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∗ Institute of Electronics
Silesian University of Technology

ul. Akademicka 16, 44–100 Gliwice, Poland
e-mail: jl@boss.iele.polsl.gliwice.pl

A new learning method tolerant of imprecision is introduced and used in neuro-fuzzy modelling. The proposed method
makes it possible to dispose of an intrinsic inconsistency of neuro-fuzzy modelling, where zero-tolerance learning is used
to obtain a fuzzy model tolerant of imprecision. This new method can be calledε-insensitive learning, where, in order to fit
the fuzzy model to real data, theε-insensitive loss function is used.ε-insensitive learning leads to a model with minimal
Vapnik-Chervonenkis dimension, which results in an improved generalization ability of this system. Another advantage
of the proposed method is its robustness against outliers. This paper introduces two approaches to solvingε-insensitive
learning problem. The first approach leads to a quadratic programming problem with bound constraints and one linear
equality constraint. The second approach leads to a problem of solving a system of linear inequalities. Two computationally
efficient numerical methods forε-insensitive learning are proposed. Finally, examples are given to demonstrate the validity
of the introduced methods.
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1. Introduction

Fuzzy modelling allows finding nonlinear models of real-
ity where knowledge is obtained as a set of if-then rules
with linguistically interpreted propositions. Fuzzy mod-
elling is based on the premise that human thinking is
tolerant of imprecision and the real world is too com-
plicated to be described precisely (Zadeh, 1964; 1973).
Presently, fuzzy modelling plays an important role in
many engineering fields, such as pattern recognition,
control, identification, data mining, and so on (Czogała
and Łęski, 2001; Janget al., 1997; Rutkowska, 2001;
Rutkowska and Hayashi, 1999; Rutkowska and Nowicki,
2000; Wang, 1998).

Methods of fuzzy if-then rules extraction can be
divided into (a) those obtained from a human expert,
(b) those obtained automatically from observed data, usu-
ally by means of artificial neural networks incorporated
into fuzzy systems. Methods from the first group have
great disadvantages: few experts can and/or want to share
their knowledge. In methods from the second group,
knowledge is acquired automatically by learning algo-
rithms of neural networks. Such a connection of neural
networks and fuzzy models is usually called neuro-fuzzy
systems. Neuro-fuzzy modelling has an intrinsic inconsis-
tency. It may perform thinking tolerant of imprecision, but
neural network learning methods are zero-tolerant of im-

precision, that is, they usually use the quadratic loss func-
tion to match the reality and a fuzzy model. In this case
only perfect matching between the reality and the model
leads to a zero loss. The approach to neuro-fuzzy mod-
elling presented in this paper is based on the premise that
human learning, as well as thinking, is tolerant of impre-
cision. Hence, a zero loss is assumed for an error less
than some pre-set value, denoted byε. If the error is
greater thanε, then the loss increases linearly. The learn-
ing method based on this loss function may be calledε-
insensitive learning.

In real applications, data from a training set are cor-
rupted by noise and outliers. It follows that the fuzzy
system design methods need to be robust. According to
Huber (1981), a robust method should have the following
properties: (i) it should have a reasonably good accuracy
at the assumed model, (ii) small deviations from the model
assumptions should impair the performance only by a
small amount, (iii) larger deviations from the model as-
sumptions should not cause a catastrophe. In the literature
there are many robust loss functions (Huber, 1981). In this
work, the ε-insensitive loss function is used, which is a
generalization of the absolute error loss function (ε = 0).

It is well-known in approximation theory (Tikhonov
regularization) and machine learning (statistical learning
theory) that too precise learning on a training set leads to
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overfitting (overtraining), which results in a poor general-
ization ability. The generalization ability is interpreted as
a production of a reasonable decision for data previously
unseen in the process of training (Haykin, 1999; Vapnik,
1998). Vapnik-Chervonenkis (VC) theory (or statistical
learning theory) has recently emerged as a general the-
ory for estimation of dependencies from a finite set of
data (Vapnik, 1999). The most important issue in the VC-
theory is the Structural Risk Minimization (SRM) induc-
tion principle. The SRM principle suggest a trade-off be-
tween the quality of an approximation and the complexity
of the approximation function (Vapnik, 1998). A measure
of the approximation function complexity (or capacity) is
called the VC-dimension. One of the simplest methods of
controlling the VC-dimension is to change the insensitiv-
ity parameterε in the loss function. Increasingε results
in decreasing VC-dimension.

Although the idea of learning tolerant of imprecision
can be incorporated into all fuzzy system design meth-
ods, in this work a method based on fuzzy partition of
input space will be presented, due to its simplicity. First,
Pedrycz (1984) used the fuzzyc-means clustering (intro-
duced by Bezdek (1982)) to find antecedent variable mem-
bership functions and then to identify a relational fuzzy
model. Many authors (c.f. Chenet al., 1998; Czogała
and Łęski, 2001; Setnes, 2000; Wang, 1998) have recently
used fuzzyc-means to find clusters in the input space pre-
serving the similarity of input data, where each cluster
corresponds to a fuzzy if-then rule in the Takagi-Sugeno-
Kang form (Sugeno and Kang, 1988; Takagi and Sugeno,
1985):

R(i) : IF x is A(i), THEN y = w(i)T x′, (1)

i = 1, 2, . . . , c, where x ∈ Rt is the input variable,
y ∈ R is the output variable,x′ , [xT 1]T is the aug-
mented input vector,w(i) = [w̃(i)Tw

(i)
0 ]T ∈ Rt+1 is

the vector of consequent parameters of thei-th rule, and
w

(i)
0 denotes the bias of thei-th model. A(i) is the an-

tecedent fuzzy set of thei-th rule, with membership func-
tion A(i)(x) : Rt → [0, 1]. In the case of Gaussian mem-
bership functions and the algebraic product as thet-norm,
the fuzzy antecedent is defined as

A(i)(x) ,
t∏

j=1

exp
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)2
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where parametersc(i)j , s
(i)
j , i = 1, 2, . . . , c; j =

1, 2, . . . , t are centres and dispersions of the membership

functions for the i-th rule and thej-th input variable.
These parameters are obtained as

c
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j =
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n=1
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N∑
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, (4)

where uin denotes an element of the partition matrix
obtained from the fuzzyc-means clustering of the input
space.

For the inputx, the overall output of the fuzzy model
is completed with a weighted averaging aggregation of
outputs of individual rules (1) as (Janget al., 1997; Wang,
1998)

y = f(x,W) =

c∑
i=1

A(i)(x)w(i)T x′

c∑
i=1

A(i)(x)

=
c∑

i=1

A(i)(x)w(i)T x′, (5)

whereA(i)(x) is the normalized firing strength of thei-
th rule for input x and W = [w(1)T w(2)T · · ·w(c)T ]T

denotes the consequent parameter vector. It must also be
noted that (2) and (5) describe a radial-basis-like neural
network. If we define

d(x′) =
[
A(1)(x)x′T

...A(2)(x)x′T
... · · ·

...A(c)(x)x′T
]T

,

then the overall output of the fuzzy system can be written
as y = dT (x′)W.

Usually, for the consequent parametersw(i), the
Least Squares (LS) estimation is applied (Janget al.,
1997; Setnes, 2000; Sugeno and Kang, 1988). There are
two approaches: (a) to solvec independent weighted LS
problems, one for each if-then rule, (b) to solve one global
LS problem. The first approach leads to a more reliable
local performance, while the second one leads to a better
global performance. Combining both the approaches is
suggested in (Yenet al., 1998). In the present work the
second approach (global learning) will be used to intro-
duce the idea of learning tolerant of imprecision.
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Suppose that we have the training setTr(N) =
{(x1, y1), (x2, y2), . . . , (xN , yN )}, whereN is the data
cardinality, and each independent input datumxi ∈ Rt

has the corresponding dependent output datumyi ∈ R.
For fixed antecedents obtained via the clustering of the
input space, the LS solution to the consequent parame-
ter estimation, minimizing the following criterion function
(Yenet al., 1998):

I(W) =
N∑

n=1

[
yn − f(xn,W)

]2
= (y −XW)T (y −XW), (6)

can be written in the matrix form as

W = (XT X)−1XT y, (7)

where X , [d(x′1) d(x′2) · · · d(x′N )]T ∈ RN×c(t+1),
y = [y1 y2 . . . yN ]T .

The aim of this work is twofold: first, to introduce
a new learning method tolerant of imprecision in the case
of fuzzy system design methods, (2)–(7); next, to inves-
tigate the generalization ability of the fuzzy system ob-
tained by means of this learning method for real-world
high-dimensional data.

This paper is organized as follows: Section 2 pre-
sents an introduction to theε-insensitive learning method
and shows that this approach leads to a quadratic pro-
gramming problem. Section 3 presents a new numer-
ical method, called incremental learning, to solve the
problem of ε-insensitive learning.ε-insensitive learning
by solving a system of inequalities, without the need to
solve the quadratic programming problem, is introduced
in Section 4. Section 5 presents simulation results and
a discussion for the fuzzy modelling of real-world high-
dimensional data. Finally, conclusions are drawn in Sec-
tion 6.

2. ε-Insensitivity in Neuro-Fuzzy System
Learning

The problem of learning tolerant of imprecision can be
presented as determining the consequent parametersW,
where theε-insensitive loss function is used in order to fit
the fuzzy model to real data from the training set. For a
scalar argumentg, the ε-insensitive loss function has the
form (Vapnik, 1998)

egdε ,

 0, |g| ≤ ε,

|g| − ε, |g| > ε,
(8)

and for a vector argumentg = [g1 g2 . . . gN ]T , it can be
defined as

egdε ,
N∑

n=1

egndε . (9)

Using the augmented input vectorx′, we seek a lin-
ear regression model in the form

y = dT (x′)W, W ∈ Rc(t+1), (10)

which minimizes the following criterion:

min
W∈Rc(t+1)

I(W) ,
N∑

n=1

⌉
yn − dT (x′n)W

⌈
ε

+
τ

2
W̃T W̃, (11)

where W̃ is a reduced vectorW, with excluded
components corresponding to the biases:̃W =
[w̃(1)T w̃(2)T · · · w̃(c)T ]T . The second term in (11) is re-
lated to the minimization of the Vapnik-Chervonenkis di-
mension (complexity) of the regression model (Vapnik,
1998). The parameterτ ≥ 0 controls the trade-off be-
tween the complexity of the regression model and the
amount up to which the errors are tolerated.

Taking into account the fact that̂yn = dT (x′n)W =

d̃T (xn)W̃ + a, where d̃(x) = [A(1)(x)xT
...A(2)(x)xT

...

· · ·
...A(c)(x)xT ]T anda = A(1)(x)w(1)

0 +A(2)(x)w(2)
0 +

· · · + A(c)(x)w(c)
0 denotes the overall bias, the criterion

(11) can be written in the form

min
W̃∈Rct,a∈R

I(W̃, a) ,
N∑

n=1

⌉
yn − d̃T (xn)W̃ − a

⌈
ε

+
τ

2
W̃T W̃. (12)

In a general case, the inequalitiesyn− d̃T (xn)W̃−
a ≤ ε and d̃T (xn)W̃+a−yn ≤ ε are not satisfied for all
data (xn, yn). If we introduce slack variablesξ+n , ξ

−
n ≥

0, then for all data(xn, yn) we can write yn − d̃T (xn)W̃ − a ≤ ε+ ξ+n ,

d̃T (xn)W̃ + a− yn ≤ ε+ ξ−n .
(13)

Using (13), the criterion (12) can be written in the form

I(W̃, a) =
1
τ

N∑
n=1

(
ξ+n + ξ−n

)
+

1
2
W̃T W̃, (14)
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and be minimized subject to constraints (13) andξ+n ≥ 0,
ξ−n ≥ 0. The Lagrangian function of (14) with the above
constraints is

G =
1
2
W̃T W̃ +

1
τ

N∑
n=1

(ξ+n + ξ−n )

−
N∑

n=1

λ+
n

(
ε+ ξ+n − yn + d̃T (xn)W̃ + a

)

−
N∑

n=1

λ−n

(
ε+ ξ−n + yn − d̃T (xn)W̃ − a

)

−
N∑

n=1

(µ+
n ξ

+
n + µ−n ξ

−
n ), (15)

where λ+
n , λ

−
n , µ

+
n , µ

−
n ≥ 0 are the Lagrange multipli-

ers. The objective is to minimize this Lagrangian with
respect to W, a, ξ+n , ξ

−
n . It must also be maximized

with respect to the Lagrange multipliers. The follow-
ing optimality conditions (the saddle point of the La-
grangian) are obtained by differentiating (15) with respect
to W̃, a, ξ+n , ξ

−
n and setting the results to zero:

∂G

∂W̃
= W̃ −

N∑
n=1

(
λ+

n − λ−n
)
xn = 0,

∂G

∂a
=

N∑
n=1

(
λ+

n − λ−n
)

= 0,

∂G

∂ξ+n
=

1
τ
− λ+

n − µ+
n = 0,

∂G

∂ξ−n
=

1
τ
− λ−n − µ−n = 0.

(16)

The last two conditions (16) and the requirements
µ+

n , µ
−
n ≥ 0 imply that λ+

n , λ
−
n ∈ [0, 1/τ ] . From the first

condition of (16), we obtain the so-called support vector
expansion (Vapnik, 1998):

W̃ =
N∑

n=1

(
λ+

n − λ−n
)
xn, (17)

i.e. W̃ can be described as a linear combination of some
training data called support vectors. Putting conditions
(16) in the Lagrangian (15), we get

G = −1
2

N∑
n=1

N∑
j=1

(λ+
n − λ−n )(λ+

j − λ
−
j )d̃T (xn)d̃(xj)

− ε
N∑

n=1

(λ+
n + λ−n ) +

N∑
n=1

(λ+
n − λ−n )yn. (18)

Maximization of (18) with respect toλ+
n , λ

−
n subject to

constraints 
N∑

n=1

(λ+
n − λ−n ) = 0,

λ+
n , λ

−
n ∈ [0, 1/τ ]

(19)

is referred to as the Wolfe dual formulation of (15). It
is well known from optimization theory that at the sad-
dle point, for each Lagrange multiplier, the Karush-Kuhn-
Tucker (KKT) conditions must be satisfied:

λ+
n (ε+ ξ+n − yn + d̃T (xn)W̃ + a) = 0,

λ−n (ε+ ξ−n + yn − d̃T (xn)W̃ − a) = 0,(
1
τ
− λ+

n

)
ξ+n = 0,(

1
τ
− λ−n

)
ξ−n = 0.

(20)

From the last two conditions of (20), we see that
λ+

n ∈ (0, 1/τ) =⇒ ξ+n = 0 and λ−n ∈ (0, 1/τ) =⇒
ξ−n = 0. In this case, from the first two conditions of (20),
we have{

a = yn − d̃T (xn)W̃ − ε for λ+
n ∈ (0, 1/τ),

a = yn − d̃T (xn)W̃ + ε for λ−n ∈ (0, 1/τ).
(21)

Thus we can determine the parametera from (21) by tak-
ing anyxn for which there are Lagrange multipliers in the
open interval(0, 1/τ). From a numerical point of view,
it is better to take the mean value ofa obtained for all
data for which the conditions from (21) are satisfied. Tak-
ing into account thata = A(1) (x)w(1)

0 + A(2)(x)w(2)
0 +

· · · + A(c)(x)w(c)
0 and

∑c
i=1 A(i)(x) = 1, we see that

w
(i)
0 = a, i = 1, 2, . . . , c.

Computation of the parameters̃W and a leads
to the quadratic programming (QP) problem (18) with
bound constraints and one linear equality constraint (19).
For a large training set, standard optimization techniques
quickly become intractable in their memory and time re-
quirements. Standard implementation of QP solvers re-
quires the explicit storage ofN × N matrix. Osunaet
al. (1997) and Joachims (1999) show that large QP prob-
lems can be decomposed into a series of smaller QP sub-
problems over part of data. Platt (1999) proposes the Se-
quential Minimal Optimization algorithm. This method
chooses two Lagrange multipliers and finds their optimal
values analytically. A disadvantage of these techniques
is that they may give an approximate solution and may
require many passes through the training set. In (Cauwen-
berghs and Poggio, 2001) an alternative approach that de-
termines the exact solution forp training data pairs in
terms of that forp − 1 data pairs to solve classification
problems is presented. In the next section this idea is used
to solve the problem of fuzzy modelling.
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3. Incremental Learning

Putting the first and the last two conditions of (16) in the
Lagrangian (15), we get

H =−G=
1
2

N∑
n=1

x
N∑

j=1

(λ+
n−λ−n )(λ+

j −λ
−
j )d̃T (xn)d̃(xj)

+ ε
N∑

n=1

(λ+
n + λ−n )−

N∑
n=1

(λ+
n − λ−n )yn

− a
N∑

n=1

(λ+
n − λ−n ). (22)

Defining λ±n , λ+
n − λ−n ∈ [−1/τ,+1/τ ] the mini-

mization of (22) can be written in the form

min
{−1/τ≤λ±n≤+1/τ},a∈R

H

=
1
2

N∑
n=1

N∑
j=1

λ±n λ
±
j Knj + ε

N∑
n=1

∣∣λ±n ∣∣
−

N∑
n=1

λ±n yn − a
N∑

n=1

λ±n , (23)

whereKnj , d̃T (xn) d̃ (xj) is the dot-product kernel.

Differentiating (23) with respect toλ±n and a yields
∂H

∂λ±n
=

N∑
j=1

Knjλ
±
j + a+ ε sgn(λ±n )− yn,

∂H

∂a
=

N∑
j=1

λ±j .

(24)

Using (17), we see that the first equation of (24) is the

KKT condition. By defininghn ,
N∑

j=1

Knjλ
±
j + a −

yn = d̃T (xn)W̃ + a− yn, the following conditions are
satisfied:

• if hn > 0, thenxn is below the regression line,

• if hn = 0, thenxn is on the regression line,

• if hn < 0, thenxn is above the regression line,

and

• if hn + ε < 0, then xn is above the insensitivity
region, andλ±n = +1/τ , see Fig. 1(c),

• if hn + ε = 0, then xn is the support vector of the
regression, andλ±n ∈ (0,+1/τ), see Fig. 1(b),

• if hn + ε > 0, thenxn is on the insensitivity region,
and λ±n → 0+, see Fig. 1(a),
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x
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x
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x
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h
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h
n
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x
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x
n

x
n

(a) (b) (c)

Fig. 1. The Karush-Kuhn-Tucker conditions
for points above the regression line.

• if hn− ε < 0, thenxn is on the insensitivity region,
and λ±n → 0−, see Fig. 2(a),

• if hn − ε = 0, then xn is the support vector of the
regression, andλ±n ∈ (−1/τ, 0) , see Fig. 2(b),

• if hn − ε > 0, then xn is below the insensitivity
region, andλ±n = −1/τ , see Fig. 2(c).
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Fig. 2. The Karush-Kuhn-Tucker conditions
for points below the regression line.

The parameters{λ±n , a} explicitly define the parti-
tion of the training dataTr(N) into the following groups:
support vector setSv(N) (Fig. 1(b) and Fig. 2(b)), error
vectors setEr(N) (Fig. 1(c) and Fig. 2(c)), and remain-
ing vectors setRe(N) (Fig. 1(a) and Fig. 2(a)), where
Sv(N) ∪ Er(N) ∪ Re(N) = Tr(N). In incremental learn-
ing the solution in the iterationp is obtained from the
solution in the iterationp − 1. In the iteration p the
data pair (xc, yc) is added to the training setTr(p) =
Tr(p−1) ∪ {(xc, yc)}. First, we assume that initiallyλ±c
is equal to zero, and it is changed by a small value∂λ±c .
The regression parameters̃W anda change their values in
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each incremental step to keep all elements from the train-
ing set in equilibrium, i.e. to keep the KKT conditions ful-
filled. These conditions can be differentially expressed as

∂hn = Knc∂λ
±
c +

∑
j∈Sv(p−1)

Knj∂λ
±
j + ∂a = 0,

∂λ±c +
∑

j∈Sv(p−1)

∂λ±j = 0.
(25)

For vectors from the support setSv(p−1) =
{(xs1 , ys1), (xs2 , ys2), . . . , (xs`

, ys`
)}, the following

conditions are fulfilled:∂hsk
= 0, 1 ≤ k ≤ `. Writing

(25) for Sv(p−1) in the matrix form yields

Γ


∂a

∂λ±s1

...

∂λ±s`

 = −


1

Ks1c

...

Ks`c

 ∂λ±c , (26)

whereΓ is the symmetric non-positive definite Jacobian

Γ =


0 1 · · · 1

1 Ks1s1 · · · Ks1s`

...
...

...
...

1 Ks`s1 · · · Ks`s`

 . (27)

In the equilibrium state, we have ∂a = ψ∂λ±c ,

∂λ±n = ρn∂λ
±
c ,

(28)

with sensitivities given by
ψ

ρs1

...

ρs`

 = −Υ


1

Ks1c

...

Ks`c

 , (29)

whereΥ = Γ−1, and for allxj outsideSv(p−1) we have
ρj = 0. Substituting (28) in∂hn yields

∂hn = κn∂λ
±
c , (30)

whereκn = 0 for all xn ∈ Sv(p−1), and

κn = Knc+
∑

j∈Sv(p−1)

Knjρj +ψ, for xn /∈ Sv(p−1). (31)

If ∂λ±c is sufficiently large, then elements ofTr(p−1)

move across the setsSv(p−1), Er(p−1), Re(p−1). On
the basis of (28) and (30), it is possible to determine the

largest admissible value of∂λ±c to the first membership
change according to

• hc + ε ≤ 0, with equality when(xc, yc) joins to
Sv(p−1),

• hc − ε ≥ 0, with equality when(xc, yc) joins to
Sv(p−1),

• λ±c ≤ +1/τ , with equality when(xc, yc) joins to
Er(p−1),

• λ±c ≥ −1/τ , with equality when(xc, yc) joins to
Er(p−1),

• 0 ≤ λ±n ≤ +1/τ , ∀n ∈ Sv(p−1), with equality to0,
when (xn, yk) transfers fromSv(p−1) to Re(p−1),
and equality to+1/τ , when (xn, yn) transfers from
Sv(p−1) to Er(p−1),

• −1/τ ≤ λ±n ≤ 0, ∀n ∈ Sv(p−1), with equality
to −1/τ , when (xn, yk) transfers fromSv(p−1) to
Er(p−1), and equality to0, when (xn, yk) transfers
from Sv(p−1) to Re(p−1),

• hn + ε ≤ 0, ∀n ∈ Er(p−1), with equality when
(xn, yk) transfers fromEr(p−1) to Sv(p−1),

• hn − ε ≥ 0, ∀n ∈ Re(p−1), with equality when
(xn, yk) transfers fromRe(p−1) to Sv(p−1),

• hn + ε ≥ 0, ∀n ∈ Re(p−1), with equality when
(xn, yk) transfers fromRe(p−1) to Sv(p−1),

• hn − ε ≤ 0, ∀n ∈ Re(p−1), with equality when
(xn, yk) transfers fromRe(p−1) to Sv(p−1).

If the support vector set is extended by inclusion of
an elements`+1, then the matrixΥ should be extended,
too. The matrixΓ is extended by adding one row and one
column:

Γ(p) =


1

Γ(p−1) Ks1s`+1

...

1 Ks`+1s1 · · · Ks`+1s`+1

 . (32)

Using for (32) the extension principle (from matrix theory
(Gantmacher, 1959)) and (29), (31) yields

Υ(p) =


0

Υ(p−1)
...

0
0 · · · 0 0


+

1
κs`+1

[ −→ρ
1

] [
−→ρ 1

]
, (33)
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where−→ρ = [ψρ1 · · · ρs`
]. The extension principle is for-

mulated as follows:[
A u

vT β

]−1

=

 A−1 + A−1uvT A−1

β′ −A−1u
β′

−vT A−1

β′
1
β′

 ,
where β′ = β − vTA−1u. In our case,A = Γ(p−1),
A−1 = Υ(p−1), vT = [1Ks`+1s1 · · ·Ks`+1s`

], u =
[1Ks1s`+1 · · ·Ks`s`+1 ]

T and β = Ks`+1s`+1 .

The above process is reversible and when the sup-
port vector s`+1 is excluded, we can use (33) to obtain
Υ(p−1). In the case of excluding the vectorsj , j 6= `+1,
we can change the position of this vector to` + 1, and
use (33):

∀
m,n 6=j; m,n∈Sv

(p−1)
i

m,n 6=0

Υ(p−1)
mn = Υ(p)

mn −
[
Υ(p)

mjΥ
(p)
jn

]/
Υ(p)

jj .

(34)
The incremental learning algorithm can be summarized in
the following steps:

1. Initialize hn = −yn, λ±n = 0, ∀n, Sv(0) =
Er(0) = Re(0) = ∅, p = 1.

2. Select the element with indexc as the farthest one
from the regression line.

3. If hc+ε > 0 or hc−ε < 0, thenRe(p) = Re(p−1)∪
{(xc, yc)}.

4. If hc + ε ≤ 0, then increaseλ±c so that one of the
conditions is fulfilled:

• hc + ε = 0, Sv(p) = Sv(p−1) ∪ {(xc, yc)},
updateΥ(p),

• λ±c = +1/τ , Er(p) = Er(p−1) ∪ {(xc, yc)},

• One element fromTr(p−1) is transferred be-
tweenSv(p−1), Er(p−1), Re(p−1),

5. If hc + ε ≥ 0, then decreaseλ±c so that one of the
conditions is fulfilled:

• hc + ε = 0, Sv(p) = Sv(p−1) ∪ {(xc, yc)},
updateΥ(p),

• λ±c = −1/τ , Er(p) = Er(p−1) ∪ {(xc, yc)},

• One element fromTr(p−1) is transferred be-
tweenSv(p−1), Er(p−1), Re(p−1).

6. Updateλ±c ←− λ±c + ∂λ±c ; λ±n ←− λ±n + ρn∂λ
±
c ,

(xn, yn) ∈ Sv(p−1); a ←− a + ψ∂λ±c ; hn ←−
hn + κn∂λ

±
c , (xn, yn) /∈ Sv(p−1),

7. If there are no processed elements inTr(N), then
p←− p+ 1, go to Step2.

Remark 1.

• In essence, it is not important which data pair is se-
lected as(xc, yc). But to increase the convergence of
the incremental learning, the data pair farthest from
the regression line is selected.

• The incremental learning has the computational bur-
den approximately quadratic with the cardinality of
the training set. It also is approximately linear with
respect to the data dimensionalityt.

• Some data pairs are selected several times and, from
a computational point of view, it is profitable to cache
the kernel evaluations.

4. ε-Insensitive Learning by Solving
a System of Linear Inequalities

Let Ĩ be the identity matrix with the elements on the main
diagonal corresponding to the bias elements equal to zero,

Ĩ = diag ([uT 0
...uT 0

... · · ·
...uT 0]T . Criterion (11) can be

rewritten in the matrix form:

min
W∈Rc(t+1)

I(W) , ey −XWdε +
τ

2
WT ĨW. (35)

To make the minimization problem (35) mathe-
matically tractable, we see that the minimization of
the first term can be equivalently written as the re-
quirementsXW + εu > y and XW − εu < y,
where u is the vector of ones of the appropriate di-
mension. Defining the extended versions ofX and y:

Xe , [d(x′1)d(x′2) · · · d(x′N )
...− d(x′1)− d(x′2) · · · −

d(x′N )]T andye , [y1−εy2−ε · · · yN −ε
... −y1−ε

−y2 − ε · · · −yN − ε]T , the above requirements can
be written asXeW − ye > 0. In practically inter-
esting cases, not all inequalities in the above system are
fulfilled (except for the case whereε is so large that all
data fall in the insensitivity region). In computations, the
above inequality system is replaced by the equality system
XeW − ye = b, whereb is an arbitrary positive vector
b > 0.

We define the error vector ase = XeW − ye − b.
If the p-th (2p-th) component ofe, 1 ≤ p ≤ N , is pos-
itive, ep ≥ 0 (e2p ≥ 0), then thep-th datum falls into
the insensitivity region, and by increasing the respective
component ofb, ep (e2p) can be set to zero. If thep-th
(2p-th) component ofe is negative, then thep-th datum
falls outside the insensitivity region and it is impossible
to decreasebp (b2p) and to fulfil the conditionbp > 0
(b2p > 0). In other words, we obtain a non-zero error
only for a datum outside the insensitivity region. Our
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minimization problem (35) can be approximated by the
following:

min
W∈Rc(t+1),b>0

I(W,b)

,
(
XeW − ye − b

)T
×De

(
XeW − ye − b

)
+
τ

2
WT ĨW, (36)

where De denotes a diagonal weighting matrix. For
mathematical simplicity, the above criterion is an approx-
imation of (35), where the squared error rather than the
absolute error is used. In what follows, the absolute error
will be used.

We obtain optimality conditions by differentiating
(36) with respect toW and b, and by setting the results
to zero: W =

(
XT

e DeXe + τ
2 Ĩ
)−1

XT
e De (ye + b) ,

e = XeW − ye − b = 0.
(37)

From the first equation of (37), we see that the vector
W depends on the vectorb. The vectorb can be called
a margin vector because its components determine the dis-
tance from a datum to the insensitivity region. For fixed
W, if a datum is placed in the insensitivity region, the
corresponding distance can be increased in order to obtain
the zero error. However, if a datum is placed outside the
insensitivity region, then the error is negative and we can
decrease the error only by decreasing the corresponding
component ofb. The only way to preventb from con-
verging to zero is to start withb > 0 and to refuse to
decrease any of its components. Ho and Kashyap pro-
posed an iterative algorithm for alternately determining
W and b, where components ofb cannot decrease (Ho
and Kashyap, 1965, Ho and Kashyap, 1966). Now, this
algorithm can be extended to our weighted squared error
criterion with the term corresponding to the VC dimen-
sion. The solution is obtained in an iterative way. Vector
W is determined on the basis of the first equation of (37),
i.e. W[k] = (XT

e DeXe + τ/2Ĩ)−1XT
e De(ye + b[k]) ,

where superscript[k] denotes the iteration index. Com-
ponents of vectorb are modified by components of the
error vectore, but only in the case when it results in in-
creasing components ofb. Otherwise, the components of
b remain unmodified. So, we write this modification as
follows:

b[k+1] = b[k] + ρ
(
e[k] +

∣∣∣e[k]
∣∣∣) , (38)

whereρ > 0 is a parameter.

The absolute error criterion, equivalent to (35), is
easily obtained by selecting the diagonal weighting ma-
trix De = diag(1/|e1|, . . . , 1/|e2N |), whereei is the i-th

component of the error vector. However, the error vector
depends onW, so we use vectorW from the previous
iteration. This procedure is based on the premise that se-
quential vectorsW differ imperceptibly near the optimal
solution. The procedure of looking for optimalW and
b may be called iterative learning and can be summarized
in the following steps:

1. Fix τ ≥ 0, ρ > 0 and D[1]
e =diag(uT ). Initialize

b[1] > 0. Set iteration indexk = 1.

2. Set W[k] = (XT
e D[k]

e Xe + τ/2Ĩ)−1XT
e D[k]

e (ye +
b[k]).

3. Set e[k] = XeW[k] − ye − b[k].

4. Set D[k+1]
e = diag(1/|e[k]

1 |, . . . , 1/|e
[k]
2N |).

5. Set b[k+1] = b[k] + ρ[e[k] + |e[k]|].

6. If (‖b[k+1] − b[k]‖ > ξ) and (k < kmax), then
k = k + 1, go to Step2.

Remark 2. ξ is a pre-set parameter. The maximal num-
ber of iterations is denoted bykmax. Appendix A shows
that for 0 < ρ < 1 and any diagonal matrixDe, the
above algorithm is convergent. If Step 4 in this algorithm
is omitted, then the squared error minimization procedure
is obtained. In practice, the divide-by-zero-error in Step 4
does not occur. This follows from the fact that some com-
ponents of vectore tend to zero as[k] tends to infinity.
But in this case the convergence is slow and Condition 6
stops the algorithm.

5. Numerical Experiments and Discussion

In all experimentsb[1] = 10−6, ρ = 0.98 and kmax =
100 were used in the iterative learning algorithm. The it-
erations were stopped when the Euclidean norm in a suc-
cessive pair ofb vectors was less than10−4. For both the
incremental and the iterative learning the fuzzyc-means
clustering algorithm was applied with the weighted ex-
ponent equal to2. A random partition matrix was used
for initialization, and iterations were stopped when the
Frobenius norm in a successive pair of partition matri-
ces was less than10−6. All experiments were run in the
MATLAB R© environment.

The purpose of these experiments was to compare
the generalization ability of the proposed neuro-fuzzy sys-
tem with learning tolerant of imprecision and the clas-
sical (zero-tolerant) learning. The following benchmark
databases were used:

• Data originating from Box and Jenkins’ work (1976)
concerning the identification of a gas oven. Air and
methane were delivered into the gas oven (gas flow



Improving the generalization ability of neuro-fuzzy systems by ε-insensitive learning 445

in ft/min—an input signalx (n) ) to obtain a mix-
ture of gases containingCO2 (percentage content—
output signal y (n) ). The data consisted of296
pairs of input-output samples with the sampling pe-
riod of 9 s. To identify the model, the vectorsxn ,
[y(n− 1) . . . y(n− 4)x(n)x(n− 1) . . . x(n− 6)]T

andyn , y(n) were used as the input and output, re-
spectively. The learning set consists of the first100
pairs of data and the testing set consists of the re-
maining 190 pairs of data.

• Data originating from (Weigendet al., 1990) con-
cerning the prediction of the number of sunspots.
The data consisted of280 measurements of sunspot
activity x(n) with a one-year sampling period, from
1700 to 1979 A.D. To identify the model, the vec-
tors xn , [x(n − 1)x(n − 2)x(n − 3) . . . x(n −
12)]T , yn , x(n) were used as the input and out-
put, respectively. The learning set consists of the
first 100 vectors and the testing set consists of the
remaining168 vectors.

Parametersτ and ε were changed in the range from
0 to 0.5 (step 0.01) and the number of if-then rules was
changed from2 to 6. After the training stage (neuro-
fuzzy system design on the training set), the generaliza-
tion ability of the designed model was determined as a
root mean squared error (RMSE) on the test set. The
training stage was repeated25 times for different random
initializations of the FCM method, for each combination
of the above parameter values. Tables 1 and 2 show the
lowest RMSE for each number of if-then rules for Box-
Jenkins and Sunspot databases, respectively. Also values
of τ and ε parameters for which the lowest RMSE was
obtained as well as RMSE for zero-tolerant learning are
shown.

If we take these tables into account, several obser-
vations can be made. First of all, it should be noted
that despite the number of if-then rules, learning toler-
ant of imprecision leads to a better generalization com-
pared with zero-tolerant learning, for both the databases.
The best generalization for each number of rules is ob-

Table 1. RMSE obtained for the testing part of the Box-Jenkins
time series.

c Incremental learning Iterative learning Zero-tolerant learning

RMSE ε τ RMSE ε τ RMSE

2 0.3533 0.01 0.25 0.3455 0.02 0.02 0.3622

3 0.3731 0.10 0.20 0.3582 0.09 0.02 0.3785

4 0.3722 0.01 0.08 0.3730 0.02 0.32 0.4349

5 0.3886 0.10 0.10 0.3519 0.02 0.16 0.4272

6 0.5298 0.01 0.01 0.4956 0.02 0.48 0.5395

Table 2. RMSE obtained for the testing part of the Sunspot
database.

c Incremental learning Iterative learning Zero-tolerant learning

RMSE ε τ RMSE ε τ RMSE

2 0.08945 0.10 0.10 0.08676 0.12 0.42 0.09641

3 0.08010 0.07 0.10 0.08021 0.08 0.18 0.08569

4 0.08612 0.07 0.07 0.08116 0.08 0.20 0.1112

5 0.1028 0.06 0.07 0.09331 0.01 0.40 0.1164

6 0.08434 0.05 0.08 0.08823 0.05 0.32 0.1404

tained for non-zero parametersε and τ . It must also be
noted that we observe different dependencies of the gen-
eralization ability on the number of if-then rules for zero-
tolerant learning and learning tolerant of imprecision. For
zero-tolerant learning, increasing the number of rules re-
sults in decreasing fast the generalization ability due to the
overfitting effect of the training set. For both the learn-
ing methods tolerant of imprecision we have a slower de-
crease in of the generalization ability. The best general-
ization ability for Box-Jenkins data is obtained using the
iterative learning algorithm withc = 2, ε = 0.02 and
τ = 0.02. However, for the Sunspot database the best
generalization is obtained for the incremental learning al-
gorithm with c = 3, ε = 0.07 and τ = 0.1.

Figure 3 illustrates the performance of learning tol-
erant of imprecision (the iterative learning withc = 2,
ε = 0.02, τ = 0.02) for the Box-Jenkins data. In this
figure, the output (solid line) of the original data and the
output of the model (dotted line) are shown. Figure 4 il-
lustrates the performance of learning tolerant of impreci-
sion (the incremental learning withc = 3, ε = 0.07,
τ = 0.10) for the Sunspot database. In this figure, the
output (solid line) of the original data and the output of
the model (dotted line) are shown.

Finally, it can be noted that the proposed iterative
learning algorithm tolerant of imprecision converges after
a few iterations, but its computational burden is approxi-
mately four times bigger in comparison with zero-tolerant
learning. The computational burden of incremental learn-
ing is approximately seven times bigger in comparison
with zero-tolerant learning.

A simple test for the robustness of the proposed
learning method against outliers was also performed. For
the Box-Jenkins database, the first output sampley1,
which has the original value equal to52.7, was set to100.
Hence only one outlier was added to the database. In
this case, zero-tolerant learning leads to the RMSE for the
testing part of the database equal to2.3354. Incremental
learning leads to the RMSE equal to0.3801 for ε = 0.01
and τ = 0.25. Iterative learning leads to the RMSE equal
to 0.4243 for ε = 0.07 and τ = 0.10. Thus, in the pres-
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Fig. 3. Output of Box-Jenkins data (a solid line), out-
put of the fuzzy model with learning tolerant of
imprecision, the iterative learning withc = 2,
ε = 0.02, τ = 0.02 (a dotted line).
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Fig. 4. Sunspot data (a solid line), output of the fuzzy
model with learning tolerant of imprecision, the
incremental learning withc = 3, ε = 0.07,
τ = 0.1 (a dotted line).

ence of outliers the proposed learning methods improve
the generalization ability of fuzzy systems. If the first
two output samples are set to100, then the zero-tolerant,
incremental and iterative learning algorithms lead to the
RMSE equal to4.9753, 0.3867 and0.4924, respectively.

Interesting questions for future research are as fol-
lows: (i) Is it possible to improve the generalization ability
of a fuzzy model by its fine tuning using gradient methods
based on aε-insensitive loss function? (ii) Is it true that
using theε-insensitive fuzzyc-means (Łęski, 2001) in-
stead of the FCM clustering improves the generalization
ability of a designed fuzzy system?

6. Conclusions

In this work, a new approach to fuzzy modelling with
learning tolerant of imprecision is presented. Theε-
insensitive loss function is used in this method of learning.
Computationally effective numerical methods of design-
ing neuro-fuzzy systems called the incremental and the it-
erative learning are introduced. These methods establish a
connection between fuzzy modelling and statistical learn-
ing theory where an easy control of the VC-dimension
(system complexity) is permitted. Two numerical exam-
ples show the usefulness of the new method in designing
fuzzy systems with an improved generalization ability and
robustness against outliers when compared with the clas-
sical zero-tolerant learning. Learning tolerant of impre-
cision always leads to a better generalization when com-
pared with classical methods. It is impossible to decide
which tolerance learning method is the best one. The in-
cremental learning algorithm has better outlier robustness
and for some databases leads to a better generalization
with respect to iterative learning, but its computational
burden is approximately twice as big. The iterative learn-
ing is easier to implement and for some databases leads to
a better generalization with respect to incremental learn-
ing.

References

Bezdek J.C. (1982):Pattern Recognition with Fuzzy Objective
Function Algorithms. — New York: Plenum Press.

Box G.E.P. and Jenkins G.M. (1976):Time Series Analysis.
Forecasting and Control. — San Francisco: Holden-Day.

Cauwenberghs G. and Poggio T. (2001):Incremental and decre-
mental support vector machine learning. — Proc. IEEE
Neural Information Processing Systems Conference, Cam-
bridge MA: MIT Press, Vol. 13, pp. 175–181.

Chen J.-Q., Xi Y.-G. and Zhang Z.-J. (1998):A clustering algo-
rithm for fuzzy model identification. — Fuzzy Sets Syst.,
Vol. 98, No. 3, pp. 319–329.
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Appendix A

The first equation from (37) can be rewritten in the
form XT

e Dee = − τ
2 ĨW. Thus, for τ > 0 all el-

ements of the error vector cannot be zero. If we de-
fine X†

e , (XT
e DeXe + τ/2Ĩ)−1XT

e De and e[k]
+ ,

e[k] + |e[k]|, then using (37) and (38) yieldse[k+1] =
e[k] + ρ(XeX†

e − I)e[k]
+ and ĨW̃[k+1] = X†

e(b
[k] +

ρe[k]
+ ) = W̃[k] + ρX†e[k]

+ . Substitution of the above re-
sults in (36) givesI [k+1] = I [k] + 2ρe[k]T De(XeX†

e −
I)e[k]

+ + ρ2e[k]T
+ (XeX†

e − I)T De(XeX†
e − I)e[k]

+ +
2τρW̃[k]T ĨX†

ee
[k]
+ +τρ2e[k]T

+ X†T
e ĨX†

ee
[k]
+ . From the first

equation of (37) we haveXT
e Dee[k] = − τ

2 ĨW̃
[k].

Using the above and the equality2ρe[k]T De(XeX†
e−

I)e[k]
+ = ρe[k]T

+ De(XeX†
e − I)e[k]

+ , after some simple

algebra, we obtainI [k+1] − I [k] = ρ(ρ − 1)e[k]T Dee
[k]
+

+ρ2e[k]T
+ X†T

e (XT
e DeXe+τ/2Ĩ)X†

ee
[k]
+ −2ρ2e[k]T

+ DeXe

X†
ee

[k]
+ . SinceX†T

e (XT
e DeXe+τ/2Ĩ)X†

e =DeXeX†
e, the

second and third terms reduce to−ρ2e[k]T
+ DeXeX†

ee
[k]
+ .

Thus I [k+1] − I [k] = ρ(ρ − 1)e[k]T Dee
[k]
+ −

ρ2e[k]T
+ DeXeX†

ee
[k]
+ . The matrix DeXeX†

e is symmet-
ric and positive semi-definite. As a result, the second term
is negative or zero. For0 < ρ < 1 the first term is nega-
tive or zero. Thus the sequenceI [1], I [2], . . . is monoton-
ically decreasing. Convergence requires thate[k]

+ tends
to zero (no modification in (37)), whilee[k] is bounded
away from zero, due toXT

e Dee = −τ ĨW.


