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1. Introduction

One of the most important problems of reliability analysis
is to estimate themean lifetimeof the item under study.
In technical applications this parameter is also called the
mean time to failure(MTTF) and is often included in the
specification of a product. For example, producers are in-
terested whether this time is sufficiently large, as a large
MTTF allows them to extend a warranty time. Classical
estimators require precise data obtained from strictly con-
trolled reliability tests (for example, those performed by a
producer at his or her laboratory). In such a case a failure
should be precisely defined, and all tested items should
be continuously monitored. However, in a real situation
these requirements might not be fulfilled. In an extreme
case, the reliability data come from users whose reports
are expressed in a vague way. The vagueness of the data
has many different sources: it might be caused by sub-
jective and imprecise perception of failures by a user, by
imprecise records of reliability data, by imprecise records
of the rate of usage, etc. Therefore we need different tools
appropriate for modelling vague data, and suitable statis-
tical methodology to handle these data as well.

Grzegorzewski and Hryniewicz (1999) considered
the generalization of the exponential model which admits
vagueness in lifetimes or censoring times but requires pre-
cise information about the number of observed failures
(i.e. one knows whether a given item failed or whether
it survived). In their paper fuzzy sets were used for mod-
elling the vagueness of the lifetimes. However, sometimes
we face situations when the number of observed failures
is also vague. For example, it may be due to an impre-
cise definition of the failure. We can also consider partial
failures or information about the scale of the failure ex-
pressed by colloquial words. Hence in the present paper
we suggest another generalization of the classical expo-

nential model. We consider not only fuzzy lifetimes but
situations in which the number of failures is fuzzy as well.

2. Classical Approach

The mean lifetime may be efficiently estimated by the
sample average from the sample of the times to failure
W1, . . . ,Wn of n tested items, i.e.

MTTF =
W1 + · · ·+ Wn

n
. (1)

However, in the majority of practical cases the lifetimes
of all tested items are not known, as the test is usually
terminated before the failure of all items. It means that
exact lifetimes are known only for a portion of the items
under study, while the remaining lifetimes are known only
to exceed certain values. This feature of lifetime data is
calledcensoring. More formally, a fixed censoring time
Zi > 0, i = 1, . . . , n is associated with each item. We
observeWi only if Wi ≤ Zi. Therefore our lifetime data
consist of pairs(T1, Y1), . . . , (Tn, Yn), where

Ti = min{Wi, Zi}, (2)

Yi =

{
1 if Ti = Wi,

0 if Ti = Zi.
(3)

Numerous parametric models are used in the lifetime data
analysis. Among them the most widely used are the
exponential, Weibull, gamma and lognormal distribution
models. Historically, the exponential model was the first
lifetime model extensively developed and widely used in
many areas of lifetime analysis: from studies on the life-
times of various types of manufactured items to research
involving survival or remission times in chronic diseases.
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In this model the lifetimeT is described by the probabil-
ity density function

f(t) =


1
θ
e−t/θ if t > 0,

0 if t ≤ 0,
(4)

where θ > 0 is the mean lifetime. It is worth noticing
that the hazard function in the model considered is con-
stant. Although this assumption is very restrictive, the
exponential model is still frequently used in practice be-
cause of two important features: its parameterθ is eas-
ily estimated, and for lifetimes described by a probability
distribution with increasing hazard it gives a conservative
approximation for the mean lifetime. Thus, in this paper
we assume that the exponential distribution model is the
mathematical model which describes lifetimes of tested
items. Note that

T =
n∑

i=1

Ti =
∑
i∈O

Wi +
∑
i∈C

Zi (5)

is the total survival time (sometimes called a total time on
test), whereO and C denote the sets of items for which
exact lifetimes are observed and censored, respectively.
Moreover, let

r =
n∑

i=1

Yi (6)

denote the number of observed failures. In the exponen-
tial model considered the statistic(r, T ) is a minimally
sufficient statistic forθ, and the maximum likelihood es-
timator of the mean lifetimeθ is (assumingr > 0)

θ̂ =
T

r
. (7)

It can be shown (Cox, 1953) that the statistic2rθ̂/θ is
approximately chi-square distributed with2r +1 degrees
of freedom. This approximation is used for constructing
satisfactory confidence intervals even for quite small sam-
ple sizes (e.g., see Lawless, 1982). For example, the one-
sided confidence interval with the upper limit forθ on the
confidence level1− δ is given by(

0,
2T

χ2
2r+1,δ

]
, (8)

where χ2
m,δ is the quantile of orderδ of the chi-square

distribution with m degrees of freedom.

Practitioners are usually interested in testing the hy-
pothesisH: θ ≥ θ0 that the mean lifetime is no less than
a given valueθ0 (e.g., a given requirement on theMTTF)
againstK: θ < θ0. The desired test can be constructed

easily using (8). Namely, the hypothesisH should be
rejected on the significance levelδ if

2T

θ0
≤ χ2

2r+1,δ. (9)

3. Vague Data

3.1. Fuzzy Survival Times

Now suppose that the lifetimes (times to failures) and cen-
soring times are not necessarily crisp but may be vague as
well. A generalization of the exponential model which
admits vagueness in lifetimes was considered by Grze-
gorzewski and Hryniewicz (1999). They model impre-
cise lifetimes by fuzzy numbers. In this paper we adopt
a slightly more general assumption that censoring times
may also be vague. We assume, however, that the values
of the indicatorsY1, Y2, . . . , Yn are equal either to0 or
to 1 , i.e., in every case we know if the test has been ter-
minated by censoring or as a result of a failure. In order
to describe the vagueness of life data we use the notion of
a fuzzy number.

Let us recall some basic concepts and notation con-
nected with the fuzzy numbers and fuzzy random vari-
ables.

Definition 1. The fuzzy subsetA of the real lineR, with
the membership functionµA: R → [0, 1], is afuzzy num-
ber iff

(a) A is normal, i.e., there exists an elementx0 such that
µA(x0) = 1;

(b) A is fuzzy convex, i.e.µA(λx1 + (1 − λ)x2) ≥
µA(x1) ∧ µA(x2), ∀x1, x2 ∈ R, ∀λ ∈ [0, 1];

(c) µA is upper semicontinuous;

(d) supp A is bounded.

It is known that for any fuzzy numberA there ex-
ist four numbersa1, a2, a3, a4 ∈ R and two functions
ηA, ζA: R → [0, 1], where ηA is nondecreasing andζA

is nonincreasing, such that we can describe a membership
function µA in the following manner:

µA(x) =



0 if x < a1,

ηA(x) if a1 ≤ x < a2,

1 if a2 ≤ x ≤ a3,

ζA(x) if a3 < x ≤ a4,

0 if a4 < x.

(10)

FunctionsηA and ζA are called the left side and the right
side of a fuzzy numberA, respectively.
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The notion of the fuzzy number was introduced by
Dubois and Prade (1978). Some authors using this con-
cept in their papers do not quote requirement (d) given
above. They just adopt a more general assumption (e.g.,
see Chanas, 2001)

(d′)
∫ +∞

−∞
µA(x) dx < +∞.

However, others (especially practitioners) argue that (d)
is more natural than (d′) since it means that real numbers
less thana1 or greater thana4 surely do not belong toA.
Hence in our paper we adopt (d), although from a mathe-
matical point of view the requirement (d′) is sufficient.

A useful notion for dealing with a fuzzy number is
a set of itsα-cuts. Theα-cut of a fuzzy numberA is a
nonfuzzy set defined as

Aα =
{
x ∈ R : µA(x) ≥ α

}
. (11)

A family {Aα : α ∈ (0, 1]} is a set representation of the
fuzzy numberA. Based on the resolution identity, we get

µA(x) = sup
{
αIAα

(x) : α ∈ (0, 1]
}
, (12)

where IAα
(x) denotes the characteristic function ofAα.

According to the definition of the fuzzy number it is eas-
ily seen that everyα-cut of a fuzzy number is a closed
interval. Hence we haveAα = [AL(α), AU (α)], where

AL
α = inf

{
x ∈ R : µA(x) ≥ α

}
,

AU
α = sup

{
x ∈ R : µA(x) ≥ α

}
.

(13)

If the sides of the fuzzy numberA are strictly monotone
then by (10) one can easily see thatAL

α and AU
α are in-

verse functions ofηA and ζA, respectively. In general,
we may adopt the convention thatηA(x)−1 = inf{x ∈
R : µA(x) ≥ α} = AL

α and ζA(x)−1 = sup{x ∈ R :
µA(x) ≥ α} = AU

α .

As in the classical arithmetic, we can add, subtract,
multiply and divide fuzzy numbers. Since all these op-
erations become rather complicated if the sides of fuzzy
numbers are not very regular, simple fuzzy numbers, e.g.
with linear or piecewise linear sides, are preferred in prac-
tice. Such fuzzy numbers with simple membership func-
tions also have more natural interpretation. Therefore the
most often used fuzzy numbers are the so-calledtrape-
zoidal fuzzy numbers, i.e. fuzzy numbers whose both sides
are linear. Trapezoidal fuzzy numbers can be used for the
representation of expressions such as, e.g., “more or less
between 5 and 7”, “approximately between 10 and 15”,
etc. Trapezoidal fuzzy numbers witha2 = a3 are called
triangular fuzzy numbersand are often used for modelling
expressions such as, e.g., “about 6”, “more or less 8”,
etc. Triangular fuzzy numbers with only one side may

be useful when describing situations like “just before 50”
(a2 = a3 = a4) or “just after 30” (a1 = a2 = a3).
If a1 = a2 and a3 = a4, then we get the so-called
rectangular fuzzy numbers, which may represent expres-
sions such as, e.g., “between 20 and 25.” In the case of
a1 = a2 = a3 = a4 = a we get a crisp number, i.e.,
a fuzzy number which is no longer vague but represents
a precise value that can be identified with the proper real
numbera.

A space of all fuzzy numbers will be denoted byFN.
Of course,FN ⊂ F(R), where F(R) denotes the space
of all fuzzy sets on the real line.

Definition 2. A fuzzy numberA ∈ FN is non-negative
if µA(x) = 0 for all x < 0, andpositiveif µA(x) = 0
for all x ≤ 0.

Equivalently, we may say thatA ∈ FN is non-
negative if AL

α=0 ≥ 0 and is positive ifAL
α=0 > 0. The

space of all non-negative fuzzy numbers will be denoted
by NFN, while the space of all positive fuzzy numbers
will be denoted byPFN.

The notion of a fuzzy random variable was intro-
duced by Kwakernaak (1978; 1979). Other definitions
of fuzzy random variables are due to Kruse (1982) or to
Puri and Ralescu (1986). Our definition is similar to those
of Kwakernaak and Kruse. Suppose that a random ex-
periment is described, as usual, by a probability space
(Ω, A, P ), where Ω is the set of all possible outcomes
of the experiment,A is a σ-algebra of subsets ofΩ (the
set of all possible events) andP is a probability measure.

Definition 3. A mapping X: Ω → FN is called afuzzy
random variableif it satisfies the following properties:

(a) {Xα(ω) : α ∈ [0, 1]} is a set representation ofX(ω)
for all ω ∈ Ω,

(b) for each α ∈ [0, 1] both XL
α = XL

α (ω) =
inf Xα(ω) and XU

α = XU
α (ω) = supXα(ω) are

usual real-valued random variables on(Ω, A, P ).

Thus a fuzzy random variableX is considered as a
perception of an unknown usual random variableV : Ω →
R, called theoriginal of X. Let V denote the set of all
possible originals ofX. If only vague data are available,
it is of course impossible to show which of the possible
originals is the true one. Therefore, we can define a fuzzy
set onV, with a membership functionι: V → [0, 1] given
as follows:

ι(V ) = inf
{
µX(ω)

(
V (ω)

)
: ω ∈ Ω

}
, (14)

which corresponds to the grade of acceptability that a
fixed random variableV is the original of the fuzzy ran-
dom variable in question (see Kruse and Meyer, 1987).
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Similarly, an n-dimensional fuzzy random sample
X1, . . . , Xn may be treated as a fuzzy perception of the
usual random sampleV1, . . . , Vn (where V1, . . . , Vn are
independent and identically distributed crisp random vari-
ables). The setVn of all possible originals of that fuzzy
random sample is, in fact, a fuzzy set with the membership
function

ι(V1, . . . , Vn) = min
i=1,...,n

inf
{
µXi(ω)(Vi(ω)) : ω ∈ Ω

}
.

(15)
Although a random variable is completely character-

ized by its probability distribution, very often we are inter-
ested only in some parameters of this distribution. Let us
consider a parameterθ = θ(V ) of a random variableV .
This parameter may be viewed as an image of a mapping
Γ: P → R, which assigns each random variableV hav-
ing distributionPθ ∈ P the analysed parameterθ, where
P = {Pθ : θ ∈ Θ} is a family of distributions. How-
ever, if we deal with a fuzzy random variable, we can-
not observe parameterθ but only its vague image. Using
this reasoning together with Zadeh’s extension principle,
Kruse and Meyer (1987) introduced the notion of thefuzzy
parameter of the fuzzy random variable, which may be
considered as afuzzy perceptionof the unknown param-
eter θ. It is defined as a fuzzy set with the membership
function

µΛ(θ)(t) = sup
{
ι(V ) : V ∈ V, θ(V ) = t

}
, t ∈ R, (16)

where ι(V ) is given by (14). This notion is well defined
because if our data are crisp, i.e.,X = V , we getΛ(θ) =
θ. Similarly, for a random sample of sizen we get

µΛ(θ)(t) = sup
{
ι(V1, . . . , Vn) : (V1, . . . , Vn) ∈ Vn,

θ(V1) = t
}
, t ∈ R. (17)

One can easily obtainα-cuts of Λ(θ):

Λα(θ) =
{
t ∈ R : ∃(V1, . . . , Vn) ∈ Vn, θ(V1) = t

}
,

(18)
such thatVi(ω) ∈ (Xi(ω))α for ω ∈ Ω and for i =
1, . . . , n. For more information, we refer the reader to
(Kruse and Meyer, 1987).

3.2. Failures and Partial Failures

It happens very often in practice that we deal not only with
critical failures but also with non-critical failures that are
usually described using a common language. For exam-
ple, one is anxious because of a strange noise in the car.
However, he or she can still drive this car. Such a situa-
tion corresponds to a failure which is not critical (at least
at this moment).

In order to take into account such non-critical failures
let us describe the state of each observed item at the time

Zi. Let G denote the set of all items which are capable
at their censoring timesZi. Therefore we can assign to
each itemi = 1, . . . , n its degree of belongingnessgi =
µG(i) to G, where gi ∈ [0, 1]. When the item has not
failed before the censoring timeZi, i.e., it works perfectly
at Zi, we setgi = 1. On the other hand, if a critical failure
has occurred before or exactly at time momentLi, we set
gi = 0. If gi ∈ (0, 1), then the item under study neither
works perfectly nor is completely failed. We may consider
this situation as apartial failure of the considered item.
Let us notice thatG can be considered now as a fuzzy set
with a finite support.

The way in which we define the values ofgi in prac-
tice is beyond to the scope of this paper. For example, it
is possible to describe formally some performance mea-
sures, and to evaluate the value of a certain aggregated
quality index. For this evaluation we can use the notions
of possibility theorysuch as thenecessity of dominance
or thepossibility of dominanceindices, which are useful
when measuring the degree to which some imprecisely
defined requirements are fulfilled. However, in the ma-
jority of practical situations, we describe partial failures
linguistically using notions such as, e.g., “slightly possi-
ble”, “highly possible”, “nearly sure”, etc. In such a case
we may assign arbitrary weightsgi ∈ (0, 1) to such im-
precise expressions.

Alternatively, one can consider a setD of faulty
items and, in the simplest case, the degree of belonging-
ness toD equalsdi = µD(i) = 1 − gi. Further on, we
will call gi and di the degrees of the up and down states,
respectively.

Now we have to find a fuzzy counterpart of the num-
ber of observed failuresr. Grzegorzewski (2001) pro-
posed several methods for failure counting. Depending on
the output, we can divide them into two groups: crisp or
fuzzy methods.

3.3. Crisp Failure Counting

Let g1, . . . , gn (d1, . . . , dn) denote the degrees of up
states (down states) of all items tested. The most natural
way for counting failures is to either consider only critical
failures or to treat all kinds of failures similarly. These
two approaches correspond to optimistic (or liberal) and
pessimistic (conservative) viewpoints, respectively. Thus
the number of failures observed in accordance with the
optimistic viewpoint is

r̃opt =
n∑

i=1

I(di = 1) = n−
n∑

i=1

I(gi > 0), (19)

where I is the indicator function, while the number of
failures obtained in accordance with the pessimistic view-
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point is

r̃pes = n−
n∑

i=1

I(gi = 1) =
n∑

i=1

I(di > 0). (20)

More generally, one can take into account only failures
with some degree of the down state (up state). Then we
get

r̃ξ =
n∑

i=1

I(di > ξ) = n−
n∑

i=1

I(gi ≥ 1− ξ), (21)

where ξ ∈ (0, 1). Measures (19)–(21) are crisp, since
r̃opt, r̃pes, r̃ξ ∈ N ∪{0}. It is clear thatr̃opt ≤ r̃ξ ≤ r̃pes

for eachξ ∈ (0, 1). The methods of failure counting de-
scribed above are in some sense reductive. Actually, they
abandon the whole information on particular degrees of up
or down states and utilize only part of that information—
whether these degrees exceed a given level. However,
sometimes it would be useful to take into account all ac-
cessible information. Then the following method for fail-
ure counting might be used:

r̃c =
n∑

i=1

di = |D| = n−
n∑

i=1

gi = n− |G| , (22)

where |D| and |G| denote the cardinalities of fuzzy sets
D and G, respectively.

3.4. Fuzzy Failure Counting

A basic advantage of the methods for counting failures
given above is that they are easy to handle, since their out-
puts are crisp. Unfortunately, such an approach does not
reflect the reality very well, especially that the test results
are often non-precise but vague. Moreover, the require-
ments are sometimes vague, too. It seems that the best
way to summarize fuzzy descriptions of the test results is
to use fuzzy failure counting measures. We consider the
observed degrees of down states and count the number of
failures we would get if the rejection limit were fixed on
each degree of the down state (naturally, the lower the re-
jection limit, the more failures we observe). Thus we get
the following (fuzzy) number of failures:

r̃f
opt = |D|f , (23)

where |D|f denotes the fuzzy cardinality of a fuzzy set
D. We may also start from up states. Therefore

r̃f
pes = n− |G|f , (24)

where |G|f denotes the fuzzy cardinality of a fuzzy set
G. However, contrary to the crisp counting,|D|f 6= n −
|G|f . It is obvious that such a fuzzy number of observed

failures is a finite fuzzy set. It is also a normal fuzzy set
(since we assume, as in the classical approach, that there
exists at least one critical failure).

Example. In order to explain the concept of fuzzy failure
counting, let us consider a simple example. Suppose that
10 items were put under a test, and at the test termination
moments (caused either by a failure or by censoring) their
degrees of belongingness toG were 1, 0.5, 0.9, 1, 1,
0.2, 0, 0.9, 1, and 0, respectively. This means that only
four items survived the test without any sign of failure, in
four cases there was an evidence of partial failures, and
two items surely failed. Obviously, the degrees of their
belongingness toD were 0, 0.5, 0.1, 0, 0, 0.8, 1, 0.1,
0, 1, respectively. Using crisp failure counting methods
we may get the following results:

r̃opt = 2, r̃pes = 6,

r̃0.5 = 3, r̃c = 3.5.

However, in the case of fuzzy failure counting we
have

r̃f
opt = 1|2 + 0.8|3 + 0.5|4 + 0.1|6

and
r̃f
pes = 0.2|2 + 0.5|3 + 0.9|4 + 1|6.

As can be seen, in the optimistic case we assign the high-
est plausibility measure to the failures that were revealed
with certainty. On the other hand, in the pessimistic case,
we assign the highest plausibility measure to all cases with
even slight symptoms of failure. �

4. Statistical Inference

4.1. MTTF Point Estimation

Now we consider fuzzy lifetimes̃T1, . . . , T̃n described
by their membership functionsµ1(t), . . . , µn(t) ∈ NFN.
Thus applying the extension principle to (5) we get the
fuzzy total survival lifetime T̃ (which is also a fuzzy
number)

T̃ =
n∑

i=1

T̃i, (25)

with the membership function

µT̃ (t) = sup
t1,...,tn∈R+:t1+···+tn=t

{
µ1(t1) ∧ · · · ∧ µn(tn)

}
.

(26)
Using the Minkowski operation onα-cuts, we may find
the set representation of̃T given as follows:

T̃α = (T1)α + · · ·+ (Tn)α

=
{
t ∈ R+ : t = t1 + · · ·+ tn,

where ti ∈ (Ti)α, i = 1, . . . , n
}
, (27)
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where α ∈ (0, 1]. Now, using the extension principle
once more, we may define a fuzzy estimator of the mean
lifetime Θ̂ in the presence of vague lifetimes as

θ̃ =
T̃

r
. (28)

Sincer ∈ N, we can easily find a set representation ofΘ̂:

θ̃α =
{

t ∈ R+ : t =
x

r
, wherex ∈ T̃α

}
. (29)

For more details and the discussion on fuzzy confidence
intervals, we refer the reader to (Grzegorzewski and
Hryniewicz, 1999).

By the extension principle, we may also define a

fuzzy estimator of the mean lifetimẽ̃θ in the presence of
fuzzy lifetimes and a vague number of failures. Namely,
for crisp failure counting methods we get the following
formula: ˜̃

θ =
T̃

r̃
, (30)

where T̃ is the fuzzy total survival time and̃r denotes
the number (crisp) of vaguely defined failures. Actually,
(30) provides a family of estimators that depend on the
choice of r̃. Namely, one can choose his or her preferred
measure of failure counting̃r ∈ {r̃opt, r̃pes, r̃ξ, r̃

c} and

get, as a result, an estimator˜̃θopt,
˜̃
θpes,

˜̃
θξ (0 < ξ < 1),˜̃

θc, respectively. It is not difficult to prove that̃̃θ is a fuzzy
number.

However, in the case of fuzzy failure counting meth-
ods, i.e. forr̃ ∈ {r̃f

opt, r̃
f
pes}, we have

˜̃
θ =

T̃

conv (r̃)
, (31)

where conv (r̃) is the convex hull of the fuzzy set̃r de-
fined as follows:

conv (r̃) = inf
{
A ∈ NFN : r̃ ⊆ A

}
. (32)

Since now the denominator of (31) is a fuzzy number, our

estimators˜̃θf
opt and ˜̃θf

pes of the mean lifetime are fuzzy
numbers, too.

4.2. Confidence Intervals forMTTF

Besides finding the fuzzy estimator of the mean life-
time, we can also construct fuzzy confidence intervals for
MTTF. First of all, we should realize what information is
yielded with the one-sided confidence interval with an up-
per limit for the mean lifetime. Roughly speaking, it tells
us that with high probability (confidence) the true mean
lifetime of the individual under study does not exceed the

given value (upper confidence limit). For the crisp case
this confidence limit can be easily found from (8), i.e.
π = 2T/χ2

2r+1,δ. For example,π = 100 hours means
that the true mean lifetime “almost surely” does not ex-
ceed 100 hours—it is possible that the mean lifetime is
equal to 99.5 hours, or 57.3 or 13.2 or even 0.5 hour—it
remains unknown, although it is “almost sure” that it is
not equal to, e.g., 150 hours (expression “almost surely”
might be a linguistic interpretation of the confidence level
equal to, e.g., 0.95).

Unfortunately, in the presence of fuzzy data,T is
no longer crisp but fuzzy, and thereforeπ would be also
fuzzy. Moreover, if our data are fuzzy, we lose that natu-
ral and simple interpretation of the one-sided confidence
interval with the upper limit for the mean lifetime given
above. Since if we get, e.g.,π = “about 100 hours” (de-
scribed by the triangular fuzzy number witha1 = 95,
a2 = a3 = 100 and a4 = 105), it is possible that the true
mean lifetime is equal, e.g., to 5 hours or 50 hours, it is
“almost sure” that it is not equal to, e.g., 150 hours, but it
is not clear whether or not it is possible that it is equal to
97 or 103 hours. An optimist would say: “yes, it is pos-
sible that the true mean lifetime is equal to 97 hours” and
“it might be possible that the true mean lifetime is equal to
103 hours.” However, a pessimist would be more cautious
and would answer: “no, it might be possible that the true
mean lifetime is equal to 97 hours” but “it is not possible
that the true mean lifetime is equal to 103 hours.” This
example shows that we have neither clear nor unique in-
terpretation of the upper confidence limit for vague life
data. Below we will suggest how to handle situations
like those described above. Our proposal is based on the
above-mentioned difference in the attitude, i.e., optimism
and pessimism.

To begin with, we have to consider vague data again.
It is seen at once that there are doubts, analogous to that
mentioned above, how to qualify our conviction about the
survival time of any individual whose vague lifetime is,
e.g., T = “between 1000 and 1050 hours” (described
by the rectangular fuzzy numbera1 = a2 = 1000,
a3 = a4 = 1050). And again, according to an optimistic
or a pessimistic attitude to that lifetime one may or may
not be convinced that it is possible that the individual un-
der discussion survived, for example, 1020 hours. Hence,
together with given vague life datãT1, . . . , T̃n, we will
also consider the so-called survival data of two types: op-
timistic and pessimistic.

Now let T̃1, . . . , T̃n, T̃i ∈ NFN denote fuzzy life-
times and (T̃i)α = [(T̃i)L

α, (T̃i)U
α ] be an α-cut of T̃i,

α ∈ (0, 1], i = 1, . . . , n. Consider two operators:
Opt,Pes: NFN → NFN defined as follows:

(Opt T̃i)α =
(
0, (T̃i)U

α

]
, α ∈ (0, 1] (33)
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and
(Pes T̃i)α =

(
0, (T̃i)L

1−α

]
, α ∈ (0, 1]. (34)

If the quantities T̃1, . . . , T̃n denote fuzzy life-
times, then Opt T̃1, . . . ,Opt T̃n, defined by (33), and
Pes T̃1, . . . ,Pes T̃n, defined by (34), are optimistic and
pessimistic survival times, respectively. Of course, if all
the data are crisp, then both optimistic and pessimistic sur-
vival times are identical and might be identified with life
times.

Kruse and Meyer (1987; 1988) proposed a general
method for deriving fuzzy confidence intervals for fuzzy
data X1, . . . , Xn if one knows how to construct a usual
(i.e., crisp) confidence interval for the parameter under
discussion. Particularly, if(−∞, π] is the crisp one-sided
confidence interval with the upper limit forθ on a con-
fidence level of1 − δ, where π = π(V1, . . . , Vn), then
a fuzzy setΠ = Π(X1, . . . , Xn) with the membership
function

µΠ(t) = sup
{
αI(−∞,ΠU

α ](t) : α ∈ (0, 1]
}
, (35)

where

ΠU
α = ΠU

α (X1, . . . , Xn)

= sup
{
u ∈ R : ∀i ∈ {1, . . . , n}∃xi ∈ (Xi)α

such thatπ(x1, . . . , xn) ≥ u
}

(36)

is the one-sided fuzzy confidence interval with the upper
limit for θ on a confidence level of1− δ. For details we
refer the reader to (Kruse and Meyer, 1987; 1988).

In the case of our vague life data we will construct
two one-sided fuzzy confidence intervals with upper lim-
its for the mean lifetime based on either optimistic or
pessimistic survival times. To begin with, let us as-
sume that the number of failuresr is crisp. According
to Kruse and Meyer’s method, theoptimistic one-sided
fuzzy confidence interval with the upper limitΠopt =
Πopt(Opt T̃1, . . . ,Opt T̃n) for the mean lifetime on the
confidence level1 − δ has the following membership
function:

µΠopt(t) = sup
{
αI(0,(Πopt)U

α ](t) : α ∈ (0, 1]
}
, (37)

where

(Πopt)U
α =

2
χ2

2r+1,δ

( n∑
i=1

Opt T̃i

)U

α
, (38)

while thepessimistic one-sided fuzzy confidence interval
with the upper limit Πpes = Πpes(Pes T̃1, . . . ,Pes T̃n)
for the mean lifetime on the confidence level1 − δ has
the following membership function:

µΠpes(t) = sup
{
αI(0,(Πpes)U

α ](t) : α ∈ (0, 1]
}
, (39)

where

(Πpes)U
α =

2
χ2

2r+1,δ

( n∑
i=1

Pes T̃i

)U

1−α
. (40)

By (25) one can easily check that(
∑n

i=1 OptT̃i)U
α =

(T̃ )U
α and (

∑n
i=1 PesT̃i)U

α = (T̃ )L
1−α, so α-cuts (38)

and (40) of the optimistic and pessimistic one-sided con-
fidence intervals with upper limits for the mean lifetime
might be calculated from the equations

(Πopt)U
α =

2
χ2

2r+1,δ

(T̃ )U
α , (41)

(Πpes)U
α =

2
χ2

2r+1,δ

(T̃ )L
1−α, (42)

respectively. Hence it is seen that the optimistic one-sided
fuzzy confidence interval with the upper limitΠopt is en-
tirely based on the right side of the total lifetimẽT and
disregards completely the left side of̃T . So it corresponds
only to that optimistic attitude to life data described in the
example given above. In contrast toΠopt, Πpes is based
solely on the left side of the total lifetimẽT and disre-
gards the right side of̃T , and thus it represents the pes-
simistic attitude to the life data.

It is also not surprising thatΠpes ⊆ Πopt. More-
over, if all life data are crisp, both optimistic and pes-
simistic fuzzy confidence intervals coincide and reduce to
the traditional crisp one-sided confidence interval with up-
per limit.

Equations (41) and (42) were obtained taking into ac-
count only one aspect of vague data, i.e., imprecise life-
times. However, we may easily generalize these formulae
to situations with vaguely defined failures.

Let us now consider a fuzzy case, and letr̃ de-
note the number (crisp or fuzzy) of observed failures
given by formulae (19)–(24). Now, in accordance with
the optimistic or pessimistic attitudes to the life data
(i.e., using Opt T̃1, . . . ,Opt T̃n or Pes T̃1, . . . ,Pes T̃n)
and choosing a failure counting method̃r (where r̃ ∈
{r̃opt, r̃pes, r̃ξ, r̃

c, r̃f
opt, r̃

f
pes}) we could get formulae for

confidence intervals corresponding to different combina-
tions of lifetimes/numbers of failure descriptions. We
have to bear in mind, however, that in order to arrive
at optimistic (pessimistic) bounds of the mean lifetime,
we have to use consistently{r̃opt, r̃

f
opt} for optimistic

bounds and{r̃pes, r̃
f
pes} for pessimistic bounds. In the

intermediate case we can use eitherr̃ξ or r̃c. Depending
on whether we consider optimistic or pessimistic survival
times, theα-cuts of the upper bound of the confidence
interval on the confidence level1− δ are as follows:

(Π̃opt
r̃ )U

α =
2

χ2
df,δ

(T̃ )U
α (43)
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or

(Π̃pes
r̃ )U

α =
2

χ2
df,δ

(T̃ )L
1−α, (44)

where the number of degrees of freedomdf depends
on the failure counting method̃r. Namely, if r̃ ∈
{r̃opt, r̃pes, r̃ξ}, ξ ∈ (0, 1), then

df = 2r̃ + 1. (45)

If r̃ = r̃c, then
df = 2dr̃e+ 1, (46)

where dr̃e stands for the least integer greater thanr̃.
Moreover, if r̃ = r̃f

pes, then we get

df = 2r̃U
α + 1, (47)

where r̃U
α = max{x ∈ N : µr̃f

pes
(r) ≥ α}, and µr̃f

pes

is the membership function of̃rf
pes. Finally, if r̃ = r̃f

opt,
then we get

df = 2r̃L
α + 1, (48)

where r̃L
α = min{x ∈ N : µr̃f

opt
(r) ≥ α} and µr̃f

opt
is

the membership function of̃rf
opt.

4.3. Testing Hypotheses onMTTF

In the present section we will consider the problem of how
to design a statistical test to verify a hypothesis that the
mean lifetime of the individual under study is no less than
a certain fixed value. Thus we are interested in testing a
hypothesisH: θ ≥ θ0, where θ0 is a given requirement
for the mean lifetime, againstK: θ < θ0.

Grzegorzewski (2000) proposed a general method
for deriving fuzzy tests for testing hypotheses with vague
data. In the case of testing the one-sided null hypothe-
sis H: θ ≥ θ0 against K: θ < θ0 with vague data
X1, . . . , Xn, Xi ∈ FN, i = 1, . . . , n, we get a fuzzy
test ϕ: (FN)n → F({0, 1}) on the significance levelδ
with the membership function

µϕ(t) = µΠ(θ0)I{0}(t) + µ¬Π(θ0)I{1}(t)

= µΠ(θ0)I{0}(t) +
(
1− µΠ(θ0)

)
I{1}(t),

t ∈ {0, 1}, (49)

whereΠ denotes the one-sided fuzzy confidence interval
with the upper limit for the parameterθ on the confidence
level 1 − δ given by (35) and (36), andI is an indicator
function. Since in our case of vague life data we have
to consider different attitudes to the information on the
lifetimes and different failure counting methods, we may
also construct a desired test in several ways.

First, if we consider exact information on the num-
ber of failures r, then we have two testsφopt, φpes:

(NFN)n → F({0, 1}) on the significance levelδ with
the membership functions

µφopt(t) = µΠopt(θ0)I{0}(t) + µ¬Πopt(θ0)I{1}(t)

= µΠopt(θ0)I{0}(t) +
(
1− µΠopt(θ0)

)
I{1}(t),

t ∈ {0, 1} (50)

and

µφpes(t) = µΠpes(θ0)I{0}(t) + µ¬Πpes(θ0)I{1}(t)

= µΠpes(θ0)I{0}(t)

+
(
1− µΠpes(θ0)

)
I{1}(t), t ∈ {0, 1}, (51)

where fuzzy confidence intervalsΠopt and Πpes, which
correspond to the optimistic and pessimistic attitude to the
life data, are given by (41) and (42), respectively.

Second, if we consider imprecise infor-
mation on the number of failures r̃ (where
r̃ ∈ {r̃opt, r̃pes, r̃ξ, r̃

c, r̃f
opt, r̃

f
pes}), then we get a

family of testsφopt
r̃ , φpes

r̃ : (NFN)n → F({0, 1}) on the
significance levelδ with the membership functions

µφopt
r̃

(t) = µΠ̃opt
r̃

(θ0)I{0}(t) + µ¬Π̃opt
r̃

(θ0)I{1}(t)

= µΠ̃opt
r̃

(θ0)I{0}(t)

+
(
1− µΠ̃opt

r̃
(θ0)

)
I{1}(t), t ∈ {0, 1} (52)

or

µφpes
r̃

(t) = µΠ̃pes
r̃

(θ0)I{0}(t) + µ¬Π̃pes
r̃

(θ0)I{1}(t)

= µΠ̃pes
r̃

(θ0)I{0}(t)

+
(
1− µΠ̃pes

r̃
(θ0)

)
I{1}(t), t ∈ {0, 1}, (53)

where fuzzy confidence intervals̃Πopt
r̃ and Π̃pes

r̃ are
given by (43) and (44), respectively.

As one may expect,µφopt(1) ≤ µφpes(1) and
µφopt(0) ≥ µφpes(0) for any life data. Similarly,
µφopt

r̃
(1) ≤ µφpes

r̃
(1) and µφopt

r̃
(0) ≤ µφpes

r̃
(0). More-

over, if all life data are crisp, both optimistic and pes-
simistic fuzzy tests coincide and reduce to the traditional
test for one-sided hypotheses.

It is easily seen that in contrast to the classical crisp
test, our fuzzy tests do not lead to the binary decision—
to accept or to reject the null hypothesis—but to a fuzzy
decision. We may getϕ = 1/0+0/1, which indicates that
we shall acceptH, or ϕ = 0/0 + 1/1, which means that
H must be rejected. But we may also getϕ = µ0/0 +
(1 − µ0)/1, whereµ0 ∈ (0, 1), which can be interpreted
as a degree of conviction that we should accept (µ0) or
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reject (µ1 = 1 − µ0) the hypothesisH. We suggest to
categorize all the possible outcomes of our fuzzy tests in
the following way:

if 0 ≤ µ0 < 0.1 then H must be rejected
(i.e.,0.9 < µ1 ≤ 1)

if 0.1 ≤ µ0 < 0.2 then H should be rejected
(i.e.,0.8 < µ1 ≤ 0.9)

if 0.2 ≤ µ0 < 0.3 then H may be rejected
(i.e.,0.7 < µ1 ≤ 0.8)

if 0.3 ≤ µ0 < 0.4 then H might be rejected
(i.e.,0.6 < µ1 ≤ 0.7)

if 0.4 ≤ µ0 ≤ 0.6 then we do not know what to do
(i.e.,0.4 ≤ µ1 ≤ 0.6)

if 0.6 < µ0 ≤ 0.7 then H might be accepted
(i.e.,0.3 ≤ µ1 < 0.4)

if 0.7 < µ0 ≤ 0.8 then H may be accepted
(i.e.,0.2 ≤ µ1 < 0.3)

if 0.8 < µ0 ≤ 0.9 then H should be accepted
(i.e.,0.1 ≤ µ1 < 0.2)

if 0.9 < µ0 ≤ 1 then H shall be accepted.
(i.e.,0 ≤ µ1 < 0.1)

The situation whenµ0 is close toµ1 was classified as
“we do not know what to do.” This means that using our
data we can neither reject nor acceptH. These data are
simply too vague.

5. Conclusions

Zadeh’s idea of “computing with words” is not a well-
defined concept. In one of its interpretations it could be
understood as data processing when both input and out-
put data are given in linguistic terms. If we accept this
definition, the problem considered in this paper is a prac-
tical realization of this idea. Using the example from the
area of life-testing, we propose a method for processing
imprecise statistical data. First, we proposed a method
for the description of statistical data of different type by
fuzzy sets. Then we developed algorithms for building
estimators, confidence intervals, and statistical decision
functions for such data. Finally, we proposed a method
to communicate the results of very complicated computa-
tions in a user-friendly manner, just by giving advice using
a common language.

The method proposed in this paper is not an example
of merely number-crunching. It reflects problems which
are important while dealing with imprecise data like, e.g.,
the decision-maker’s attitude. The proposed method could
be generalized so as to be applied to solving other statisti-
cal decision problems.
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