and Yuan, 1995;
Klir, 1997). One is based on the extension principle of
fuzzy set theory and the other on theα-cut representation.

Definition 2. Let A and B denote linguistic variables
(fuzzy numbers), and let∗ ∈ {+,−, ·, /}, which denotes
any of the four basic arithmetic operations. Employing
the extension principle, the arithmetic operations on fuzzy
setsA and B are defined by

µA∗B(z) = sup
z=x∗y

min
(
µA(x), µB(y)

)
(1)

for all z ∈ R. More specifically, the four arithmetic oper-
ations are defined as follows:

µA+B(z) = sup
z=x+y

min
(
µA(x), µB(y)

)
,

µA−B(z) = sup
z=x−y

min
(
µA(x), µB(y)

)
,

µA·B(z) = sup
z=x·y

min
(
µA(x), µB(y)

)
,

µA/B(z) = sup
z=x/y

min
(
µA(x), µB(y)

)
(0 /∈ αB).

By employing theα-cut representation, arithmetic
operations on fuzzy intervals are defined in terms of the
well-established arithmetic operations on closed intervals
of real numbers.

Definition 3. Let A and B denote fuzzy sets, and let
∗ ∈ {+,−, ·, /}, which denotes any of the four basic arith-
metic operations. Then, we define a fuzzy set onR, A∗B,
by the following equation:

α(A ∗B) =
{
x ∗ y | 〈x, y〉 ∈ αA× αB

}
, (2)

whereαA and αB are theα-cuts of fuzzy setsA and B,
α ∈ (0, 1]. When the operation is division ofA and B, it
is required that0 /∈ αB for any α ∈ (0, 1].

Let αA = α[a, ā] and αB = α[b, b̄]. The individ-
ual arithmetic operations on theα-cuts of fuzzy setsA
and B can be defined as follows:

α[a, ā] + α[b, b̄] = α[a + b, ā + b̄],

α[a, ā]− α[b, b̄] = α[a− b̄, ā− b],

α[a, ā] · α[b, b̄] = α
[
min(ab, ab̄, āb, āb̄),

max(ab, ab̄, āb, āb̄)
]
,

α[a, ā]/α[b, b̄] = α[a, ā] · α[1/b̄, 1/b]
(
if 0 /∈ α[b, b̄]

)
.
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A problem of concern at this point is: IfA and B
are fuzzy numbers, isA ∗ B also a fuzzy number? In
other words, isA ∗ B convex and normal? The follow-
ing theorem gives a positive answer to the above question
(Kaufman and Gupta, 1991).

Theorem 1. Let ∗ ∈ {+,−, ·, /}, and let A and B de-
note continuous fuzzy numbers. Then the fuzzy setA ∗B
defined by Definition 2 is also a continuous fuzzy number.

Theorem 1 can guarantee that the manipulation of
the “words” in the framework of fuzzy numbers and their
arithmetic operations is consistent.

In designing and analysing a fuzzy controller by
means of fuzzy numbers and their arithmetic operations,
another key issue is how to compare fuzzy numbers. As an
example, for fuzzy Lyapunov synthesis, to guarantee that
V̇ (x) = f1(x1)−f2(x2) < 0, we need to compare the lin-
guistic values off1(x1) and f2(x2), that is, to compare
fuzzy numbers. The issue of comparing fuzzy numbers is
closely connected to the applications of fuzzy set theory
in decision theory (Matarazzo and Munda, 2001).

The linear ordering of real numbers does not extend
to fuzzy numbers, but the fuzzy numbers can be ordered
partially in a natural way and this partial ordering forms
a distributive lattice. The values of linguistic variables in
most applications are defined by fuzzy numbers that are
comparable. The lattice〈R,MIN,MAX〉 can also be ex-
pressed as the pair〈R,≺〉, where≺ is a partial ordering
defined as (Klir and Yuan, 1995):

Definition 4. For fuzzy numbersA and B, A ≺ B iff
MIN (A,B) = A or MAX(A,B) = B, where

µMIN (A,B)(z) = sup
z=min(x,y)

min
(
µA(x), µB(y)

)
,

µMAX(A,B)(z) = sup
z=max(x,y)

min
(
µA(x), µB(y)

)
for all z ∈ R.

Using Definition 4 and the TFNs given in Fig. 1,
we can prove thatNM ≺ NS ≺ ZE ≺ PS ≺ PM.
We may conclude that the "words" represented by fuzzy
numbers are comparable. It is a basic requirement for
the “words” manipulation of the fuzzy controller design.
The following definition gives a linguistic approximation
of the “words.” It also provides a foundation for the CW
version of the fuzzy controller design.

Definition 5. For fuzzy numbersA and A′, A ∼= A′ iff
Core (A) = Core (A′), whereCore (A) = {x|µA(x) =
1} and Core (A′) = {x | µA′(x) = 1}.

Applying Definitions 2 and 5, it can be seen that
Core (NB + PM) = Core (NS). From Definition 5, we

have NB + PM ∼= NS (see Fig. 3). More general stan-
dard fuzzy arithmetic operating results ofC ∼= A + B
and C ∼= A − B are given in Tables 1 and 2, respec-
tively. They will be used to design a fuzzy controller us-
ing perception-based information via the fuzzy Lyapunov
synthesis, the CW version of the classical Lyapunov syn-
thesis method. As an example, from Tables 1 and 2, we
havePS−PM+NS ∼= NM and NS+PM−NM ∼= PB.

 

                                

                -4          -3            -2           -1     0        1            2           3              
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 NS’ = NB + PM ≅ NS 

Fig. 3. Illustration of the fuzzy arithmetic operation.

Table 1. Results ofC ∼= A + B.

C ∼= A + B A

NM NS ZE PS PM

NM NL NB NM NS ZE

NS NB NM NS ZE PS

B ZE NM NS ZE PS PM

PS NS ZE PS PM PB

PM ZE PS PM PB PL

Table 2. Results ofC ∼= A − B.

C ∼= A − B A

NM NS ZE PS PM

NM ZE PS PM PB PL

NS NS ZE PS PM PB

B ZE NM NS ZE PS PM

PS NB NM NS ZE PS

PM NL NB NM NS ZE

3. Standard-Fuzzy-Arithmetic-Based
Lyapunov Synthesis

The inverted pendulum is frequently used as a benchmark
dynamic nonlinear plant for evaluating a control algorithm
or a combination of control algorithms. The state vari-
ables arex1 = θ (the pendulum’s angle), andx2 = θ̇
(the pendulum’s angular velocity). The system’s dynamic
equations are described as follows (Slotine and Li, 1991):{

ẋ1 = x2 = F1(x),

ẋ2 = f(x1, x2) + g(x1, x2)u = F2(x),
(3)

where

f(x1, x2) =
9.8 sinx1 −

mlx2
2 cos x1 sinx1

mc + m

l

(
4
3
− m cos2 x1

mc + m

) ,
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g(x1, x2) =

cos x1

mc + m

l

(
4
3
− m cos2 x1

mc + m

)
where mc is the mass of the cart,m is the mass of
the pole, 2l is the pole’s length, andu is the applied
force (control). The traditional fuzzy control rules (Wang,
1997), which are commonly applied to control the in-
verted pendulum, are obtainedheuristically.

Assume that the model (3) is unknown. However,
based on the physical intuition and the experience of bal-
ancing a pole, the perception-based information can be
obtained as shown in Table 3. In the following, we
will demonstrate that the fuzzy control rules can be de-
rived from the perceptions by means of standard-fuzzy-
arithmetic-based Lyapunov function in the framework of
CW. Furthermore, the stability of the fuzzy controller can
be guaranteed.

Table 3. Perceptions for balancing a pole.

Perceptions Remarks

S1 ẋ1 = x2 From the state description.

S2 θ̈ is proportional
to the controlu

The angular acceleration is propor-
tional to the force applied to the cart.

S3 u is inversely pro-
portional toθ

As the pole is falling over to the right-
hand side, one must move his/her fin-
ger to the right-hand side at once.

S4 u is inversely pro-
portional to θ̇

From the knowledge of balancing a
pole.

Remark 1. Note that the perceptions S3 and S4 in Table 3
can also be confirmed by the conditions of the asymptotic
stability in (3). For example, by using Lyapunov’s indirect
method (Jenkins and Passino, 1999; Slotine and Li, 1991),
from (3) we have

Ā =


∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2


∣∣∣∣∣∣∣∣
x=0

=


0 1

9.8(mc+m)

l(4mc+m)

3

+
1

(4mc+m)

3

∂u

∂x1

1

(4mc+m)

3

∂u

∂x2


∣∣∣∣∣∣∣∣∣
x=0

(4)

The eigenvalues ofĀ are given by the determinant
of λI − Ā. To ensure that the originxe = 0 is asymp-
totically stable, the eigenvaluesλi of Ā must be in the
left half of the complex plane. Hence, we can obtain the
following conditions to ensure the asymptotic stability:

∂u

∂x1
< −9.8(mc + m),

∂u

∂x2
< 0. (5)

From (5), we can easily conclude that the forceu
is inverselyproportional to the pendulum’s angular veloc-
ity x2, and inversely proportional to the pendulum’s angle
x1. This is exactly reflected by the perceptions on balanc-
ing an inverted pendulum. For example, as the pole is
falling over to the right-hand side, one must move his/her
finger to the right-hand side at once.

Consider the Lyapunov function candidateV (x1, x2)
= 1/2(x2

1+x2
2), which can be used to represent a measure

of the distance of the pendulum’s actual state(x1, x2)
and the desired state(x1, x2) = (0, 0). Differentiating
V yields

V̇ = x1ẋ1 + x2ẋ2. (6)

Using the perception S2 in Table 3,̇x2 is propor-
tional to the controlu (the angular acceleration is propor-
tional to the force applied to the cart). This can be further
explained asẋ2 = kuu (assumeku = 1 in this paper).
Substitutingẋ2 = u into (6), we have

V̇ = x1ẋ1 + x2u = x1x2 + x2u = x2(x1 + u). (7)

Its linguistic description is given as

LV (V̇ (x)) = LV x2(LV x1 + LV u), (8)

where LV (V̇ (x)), LV x1, LV x2 and LV u are linguis-
tic values ofV̇ (x), x1, x2 and u, respectively.

Theorem 2. If V (x) is a Lyapunov function and the
linguistic valueLV (V̇ (x)) = Negative, where we have
Supp (Negative) ⊂ (−∞, 0], then the fuzzy controller de-
signed by fuzzy Lyapunov synthesis is locally stable. Fur-
thermore, if Supp (Negative) ⊂ (−∞, 0), then the sta-
bility is asymptotic.

A detailed explanation of Theorem 2 is given in
(Zhou and Ruan, 2002). The theorem provides a guidance
to design astablefuzzy controller using perception-based
information by the fuzzy-arithmetic-Lyapunov synthesis
method.

3.1. Fuzzy Lyapunov Synthesis Approach

According to the linguistic version of Lyapunov synthesis
(cf. (7)), the fuzzy control rules as shown in Table 4 can
be obtained in a systematic manner in the domain of CW
(Margaliot and Langholz, 1999; 2000).

For example, ifx1 = Positive andx2 = Positive,
from our heuristics, u should beNegative Bigto ensure
x1 + u = Positive − NegativeBig = Negative, and
hencex2(x1 + u) = Positive · Negative = Negative,
that is LV (V̇ (x)) = Negative. From Theorem 2, if
Supp (Negative) ⊂ (−∞, 0], then the fuzzy controller
designed by the fuzzy Lyapunov synthesis approach is lo-
cally stable. It can be seen that the fuzzy control rules are
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Table 4. Fuzzy control rules derived from the Fuzzy Lyapunov
Synthesis Approach.

x1 x2 u x1 + u x2(x1 + u)

Positive Positive Negative Big Negative Negative
Positive Negative Zero Positive Negative
Negative Positive Zero Negative Negative
Negative Negative Positive Big Positive Negative

obtained in a systematic manner. However, the “words”
are manipulatedheuristically. On the other hand, only the
sign (not magnitude) of the fuzzy linguistic values is uti-
lized, and the number of fuzzy rules is hence limited.

3.2. Standard-Fuzzy-Arithmetic-Based Lyapunov
Synthesis Approach

Assume thatx1, x2 and u are all described by the fuzzy
numbers as shown in Fig. 1. We also employ the stan-
dard fuzzy arithmetic operations defined in (1) and (2) in
the following “words” manipulation for fuzzy Lyapunov
synthesis.

Example 1. Considerx2 = PM and choosex1 + u =
NM. Then a set of fuzzy control rules as shown in Ta-
ble 5 can be derived by using standard fuzzy arithmetic
operations defined in (1) and (2). From (8), we have
LV (V̇ (x)) = PM ·NM = Negative. This is illustrated in
Fig. 4. It can be seen thatSupp (PM·NM) ⊂ [−9,−1] ⊂
(−∞, 0]. From Theorem 2, it can be seen that the fuzzy
controller with fuzzy control rules as shown in Table 5 is
stable.

Table 5. Fuzzy control rules (x2 = PM, x1 + u = NM).

x1 x1 + u = NM u Remarks

NM NM + u = NM ZE NM + ZE = NM

NS NS + u = NM NS NS + NS = NM

ZE ZE + u = NM NM ZE + NM = NM

PS PS + u = NM NB PS + NB = NM

PM PM + u = NM NL PM + NL = NM

Example 2.Considerx2 = NS and choosex1+u = PS.
Then a set of fuzzy control rules as shown in Table 6 can
be derived. From (8), we haveLV (V̇ (x)) = NS · PS =
Negative. This is illustrated in Fig. 5. It can be seen that
Supp (NS · PS) ⊂ [−4, 0] ⊂ (−∞, 0]. From Theorem 2,
we can conclude that the fuzzy controller with the fuzzy
rules as shown in Table 6 is stable.

Table 6. Fuzzy control rules (x2 = NS, x1 + u = PS).

x1 x1 + u = PS u Remarks

NM NM + u = PS PB NM + PB = PS

NS NS + u = PS PM NS + PM = PS

ZE ZE + u = PS PS ZE + PS = PS

PS PS + u = PS ZE PS + ZE = PS

PM PM + u = PS NS PM + NS = PS

 

 

� �  � �  � �  � �  �  �  
�  

��� �  

��� �  

��� �  

��� �  

�
 

� � �  

10 � 30 �

NM PM⋅  

Fig. 4. Illustration ofLV (V̇ (x)) = PM · NM.
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Fig. 5. Illustration ofLV (V̇ (x)) = NS · PS.

Repeating a procedure similar to that shown in Ex-
amples 1 and 2, a complete set of fuzzy control rules as
shown in Table 7 can be derived from the perception-
based information (see Table 3) using the standard-fuzzy-
arithmetic-based Lyapunov synthesis approach in the
framework of CW. Note that the fuzzy control rules in
Table 7 are the same as the conventional fuzzy control
rules, which have been successfully used to control the
inverted pendulum (Li and Shieh, 2000). But an impor-
tant issue addressed here is that the fuzzy rules derived
from the perception-based information are modelled on
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the standard-fuzzy-arithmetic-based Lyapunov synthesis
approach in the context of CW. Therefore, the fuzzy con-
troller is designedsystematicallyrather thanheuristically,
and its stability can also be guaranteed.

Table 7. Fuzzy control rules derived from the perception-based
information using the fuzzy-arithmetic-based Lya-
punov synthesis approach.

u x1

NM NS ZE PS PM

NM PL PB PM PS ZE

NS PB PM PS ZE PS

x2 ZE PM PS ZE PS PM

PS PS ZE PS PM PB

PM ZE PS PM PB PL

4. Constrained-Fuzzy-Arithmetic-Based
Lyapunov Synthesis

Consider the following fuzzy rule derived from the
standard-fuzzy-arithmetic-based Lyapunov synthesis ap-
proach as shown in Table 7:

If x1 is NS andx2 is PS Thenu is ZE. (9)

From (8), we haveLV (V̇ (x)) = PS · (NS + ZE). This
is illustrated in Fig. 6. It can be seen thatSupp (PS ·
(NS + ZE)) = [−6, 2] 6⊂ (−∞, 0). The stability condi-
tion given in Theorem 2 is not satisfied. This is caused by
the deficiency of the standard fuzzy arithmetic. The stan-
dard fuzzy arithmetic does not utilize some of the avail-
able information. Therefore, the obtained results may be
more imprecise than necessary or, in some cases, even in-
correct. To overcome this deficiency, a constrained fuzzy
arithmetic (Klir, 1997) is needed to take all available in-
formation into account in terms of relevant requisite con-
straints.
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Fig. 6. Illustration ofLV (V̇ (x)) = PS · (NS + ZE).

4.1. Constrained Fuzzy Arithmetic

Results obtained by the standard fuzzy arithmetic suffer
from imprecision greater than justifiable in all computa-
tions that involve therequisite equality constraint(Klir,
1997). However, the equality constraint is always satis-
fied in the classical arithmetic on real numbers. Because
ignoring equality constraints will lead to results that are
less precise than necessary, it is essential to include the
constraints, when applicable, into the general definition
of basic arithmetic operations on fuzzy numbers. In gen-
eral, each constraintR on A ∗ B is a relation (crisp or
fuzzy) on A×B. For the extension principle of the fuzzy
set theory, the constrained arithmetic operations(A∗B)R

are defined by the following equation:

µ(A∗B)R
(z) = sup

z=x∗y
min

(
µA(x), µB(y), µR(x, y)

)
.

(10)

For the cut representation of the fuzzy intervals, we
have

α(A ∗B)R =
{
x ∗ y | 〈x, y〉 ∈ (αA×αB) ∩αR

}
. (11)

Any operationsA ∗B or B ∗A are unconstrained, even
though A = B, while operationsA ∗ B and B ∗ A are
subject to the equality constraint. These constrained oper-
ations, for example, onA, may conveniently be expressed
as follows, whereE denotes the relationR representing
the equality constraint:

α(A + A)E = {x + x | x ∈α A} =α [2a, 2ā], (12)

α(A−A)E = {x− x | x ∈α A} = 0, (13)

α(A ·A)E = {x · x | x ∈α A}, (14)

α(A/A)E = {x/x | x ∈α A, 0 /∈α
A} = 1. (15)

Under the equality constraint forX, whereA,B,X ∈ R,
we obtain

A + X =B ⇔ X = B −A, (16)

A ·X =B ⇔ X = B/A (0 /∈α
A). (17)

But in general, these are not solutions in the standard
fuzzy arithmetic (Klir, 1997).

4.2. Constrained-Fuzzy-Arithmetic-Based Lyapunov
Synthesis Approach

In the following, we will demonstrate how to use
the constrained-fuzzy-arithmetic-based Lyapunov synthe-
sis approach to derive fuzzy control rules from the
perception-based information given in Table 3.

Example 3. Considerx2 = PM = 〈1, 2, 3〉 and choose
x1 + u = NM. Under the equality constraint foru,
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from (16) we haveu = NM − x1. If x1 = NM =
〈−3,−2,−1〉 as shown in Fig. 1, under the equality con-
straint, thenα(LV u) = α(NS − NM)E . Considering
α(NS) = [(−2+α),−α)] and α(NM) = [(−3+α),−1−
α)], we haveα(LV u) = [(−2 + α)− (−3 + α), (−α)−
(−1 − α)] = [1, 1]. This leads tou = 1. Hence the
following fuzzy control rule can be derived:

If x1 is NM and x2 is PS Thenu = 1. (18)

It is a fuzzy rule with a singleton consequent, i.e., a
singleton fuzzy rule (Sugeno, 1999). The rest of fuzzy
rules for the conditionx2 = PM are illustrated in Ta-
ble 8.

Table 8. Singleton fuzzy control rules(x2 = PM).

x1
α(LV u) =α (NM − x1)E u

NM
[
(−3+α)−(−3+α), (−1−α)−(−1−α)

]
= [0, 0] 0

NS
[
(−3+α)−(−2+α), (−1−α)−(−α)

]
= [−1,−1] −1

ZE
[
(−3+α)−(−1+α), (−1−α)−(1−α)

]
=[−2,−2

]
−2

PS
[
(−3 + α) − α, (−1 − α) − (2 − α)

]
= [−3,−3] −3

PM
[
(−3+α)−(1+α), (−1−α)−(−3−α)

]
= [0, 0] −4

Example 4. Considerx2 = PS = 〈0, 1, 2〉 and choose
x1 + u = NS. Under the equality constraint foru,
from (16), we haveu = NS − x1. Following the same
procedure as shown in Example 3, a set of singleton fuzzy
rules as shown in Table 9 can be derived.

Repeating the same procedure as shown in Examples
3 and 4, a singleton fuzzy controller as shown in Table 10
can be devised by using the constrained-fuzzy-arithmetic-
based Lyapunov synthesis approach in the framework
of CW.

Table 9. Singleton fuzzy control rules(x2 = PS).

x1
α(LV u) =α (NM − x1)E u

NM
[
(−2 + α)− (−3 + α), (−α)− (−1−α)

]
= [1, 1] 1

NS
[
(−2 + α) − (−2 + α), (−α) − (−α)

]
= [0, 0] 0

ZE
[
(−2+α)−(−1+α), (−α)−(1−α)

]
= [−1,−1

]
−1

PS
[
(−2 + α) − α, (−α) − (2 − α)

]
= [−2,−2] −2

PM
[
(−2 + α)− (1 + α), (−α)− (3−α)

]
= [−3,−3] −3

Remark 2. To investigate the stability of the above fuzzy
control rules with a singleton consequent, let us consider
the same condition as that of the fuzzy control rule (9).
The corresponding rule in Table 10 is given as follows:

If x1 is NS andx2 is PS Thenu is 0. (19)

Under the equality constraint, we have(LV x1 +
LV u)E = NS. From (8), we getSupp (LV (V̇ (x))) =

Table 10. Singleton fuzzy rules derived by the
constrained-fuzzy-arithmetic-based
Lyapunov synthesis approach.

u x1

NM NS ZE PS PM

NM 4 3 2 1 0
NS 3 2 1 0 −1

x2 ZE 2 1 0 −1 −2

PS 1 0 −1 −2 −3

PM 0 −1 −2 −3 −4

LV x2(LV x1 + LV u) = PS · NS. In Fig. 6, we can
observe thatSupp (PS · NS) = [−4, 0] ⊂ (−∞, 0].
From Theorem 2, the fuzzy controller with the single-
ton fuzzy control rule (19) is stable. Comparing this with
the fuzzy control rule (9), whereSupp (LV (V̇ (x))) =
Supp (PS ·(NS+ZE)) = [−6, 2] 6⊂ (−∞, 0] (see Fig. 6),
it can be seen that the deficiency of the fuzzy Lyapunov
synthesis with the standard fuzzy arithmetic can be over-
come by the constrained fuzzy arithmetic.

Remark 3. By using the equality constrained fuzzy arith-
metic, we can easily prove thatSupp (LV (V̇ (x))) ⊂
(−∞, 0], i.e., V̇ (x) ≤ 0 for all the singleton fuzzy
control rules with x2 = NM,NS,PS and PM in Ta-
ble 5. However, forx2 = ZE, Supp (LV (V̇ (x))) =
Supp (ZE ·ZE)E . Note that under the equality constraint,
Supp (ZE · ZE)E = [0, a2

0] (see Fig. 7). This means that
once a0 → 0, we haveSupp (ZE · ZE)E → [0, 0], or
V̇ (x) → 0. This confirms the intuition that more rules
result in more powerful fuzzy control systems. We should
also notice that the linguistic terms like PM, PS, NS and
NM need not be very specific. On the contrary, the de-
scription of the area close to zero should be defined in
greater detail to make the control actions more specific
and assure enough sensitivity in the generated control ac-
tions (Pedrycz, 1994).

 µ
 ZE

 

0a  0a−  

x
 

 

Fig. 7. Partition in thezeroregion.

Remark 4. The singleton fuzzy rules in Table 10 are de-
rived based on the assumption S2 of Table 3, i.e.,ẋ2 = u.
For a more general case, if we assumeu = kẋ2, wherek
is a real number, then under the equality constrained fuzzy
arithmetic, (17) can be rewritten as

LV
(
V̇ (x)

)
= LV x2

(
LV x1 + LV (u/k)

)
. (20)
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If x2 = PM, then by choosingx2 + u = NM,
under the equality constraint foru, from (16) we have
u = k(NM − x1)E or α(LV u) = [k, k], i.e., u = k.
By repeating the same procedure, we can have a single-
ton fuzzy controller as shown in Fig. 8. This means that
we could improve the stability of the singleton fuzzy con-
troller by tuningk.

 

Singleton 
Fuzzy 

Controller 

1x  

2x  

u
 

K 

 

Fig. 8. Configuration of a singleton fuzzy controller with a gen-
eral assumption of S2 in Table 3.

5. Experimental Results

To demonstrate the effectiveness of the proposed fuzzy
controller design method, a real-time experiment of the
fuzzy control of an autonomous pole-balancing mobile
robot with an onboard TMS 320C32 DSP processor was
conducted (see Fig. 9). This project aims to design and
fabricate an autonomous mobile robot to participate in the
Singapore Robotic Games (SRG). The mobile robot is
able to balance a free-falling pole by means of horizon-
tal movements. While balancing the pole, it would also
travel with a pre-designed slope profile. The mobile robot
with the highest number of successful cycles in a single
untouched attempt within a predefined time slot will be
considered the winning entry.

 

Fig. 9. An autonomous pole-balancing mobile robot.

The parameters of the physical robot are given as fol-
lows: the pole’s length is2l = 1 m, the mass of the pole is
m = 0.1 kg, and the mass of the cart ismc = 2.5 kg. Fig-
ure 10 shows the trajectory of the pole angle and the veloc-
ity tracking results using the conventional fuzzy control
rules (Table 7) derived from perception-based informa-
tion using the standard-fuzzy-arithmetic-based Lyapunov

synthesis approach. It can be seen that the pole never
falls down as the mobile robot can always track the de-
sired trajectory though the pole swings very much occa-
sionally. This may be due to the limited perception-based
information. A similar experiment is also conducted us-
ing the singleton fuzzy control rules (Table 10) derived by
the constrained-fuzzy-arithmetic-based Lyapunov synthe-
sis approach. The results are similar to those presented in
Fig. 10. From Fig. 11, it can be found that the pole angle
is sometimes greater than 0.2 rad. However, for the fuzzy
control rules in Table 7, the pole angle is always less than
0.2 rad.
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Fig. 10. Balancing and tracking results using the fuzzy con-

trol rules derived from the perception-based informa-
tion by means of the standard-fuzzy-arithmetic-based
Lyapunov function.
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Fig. 11. Balancing and tracking results using the fuzzy control

rules derived from the perception-based information by
means of the constrained-fuzzy-arithmetic-based Lya-
punov function.
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From the results shown in Figs. 10 and 11, we can
conclude that a stable fuzzy controller for the autonomous
pole balancing mobile robot can be devised systemati-
cally rather than heuristically from perception-based in-
formation by means of standard- and constrained-fuzzy-
arithmetic-based Lyapunov synthesis approaches. To im-
prove the pole-balancing performance, further learning is
necessary, e.g., by fuzzy reinforcement learning methods
(Zhou, 2001; Zhouet al., 2001).

6. Concluding Remarks

A novel approach to design fuzzy controllers using the
fuzzy-arithmetic-based Lyapunov synthesis approach that
gives a linguistic description of the plant and the con-
trol objective is presented. It is found that by us-
ing the standard-fuzzy-arithmetic-based Lyapunov syn-
thesis approach, a set of conventional fuzzy control rules
can be produced, while by using the constrained-fuzzy-
arithmetic-based Lyapunov synthesis approach, the fuzzy
control rules with a singleton consequent can be derived.
We also demonstrate that the constrained fuzzy arithmetic
can be utilised to overcome some deficiencies in the stan-
dard fuzzy arithmetic for the fuzzy controller design. In
a real-time experiment of the fuzzy control of the au-
tonomous pole-balancing mobile robot, we found that the
pole does not fall down as the robot tracks the desired tra-
jectory even without further tuning the fuzzy controller
proposed in this paper, though it swings very much occa-
sionally.

The perception-based information is very limited in
relation to designing a controller. How to integrate both
measurement-based information and perception-based in-
formation to design an intelligent controller using CW
will be a new challenge. We will also try to incorpo-
rate some other techniques in the fuzzy controller design
approach presented in this paper. Some CW versions of
conventional control theory, such as a CW version of the
fuzzy slide mode control, will be studied in the future.
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