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Our thesis is that computing with words needs to account for the uncertainties associated with the meanings of words, and
that these uncertainties require using type-2 fuzzy sets. Doing this leads to a proposed architecture fquduakamgy

means of computing with words, i.e., tqparceptual computerthe Per-C. The Per-C includes an encoder, a type-2 rule-
based fuzzy logic system, and a decoder. It lets all human-computer interactions be performed using words. In this paper, a
quantitative language is established for the Per-C, and many open issues about the perceptual computer are described.
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1. Introduction another way, machines do not care about words, but peo-
ple do.

Zadeh (1996; 1999) coined the phrase “computing with In (Mendel, 1999), we first established a vocabu-

words”, see also (Wang, 2001), butour thesis ist@ts  |ary of 16 candidate words or phraseterms—that we

mean different things to different peojled so there is un-  thought would let us cover this interval. Those terms are:
certainty associated with words, which means that fuzzy ngne very little, a small amounta little bit, a bit, somea
logic (FL) must somehow use this uncertainty when it moderate amount fair amount a good amounta con-
computes with words (Mendel, 1999; 2001a). Type-1 FL gjderable amounta sizeable amounta large amounta
handles uncertainties about the meanings of words by us-gpstantial amount lot, an extreme amounanda max-
ing precisemembership functions (MFs). Once the type- jmum amountWe then surveyed students and asked them
1 MFs have been chosen, all uncertainty about the wordstg provide the end-points for intervals on the scale of 0—
disappears, because a type-1 MF is totally precise. Be-10 that they associated with each term. The 16 terms were
cause of that, type-1 MFs cannot handle the uncertainties;angomized in the survey and we collected 70 useable sur-
about words. We maintain that computing with words re- yeys. We then computed mean and standard deviation val-
quires using type-2 fuzzy sets. ues for the two end-points of each of the 16 terms’ inter-
Today, computing with words must still be done us- Vals, and plotted the interval for each term. These results

ing numbers, and, therefore, numeric intervals must beare depicted in Fig. 1.

associated with words. An earlier paper (Mendel, 1999) One of the most striking conclusions drawn from the
reported on an empirical study that was performed to de- processed data iinguistic uncertainty appears to be use-
termine how the scale 0—10 can be covered with words (orful in that it lets us cover the 0-10 range with a much
phrases). In typical engineering applications of FL, we do smaller number of terms than without Figure 2 depicts
not worry about this, because we choose the number ofthis for five terms (Fig. 2-3 in (Mendel, 2001a) demon-
fuzzy sets that will cover an interval arbitrarily, and then strates the coverage of the 0—10 range for three terms). In
choose the names for these sets just as arbitrarily (e.g.the context of firing rules, in a rule-based fuzzy logic sys-
zerg small positive medium positiveandlarge positivg. ten? (FLS), uncertainty can fire rulesThis cannot occur
This works fine for many engineering applications when in the framework of a type-1 FLS, but it can occur in the
rules are extracted from data. However, it is a question- framework of a type-2 FLSJncertainty can therefore be
able practice when rules are extracted from people. Putused to control the rule explosighat is so common in
an FLS. If, for example, we ignored uncertainty, and had

T This paper is an expanded version of (Mendel, 2001c). rules with three antecedents, each of which was described
1 A brief introduction to type-2 fuzzy sets is provided in Ap-
pendix A. 2 See Appendix B for a high-level description of an FLS.
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Based on these preliminary ideas, in the rest of this

a maximum aymount

fi---4-- 0 paper a specific architecture is proposed for making judg-
I-—————affff L ments by computing with words (hudgmentwe mean
e alor o -- an assessment of thevel of a variable of interest). Such
I i i L a computer will be called Rerceptual ComputerPer-C
R a large anount - for brevity. We believe that a generic all-purpose method-
[ R . o izeablé amou - - ology can be found for making judgments by computing
b ivmi erable amoutt ] with words, but we also belive that the specific details will
_i agoodamoint P be context dependent. So, for example, making judgments
F a fairiamount - i by computing with words for diagnostic medicine will
W modérate amount | have details that are different from those for making judg-
ome P - ments by computing with words for accounting. There are
k-i---o Py A many interesting and open issues associated with comput-
+I_“"{a;” b ““l‘ -1 ing with words, some of which are posed below.
a sinall armount
|----ferylmle v----i

6 ---1 2. Framework for a Perceptual Computer

The architecture for a perceptual computer is depicted in
Fig. 3. Perceptions (i.e., granulated terms, words) activate
Fig. 1. All 16 labels and their intervals and uncertainty bands. the Per-C and are also output by the Per-C; so, it is pos-
Solid lines are drawn between the sample means for the sible for a human to interact with the Per-C just using a
interval end-points and dashed lines are for #he stan- vocabulary—words. The mapping of words into words
dard deviation about each mean end-point. occurs within the Per-C and is accomplished using the
mathematics of type-2 rule-based FLSs. The humans that
interact with the Per-C do not have to be concerned with

0 1 2 3 4 5 6 7 8 9 10

a maximum amount

Fi---=-- @8- the mathematical details, although the designer of the Per-
| a large amount .I C must be.
o —— %mode ate a m"it_ L .| Perceptual Computer (Per-C)
some i Perceptions Type-2
none io very little words Fuzzy set
o-1-| . W ,

- Type-2 Fuzzy
0 1 2 3 4 5 6 7 8 9 10 Rl Logic System

. ) . D
Fig. 2. Although five labels cover 0-10, there is not much over- Perceptions Numbers  g°

lap between some of them. It is when the standard de-
viation information is used that a sufficient overlap is

achieved. Fig. 3. Architecture of a Perceptual Computer (Per-C).

W,

by six terms, it could take 216 rules to completely describe We let W; denote thei-th word from a vocabulary,
the fuzzy rule base. On the other hand, using three term L of Ny worlds (terms), i.e., '

for each antecedent requires a rule base with only 27 rules.
This is an 87.5% reduction in the size of the rule base. V= {WH, 1)
1S li=1"

Finally, as was conjectured in (Mendel, 2001a);
certainty is good in that it lets people make decisions (al- This vocabulary is context dependent, and may contain
beit conservative ones) rapidliPerhaps this is why some some terms that are common across contexts or are used
people can make decisions very quickly and others can-as adjectives (e.gsome a lot of, a maximum amount pf
not. The latter may have partitioned their variables into so V' is the vocabulary that a human uses to interface with
many fine sets that they get hung up among the resultingthe Per-C and which the Per-C uses to communicate its
enormous number of possibilities. They are the eternal findings back to the human (e.g., the 16 terms in Fig. 1).
procrastinators. This conjecture is supported by Klir and Each word inV' must have a type-2 MF associated with
Wierman (1998), who state: “Uncertainty has a pivotal it, which suggests that interval survey information must
role in any efforts to maximize the usefulness of systems be obtained for it. New words can be addedifpjust as
models.” a child continues to add words to his or her vocabulary,
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and interval information about each word in may also 3. Some Details of the Perceptual Computer
change over time.

The encodertransforms linguistic perceptions into
type-2 fuzzy sets that activate a rule-based type-2 FLS,
denoted byR. We denote bylV; the type-2 fuzzy set
output of the encoder. Note that the encoder is the samea. Vocabulary
as a fuzzifier; however, lwaysoutputs a type-2 fuzzy
set, whereas a general-purpose fuzzifier could output sin-
gleton, type-1 or type-2 fuzzy sets (Mendel, 2001a). This
is why we distinguish between an encoder and a fuzzifier.

The main goal of this section is to arrive at an input-output
formula for the Per-C of Fig. 3. To do this, we must pro-
vide some details for the elements of the Per-C.

Content experts need to be part of the process of estab-
lishing a meaningful vocabulary for specific judgments.
This vocabulary should be as large as possible in order
to provide a human with as much flexibility as possible.
A type-2 FLS is rule based, and its rules are con- After a behavior of interest for which judgments will be
text dependent. The rules are IF-THEN rules (which can made (e.g., flirtation) is identified, the indicators of that
include a rich variety of rules, e.g., incomplete IF rules, pehavior must be established (e.g., eye contact, touching,
mixed rules, fuzzy statement rules, comparative rules, un-acting witty, smiling, complementing, primping). A small
less rules, and quantifier rules (Wang, 1997)), whose an-sypset of the indicators needs to be established, because
tecedents and consequent are words that are from anryles will be fixed for that small subset. This can be done
tecedent and consequent vocabularies, and V¢, re- by means of an associated survey in which indicators are
spectively, where rank ordered. Scales then need to be established for each
indicator and the behavior of interéstNames and inter-

_ N
Va={Wallizi CV ) val information need to be established for each of the in-
and dicator’s fuzzy sets and behavior of interest’s fuzzy sets.
Doing this leads to the vocabulafy, and the antecedent
Vo = {We l X5 c V. (3) g Y

and consequent vocabulariég and V. It also leads to

In this paper, we assume that the words used in the type-2 MFs that are used for the words in all vocab-
V4 and Vo are subsets of the words ifv, and that u_Iaries. AIth_ough the i_nteryal surveys described in Sec-
N4 < Ny and No < Ny (e.g., V might be the  tion 1 contain uncertainty information about each term,
16 terms in Fig. 1, whereag, and Ve might be the five how_to use that |_nf0rmat|on to derive an associated type-2
terms in Fig. 2). The last assumptions mean that there isMF IS an open issue. Mendel (2001a) advocates trans-
acoarser granulatiorassociated with the antecedents and forming the interval uncertainties intofaotprint of un-
consequent than in the overall vocabulary. This is one way certainty (FOU) for each term, but this requires making
to control rule explosion. It is important, however, to al-  &n &priori choice for the shape of the primary MF (e.g.,
low the human to interact with the Per-C using the larger & Gaussian primary MF whose mean and/or standard de-
vocabulary so that this interaction is as natural as possi-viation are uncertain). Choosing an FOU to model lin-
ble. Because the words i and Vi are subsets of the ~ 9UiStic uncertainty is analogous to choosmg a probab|I|j[y
words in V, they will each have a type-2 MF associated densn_y funct|o.n to model randpm uncertainty. Ther_e is
with them. We denote by, the totality of antecedent N0 unique choice for an FOU, just as there is no unique

word type-2 MFs, and by the totality of consequent ~ choice for a type-1 MF. Hopefully, a Per-C will be robust
word type-2 MFs. to the choice of MF shapes, just as, e.g., a type-1 fuzzy

logic controller is. Recent results (Mendel, 2002) about
FOUs have demonstrated that a similar FOU can be ob-
‘tained for a triangular primary MF (where there can be un-
certainties about all three vertices), a trapezoidal primary
MF (where there can be uncertainties about all four ver-
tices), and a Gaussian primary MF (where both the mean
and standard deviation are uncertain). Thus it appears that
granulation of a type-1 fuzzy set to a type-2 fuzzy set re-
duces the problem of determining the type-1 MFs.

Because the type-2 FLS operates on numbers, scales

The output of the type-2 FLS is a numbé», which
is a result of a sequence of internal operations—inference
type-reduction, and defuzzification—which we shall de-
scribe in Section 3. At a very high level, we can describe
this output asO = f[W;, V4, Vo], where the exact nature
of the non-linear functionf|-] depends on many specific
choices that have to be made within the type-2 FLS (e.g.,
the kind of inference, type-reduction, and defuzzification).

The decoder D, mapsO = f[W;,Va, V] into a

word Wy, i.e., . - :
d must be established for each indicator and the behavior
Wa=D(O)C V. 4) 3 For some judgments (e.g., wealth), the indicators and judgments
will have natural scales, whereas for others (e.qg., flirtation) no nat-
How to actually do this is also brieﬂy discussed in Sec- ural scales exist. Instead of using scales, it may be possible to use
tion 3 a line of arbitrary length and percentages that are associated with

that length.



arms @ J.M. Mendel

of interestt Commonly used scales are 1 through 5, 0 pendix B in (Mendel, 2001a)), which might cause serious
through 5, 0 through 10, etc. The survey described in Sec-problems in a rule-based system.

tion 1 for the 16 terms was performed in a context-free

situation. An open issue is whether or not such context- C. Type-2 FLS
independent results can be applied when the terms areAs described in Appendix B, a type-2 FLS consists of
used within a specific context, e.g.9bme in a context-  a fuzzifier and an inference engine followed by type-
independent situation, is located (on a scale 0—10) in thereduction and defuzzification. The fact that all words are
interval [0.5, 6], then aresome touchingndsome primp- encoded using type-2 fuzzy sets means that the encoder
ing located over that same interval? There may also bealready accomplishes fuzzification.

situations where a natural scale already exists for an indi- Rules which establish the detailed architecture of the
cator (e.g., pressure, temperature). Is the interval assoCif| s gre the heart of any FLS. They remain the same re-
ated with, e.g.low pressure proportionally the same as gardless of whether we use type-2 or type-1 fuzzy sets in
the interval associated witbw temperatur@ If not, then the inference engine. What changes is the way in which
is there a way to achieve a scale-invariance for words soye model the antecedent and consequent fuzzy sets. To
that context-independent intervals can be used in context-pegin, a specific architecture must be chosen for the FLS.
dependent situations? Humans seem to understand cerrhjs will depend in part on how many indicators of a judg-
tain terms in a context-free situation, and are able to ap-ment are considered to be significant. More than two indi-
ply them in context-dependent ones, and also understanctators cause a problem because people do not like to an-
terms in a context and are able to adapt them to other con-yer many questions and have great difficulty in correlat-
texts; so, we conjecture that it ought to be possible for ing more than two things at a time (e.g., a two-antecedent
computers to do likewise. rule can be interpreted as providing therrelation be-

The FOUSs for the words ifi/ are pre-computed us-  tween the two antecedents). So, if more than two indi-
ing the word surveys described above. Another open issuecators are required, then some new architecture(s) will be
is how much uncertainty one should associate with the in- needed for the type-2 FLS, e.g., a parallel interconnection
terval end-points. Letr;, and oy denote the standard ©Of sub-advisors, or a hierarchical architecture. To date, no

deviations for the left and right end-points of a word’s such architectures have been published for type-2 FLSs,

interval, respectively, and let denote araction of un- SO this is another open issue.
certainty i.e., 0 < p < 1. Then, when we us@o, or Choices must be made to implement the (compo-
por forinterval end-point uncertainties, what & If p sitional) inference enginenamely the implication )

is chosen too large then all MFs will overlap too much. and ¢-norm () to be used. Although Mamdani implica-

A theory is needed to guide us in how much uncertainty tions and product or minimunt-norms are widely used
should be used to characterize the uncertainty of words. jn many engineering applications of an FLS, for the Per-
C the kind of implication and¢-norm to use are open
issues. In fact, any choices for implication émorm

The encoder transforms a word into a type-2 Mf;, . A different from those just mentioned will require new re-
type-2 MF is three-dimensional. Each element of an FOU sults to be developed for the extended sup-star compo-
has a possibility value—a secondary MF—assigned to it. sition of a type-2 FLS, which is yet another open is-
The union of all possibility values defined over the FOU sue. For example, Yager and Filev (1994) propose that
constitutes the type-2 MF. The FOU for each of the words Mamdani implication and logic implication( p V ¢) be

in V' is pre-computed, as described in Section 3A. The the lower and upper bound for the inference engine, and
remaining issue is what to choose for the secondary MFs.establish a procedureeempromise fuzzy reasonindn
Mendel (2001a; 2001b) advocates using interval sets be-which a linear combination (i.e., a parametric model) of
cause then all the remaining operations within the type-2 these two extremes is used. Further discussions about the
FLS are manageable. Additionally, even for a type-1 FLS manychoicesthat have to be made for the inference en-
there is no one best choice for the shape for an MF, so whygine as compared to rule-related uncertainties are given in
should we compound this by trying to choose secondary (Mendel and Wu, 2002).

MFs as arbitrary shapes?

B. Encoder

Rules are type-2 compositions, and are denoted by
Another very important reason for using interval R in Fig. 3, i.e.,

type-2 fuzzy sets is that all set-theoretic laws (e.g., De- o o

Morgan'’s, distributive, associative, etc.) are satisfied re- R = R(Va, Vo) = R(Va, V| —). (5)

gardless of whicht-norm or ¢-conorm is used. This is not

the case when arbitrary type-2 fuzzy sets are used (see Ap!nferencing in a type-2 FLS is done using the extended
sup-star composition (Mendel, 2001a), which transforms

4 See footnote 3 for an alternative approach. W; and R into another type-2 fuzzy sef,, and involves
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a t-norm operation, i.e.,
I =1(W;,R)=I1(W;,Va, Vo)
= IN(WL',VA,‘N/0| —>,*). (6)

Inferencing is very straightforward for an interval type-2
FLS.

Following the inference engine itype-reduction
(TR).6 A TRmaps a type-2 fuzzy set into a type-1 fuzzy

&F o

Observe that the output of the decoder is a word from the
vocabularyV'.

How to go from MF numerical values for a variable
to a linguistic description of that variable for type-1 fuzzy
sets is well known. However, how to do this for type-2
fuzzy sets is not so well known.

Consider, e.g., the type-1 situation depicted in
Fig. 4 at = = /. This value ofz only generates
a non-zero membership value in the fuzzy 96t =

set. Just as there are many defuzzification methods for ayiedium Positive Hence,z = =/ can be described lin-

type-1 FLS, there are marfRmethods for a type-2 FLS.
Whether or not ond R method is best for a Per-C is yet

guistically, without any ambiguity, as “Medium Positive.”
The situation atr = 2"’ is different, because this value of

another Open issue. Whether fired Output sets should bei generates a non-zero membership value in two fuzzy

combined prior to or as part of thieRis yet another open
issue (as it is for defuzzification). Without going into the
details of how to perform TR, we can simply view it as a
non-linear operator od, i.e., for an interval type-2 FLS,

TR = frn [[OV, Va, Vol = )] = ow), ()
where [y;, y] is an interval type-1 fuzzy set, and
Y=y [f(Wi7VA,VC\ —’v*)7fTR} (8)
and
Yr = Yr {i<Wi7‘7A7VC| H,*),fTR} : )

The final operation within the type-2 FLSdgfuzzifi-
cation, which is a mapping of the type-1 fuzzy SeRinto
a number,O, a type-0 fuzzy set. The obvious choice for
defuzzification is the center of gravity (COG) of type-1 set
TR i.e.,

0 =COG(TR)=COG { fr [1(Ws, Va, Ve =, )] }

1
*2111

[j(WhVA,VC' H,*),fﬂ%}

+ %yr {j(Wi,Vch’ H,*)»]"TR} : (10)

Equation (10) is the input-output formula for the type-2
FLS within the Per-C.

D. Decoder

The decoderD, operates orO to provide a wordiW,; as
in (4), i.e.,

W, =D(0) = D [COG(TR)]

:D[COG{fTR [f( Wi,VA,VC‘ﬁ,*)]H cV. (11)

(&)

See Appendix D for inferencing results for singleton interval type-
2 FLSs. More general results for non-singleton interval type-2
FLSs (in which measurements that activate the FLS are modeled
either as type-1 or type-2 fuzzy sets) can be found in (Mendel,
2001a, Chs. 11 and 12).

6 See Appendix C for a brief discussion on type-reduction methods.

sets I, = Medium Positiveand F5 = Very Positive It
would be very awkward to speak af’ as “being Medium
Positive to degreeur, (z’") and Very Positive to degree
wurs (z”).” People just do not communicate in this way.
Instead, we usually comparer, (z”) and pg, (") to
see which is largér and then assigr:” to the set asso-
ciated with the larger value. Hence, in this example, we
would speak ofz” as “being Medium Positive.”

A,UF,(X)
F,

Medium Positive

E
Very Positive

; Z X

X X

Fig. 4. Returning to a linguistic label for type-1 fuzzy sets.

We can formally describe what we have just ex-
plained as follows: LetP fuzzy sets F; with MFs
wur, (x), @ 1,...,P be given. Whenz = o/,
evaluate all P MFs at this point, and then compute
max [/’LFI (xl)7 HFy (:L‘/), <oy HFp (xl)] HF, (ml) Let
L(z") denote the linguistic label associated with Then
L(z') = F,,, i.e.,

y WFp (.13/)] .
(12)
Consider the type-2 situation depicted in Fig. 5 at

x = z'. This value ofz only generates a non-zero mem-
bership in the type-2 fuzzy sdt/, = Medium Positive

L(2') = arg nax [y ('), ppy (2, .
1

..... F,

7 There is a literature that deals with other ways of doing this; how-
ever, all other ways are more complicated than the present one,
and usually rely on the availability of “truth” data. Such data are
usually not available when computing with words.
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Hence, z = z’ can be described linguistically, with-
out any ambiguity, as “Medium Positive.” The situation
at x = z” is quite different, because this value of

MF for(u),Yu € [py, (2'), By, (27)]. Let L(z’) denote
the linguistic label associated with’. Then L(z') =
W, 1.e.,

generates a range of non-zero secondary MF values in

the two type-2 fuzzy set§V, = Medium Positiveand
Ws = Very Positive It would be extremely difficult to
communicate this linguistically. An approach (not neces-

sarily an optimal one, but one that generalizes its type-1
counterpart to type-2 fuzzy sets), which we describe next,

is to first convert the intersection of the vertical line at
x = z” with the FOUs into a collection of numbers, after
which we can choose the linguistic labelat= 2" using
the algorithm described below.

Au }

w,
Medium Positive

W,
Very Positive

My (x7)

Ewd(x”)

7
X X

Fig. 5. Returning to a linguistic label for type-2 fuzzy sets. The
shaded regions are the FOUs for the two type-2 fuzzy
sets.

The type-2 MFs gy, (z,u) and “Ws(xg“) are
characterized by their (shaded) FOUBOU(W,) and
FOU(Ws), respectively. The upper and lower MFs for
Wy are ny, () and Fi, (z), whereas the compara-
ble quantities foriV; are Hyy, (z) and i, (z). Con-
sider, e.g., the vertical line at Zz”, and its inter-
sections with the FOU foiV, (see Fig. 5). Associated
with the interval [ﬁm (z"), iy, (#"")] is the secondary
MF  for(u),u € [ﬁm (z"), iy, (#")].  Let the center
of gravity of f,~(u), Yu € [Hm ("), iy, (2"")] be de-
noted byfaff’/(W4). In a similar manner, we can compute
£59(Ws). We can then comparg® (W) and £ (Ws).

If f9(Wa) > £S5 (Ws), then we would speak of” as
“being Medium Positive”. Otherwise, we would speak of
2" as “being Very Positive.”

We can formally describe what we have just ex-
plained as follows: LetNy type-2 fuzzy setsW;
with MFs (7, u), i 1,...,Ny be given.
These MFs are characterized by their FOB§U(W;),
whose upper and lower MFs argy;,, (z) and p;, (z)

(@ 1,...,Ny), respectively. Consider an ar-
bitrary value of z, say » = 2/, and compute
max[f:,g(Wl), f;;q(W2>7 HERE) f;?(WNU)]

; 12 (W),
where f:7(W;) is the center of gravity of the secondary

L(&') = argma [ £27 (W), £ (W), [ (W)

1 (13)
For interval secondary MFs, it is easy to compute
f(W;) as

FEOT) = 5 [, )b, 0] a9)

4. Conclusions

We have presented a specific architecture for making judg-
ments by computing with words—the perceptual com-
puter (Per-C)—and have argued that type-2 fuzzy sets
must be used for computing with words. The following
issues (including others) must be resolved before the Per-
C can be implemented:

1. How should survey interval information about words
be used to derive an associated type-2 MF?

2. Can context-independent results be applied when
terms are used within a specific context? Is there
a way to achieve scale-invariance for words so that
context-independent intervals can be used in context-
dependent situations? Or, is there a way to map from
context-independent intervals to context-dependent
intervals?

. How much uncertainty should be associated with the
interval end-points? A methodology for choosing or
designing the uncertainty factor needs to be devel-
oped.

. What are new architectures for type-2 FLSs that can
be used in a Per-C? Can a specific architecture be
validated?

. Which implications andi-norms are most appropri-
ate for a Per-C? What are the associated extended
sup-star composition results for them? It seems that,
at the very least, we must account for the uncertain-
ties present in all rule-words, including connector
words. This can be accomplished by using type-
2 fuzzy sets for antecedent and consequent words
and parametric operators for connector words. It
may then be necessary to account for the uncertain-
ties associated with the implication and combining of
rules. Whether or not it is necessary to parameterize
the enormous numbers of choices that are available
for the operator models of implication, union, inter-
section, complement{-norm and ¢-conorm, as in
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(Yager and Filev, 1994), remains to be explored, see Mendel J.M. and Wu H. (2002):Uncertainty versus choice

(Mendel and Wu, 2002) for more discussions about
this.

. How are fired rule outputs combined by people? The

engineering literature on FLSs has no adequate an-

swer to this question. Yager and Filev (1994) in-
troduce the notion ofoft rule aggregatiorin which
rules are combined using either the SOWA-OR or the
SOWA-AND. This approach remains to be examined
in the context of type-2 fuzzy sets.

. Which type-reduction method is best for a Per-C?

. Is there a best way to return to a linguistic label for a
type-2 fuzzy set, i.e., an optimal decoder?

In the future, a computer architecture that will let us
actually compute with words may come into being. In the
meantime, if we are to “compute with words”, it must be
done within the framework of existing computer architec-
tures, all of which compute with numbers. The Per-C lets
us make judgmentsby computing with words using ex-
isting computer architectures.
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Appendices

A. Background Knowledge about Type-2 Fuzzy Sets

In this appendix we collect some important definitions
about type-2 fuzzy sets. For more details about such fuzzy
sets, as well as many examples that illustrate the defini-
tions, see (Mendel, 2001a).

Definition Al. A type-2 fuzzy setdenoted by A, is
characterized by a (three-dimensiortgje-2 membership
function p 5 (z, u), i.e.,

A:/IEX /uer pa(z,u)/(z,u),  Jo S[0,1], (Al)

where [ denotes the union over all admissibteand ,
and 0 < p;(z,u) < 1. At each fixed value ofr € X,
J is theprimary membershipf z, and x is called the
primary variable

Definition A2. At each value ofz, say z = 2/, the 2D
plane whose axes are and 1. ; (', u), is called avertical
sliceof  ;(x,u). A secondary membership functi@na
vertical slice of 1z (z,u). Itis pz(z = 2',u) for 2’ €
X andVu € J,» C[0,1],1.e.,

pile=a',u)=pg(’)

fﬁ(U)/U, Jor C [0’ 1}7 (AZ)

u€J
in which 0 < f,/(u) < 1. SinceVa' € X, we drop
the prime notation oru ;(«'), and refer top ;(x) as a
secondary membership function. It is a type-1 fuzzy set,
which we also refer to assecondary set

Based on the concept of secondary sets, we can rein-
terpret a type-2 fuzzy set as the union of all secondary
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sets, i.e., using (A2)we can re-expressi in a vertical- we call thefootprint of uncertaintyFOU). It is the union
slice mannems of all primary memberships, i.e.,
A= {(z,p;(2)) | Vo € X} (A3) FOU(A) =] _ Ja (A6)
or as . .
The term FOU is very useful, because it not only fo-
- cuses our attention on the uncertainties inherent in a spe-
A= /eX i)/ cific type-2 membership function whose shape is a direct

consequence of the nature of these uncertainties, but it
also provides a very convenient verbal description of the
= C . .
/xeX [/ueJm f“?(u)/u} [, Jr S 10,1 (A4) entire domain of support for all the secondary grades of a
type-2 membership function.

Definition A3. The domainof a secondary membership Definition A8. Consider a family of type-1 membership

function is called thgprimary membershipf z. In (A-4), functions 4 (z|p1, p2, ..., py), Wherepy, ps, ..., p, are

J. is theprimary membershipf z, where J, C [0,1] parameters, some or all of which vary over some range

forall z € X. of values, i.e..p; € P, (i = 1,...,v). A primary mem-
bership functionMF) is any of these type-1 membership

Definition A4. Theamplitudeof a secondary membership ~ functions, e.9.,ua(z[p1s = p1,p2 = pars- -, Py = Pur)-

function is called @econdary gradein (A—2) and (A—4), ~ FOr brevity, we usgu4(z) to denote a primary member-

f.(u) is a secondary grade. ship function. It will be subject to some restrictions on its

parameters. The family of all primary membership func-

Definition A5. An interval type-2 fuzzy st a type- tions creates an FOU.

2 fuzzy set all the secondary membership functions of Two examples of very useful primary MFs are: Gaus-
which are type-1 interval sets, i.ef, (u) = 1,Vu € J,, C sian MF with uncertain mean and certain standard devia-
[0,1], Vx € X. tion, and Gaussian MF with certain mean and uncertain

Interval secondary membership functions reflect a Standard deviation.

uniform uncertainty at the primary membershipsigfand
are the ones most commonly used in type-2 FLSs. NoteDefinition A9.  An upper membership functioand a
that an interval set can be represented just by its domainlower membership functioare two type-1 membership
interval, which can be expressed in terms of its left and functions that are bounds for the FOU of a type-2 fuzzy
right end-points as, ], or by its center and spread as set A. The upper membership function is associated with
[c—s,c+ 5], wherec = (I+7)/2 and s = (r — 1) /2. the upper bound oFOU(A), and is denoted byi ;(x),

vz € X. The lower membership function is associated

Definition A6. Assume that each of the secondary mem- with the lower bound ofFOU(A), and is denoted by

bership functions of a type-2 fuzzy set has only one sec-Hi (@) Yo € X, e,
ondary grade that equals 1.pkincipal membership func- -
tion is the union of all such points at which this occurs, pi(z) =FOU(4), Ve X (A7)
ie.,
and .
p;(x) =FOU(4), VzeX. (A8)

Mprincipal(x) = / u/w’ where fa:(u) = 17 (A5)
z€X Because the domain of a secondary membership function

has been constrained in Definition A-1 to be contained in

[0, 1], lower and upper membership functions always ex-

For interval secondary membership functions, we de- ist.

fine the principal membership function as occurring at the

union of all primary membershimidpoints Note that

when all membership function uncertainties disappear, a

type-2 membership function reduces to its principal mem- A rule-based FLS contains four components—rules,
bership function. fuzzifier, inference engine, and output processor—that are
inter-connected, as shown in Fig. B1. Once the rules have
Definition A7. Uncertainty in the primary memberships been established, an FLS can be viewed as a mapping
of a type-2 fuzzy setA, consists of a bounded region that from inputs to outputs (the solid path in Fig. B1, from

and is associated with a type-1 fuzzy set.

B. Rule-Based Fuzzy Logic Systems
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“Crisp inputs” to “Crisp outputs”), and this mapping can the output processor, and is knowndeguzzificationThe

be expressed quantitatively as= f(x). This kind of output processor for a type-1 FLS consists of only a de-

FLS is very widely used in many engineering applications fuzzifier. However, the output processor of a type-2 FLS

of FL, such as FL controllers and signal processors, andcontains two components: the first maps a type-2 fuzzy

is also known as &uzzy controllerafuzzy systepafuzzy set into a type-1 fuzzy set and is callgge-reduction

expert systenor afuzzy model and the second performs defuzzification on the latter set.
Type-reduction is overviewed in Appendix C.

| Rule:ls C. Type-Reduction

% o Cris The type-reducedset provides an interval of uncertainty
" inputs Processor [T outputs for the output of a type-2 FLS, in much the same way that
¥ b P a confidence interval provides an interval of uncertainty
Fuzzy If' Fuzzy for a probabilistic system. The more uncertainties that
, input sets output sets occur in a type-2 FLS, which translate into more uncer-
s ):/m tginties about its MFs, the larger the type-reduced set, and
vice-versa.

Fig. B1. Fuzzy logic system. Five different type-reduction methods are described

in (Mendel, 2001a). Each is inspired by what we do in
videc-ir T)i/ rgliser?;eotrhixrt];irttegf f?nghi,maenr?c;Iagatt)g prltr)]- a typefl FLS (when we dgfuzzify the (combined)_ output
both the cases, the rules that we are interested in c;an bé)f the inference engine using a varlety_of defuzz|.f|cat|on
expressed as a, collection of IF-THEN statements Mmethods that all do some sort of centroid calculation) and
i _ ' ~ are based on computing tentroid of a type-2 fuzzy set
Fuzzy sets are associated with terms that appear inysing the Extension Principle, Karnik and Mendel (2001)
the antecedents or consequents of rules, and with the ingefined the centroid of a type-2 fuzzy set: it is a type-
puts to and output of the FLS. Membership functions are 1 fuzzy set. Computing the centroid of a general type-2
used to describe these fuzzy sets. Two kinds of fuzzy setszzy set can be very intensive. However, for an interval
can be used in an FLS, namely type-1 and type-2. Type-liyne-2 fuzzy set, an exact iterative method for computing
fuzzy sets are described by membership functions that arég centroid was developed by Karnik and Mendel (2001).
totally certain, whereas type-2 fuzzy sets are described byThis was possible because centroid of an interval type-
membership functions that are themselves fuzzy. The lat-5 fuzzy set is an interval type-1 fuzzy, setd such sets
ter let us quantify different kinds of uncertainties that may g, completely characterized by their left- and right-end

occurin an FLS. points. Hence computing the centroid of an interval type-
An FLS that is described completely in terms of type- 2 fuzzy set only requires computing those two end-points.
1 fuzzy sets is called ype-1 FLSwhereas an FLS that Center-of-sets, centroid, center-of-sums, and height

is described using at least one type-2 fuzzy set is called aype-reduction can all be expressed as
type-2 FLS A type-2 FLS whose MFs are interval type-2

fuzzy sets is called amterval type-2 FLSIn this paper Yrr(x)=[y,y,] = / /
we assume the use of interval type-2 FLSs. Jylelyl,yh] yMelyM yM]

Returning to the FLS of Fig. B1, the fuzzifier maps M
crisp numbers into fuzzy sets. It is needed to activate rules Z fiyt
that are in terms of linguistic variables which have fuzzy =
sets associated with them. The inputs to the FLS prior to x /fle[f1 fl]' ' ./fME[fM M) 1/ Vi - (CD)

fuzzification may be certain (e.g., perfect measurements)
or uncertain (e.g., noisy measurements). Type-1 or type-2
fuzzy sets can be used to model the latter measurements. . . L

For the different type-reduction methodg,, v.., f*, f

The mference engine of the FLS of Fig. B.l MaPS 4nd M have different meanings, as summarized in Ta-
fuzzy sets into fuzzy sets. It handles the way in which ble C1
rules are activated and combined. Just as we, humans, use Tr;e Karnik-Mendel iterative procedure for comput
ik- i iv u ut-

many different types of inferential procedures to help us |

M
!
i=1

to understand things or to make decisions, there are manynd Y- iS as follows:
different FL inferential procedures. 1. Without loss of generality, assume that the pre-
In many applications of the FLSs, crisp numbers computedy, are arranged imscending orderi.e.,

must be obtained at their outputs. This is accomplished by yp <yp <o <y
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Table C1. Meanings ofj/, v, f*, 7' and M in (C1) for different type-reduction methats

Type-reduction methd

d v andy defined |

f*andf" defined

| M defined

center-of sets

left and right end points of tHewer and upper firing degre]

centroid of the consequent
thei-th rule

of thei-th rule

@simber of rules

centroid®

yi = yL = ¢, thei-th point
in the sampled universe of d
course of the FLS’s output

lower and upper membershiumber of sampled points

grades of the-th sampled ou
put of the FLS'’s output

center-of-sunfs

yi = y. = y', thei-th point
in the sampled universe of d
course of the FLS’s output

sumsof lower and upper men
bership grades for thieth sam
pled point of all rule outputs

mumber of sampled points

height y; = vy, = y*, a single poinfower and upper firing degregmimber of rules
in the consequent domain of tloé the i-th rule
i-th rule, usually chosen to be
the point having the highest pri-
mary membership in the pringi-

pal MF of the output set

a. Comparable results for modified height type-reduction can be found in (Mendel, 2001a), Section 9.5.4.

b. Prior to calculating the centroid type-reduced set, the fired type-2 fuzzy sets are unioned.

c. Prior to calculating the center-of-sums type-reduced set, the membership functions of the fired type-2 fuzzy sets are
added (or a linear combination of them is formed).

d. See Appendix D for formulas fof and fi, as well as for rule outputs and unioned rule outputs.

S fiyi/ S £ by ini-
(ff+T)/2fori=1,...,M,
Wheref' andf' have been previously computed Us- Consider a type-2 FLS havingy inputs z; €

ing the equations given in Appendix D, respectively, X1,...,z, € X, and one outpuy € Y. We assume
and lety, = y,. there areM rules where thé-th rule has the form

. Computey, as y,
tially setting f?

D. Fuzzy Inference Engine Results for Interval Type-2
Fuzzy Sets

H R / ~ ~
3. FgfllR (1 < R < M —1)such thaty* <y, < R': x4 is F{ and --- and z, is F;lw
Ypr -
y PR y . . . . i gl = PN .
4. Computey, = YN fiyi/ SN £ with fi = f° THEN y s &, 1=1....M. (DD

fori <R and fi = 7 for i > R, and lety! = y,.. This rule represents a type-2 relation between the input

Y , " , spaceX; x - - -x X, and the output spacg of the type-2
. If y! # y.., then go to Step 6. I’ = y.., then stop

and sety! = y,.

. Sety!. equal toy!, and return to Step 3.

The procedure for computing; is very similar to
the one just given fory,.. Just replacey’ by ¢!, and,
in Step 3, findL (1 < L < M — 1) such thaty? <
y; < ylL“. Additionally, in Step 2 we how computg as
yi = ity fivi/ Yoil, fi by initially setting f} = (f'+
7)/2 for i =1,...,M, and, in Step 4, we computg
asy = 2?11 flzyll/Z?il f[i with fzi = ?Z fori < L
and f; = f* for i > L.

FLS. Associated with the antecedent type-2 fuzzy sets
F! are the type-2 MFsui () (i = 1,...,p), and as-
sociated with the consequent type-2 fuzzy €8t is its
type-2 MF 1z (y).

The major result for an interval singleton type-2 FLS
is summarized in the following:

Theorem D1. (Liang and Mendel, 2000; Mendel, 2001a)
In an interval singleton type-2 FLS using a product or a
minimum¢-norm, for inputx = x’: (a) The result of the
input and antecedent operations is an interval type-1 set,
called thefiring set i.e.,

These two four-step iterative procedures (Steps 1 Fix) =1\, T ) =157, (D2)
and 2 are initialization steps) were proven by Karnik and - -
Mendel (2001) to converge to the exact solutions in no where
more than}M/ iterations. fl(x) = K (27) > =% phy () (D3)
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and where
F &) =T (@) x T (2); (C4)

(b) The rule R' fired output consequent sef,z: (v), is
the type-1 interval fuzzy set

& c

B= Hf *gél(y)}v---v{i]v*ﬁéw(y)} ’

7' x| Vv [T * T )] (€D

K (y):/ ~ /b, yeY, (C5) A complete proof of this theorem can be found in
bze[ﬂ*ﬁ@z W).f *Ea(y) (Liang and Mendel, 2000; Mendel, 2001a). Generaliza-
tions of this theorem to the very important case when

wherep -, (y) and iz (y) are the lower and upper mem-
bership grades of::: (), respectively.

the input to the type-2 FLS is a type-2 fuzzy set—which
would be the case when the words that activate the Per-C

(c) Suppose that N of the M rules in the FLS fire, where 416 modeled as type-2 fuzzy sets—are also given in those
N < M, and the combined output type-1 fuzzy set, roferences.

1 ;(y), is obtained by combining the fired output conse-
quent sets by taking the union of the ruk® fired output
consequent sefsThen

pay) = /bEB /b, yey, (C6)

9 We do not necessarily advocate taking the union of these sets. Part
¢ merely illustrates the calculations if one chooses to do this.



