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We present a framework ofL-fuzzy modifiers forL being a complete lattice. They are used to model linguistic hedges that
act on linguistic terms represented byL-fuzzy sets. In the modelling process the context is taken into account by means
of L-fuzzy relations, endowing theL-fuzzy modifiers with a clear inherent semantics. To our knowledge, theseL-fuzzy
modifiers are the first ones proposed that are suitable to perform this representation task for a latticeL different from the
unit interval. In the latter case they undoubtedly outperform the traditional representations, such as powering and shifting
hedges, from the semantical point of view.

Keywords: L-fuzzy modifier,L-fuzzy relation, resemblance relation, linguistic hedge, linguistic variable

1. Introduction

Computing with words had his biggest impulse with the
introduction of the concept of a linguistic variable (Zadeh,
1975) and the representation of its values by means of
fuzzy sets (Zadeh, 1965). In contrast to numerical vari-
ables, whose values are numbers, the values of a linguis-
tic variable are linguistic terms that allow us to capture the
vagueness present in human perceptions of the real world.
A nice feature of linguistic variables is that their values
are structured, which makes it possible to compute the
representations of composed linguistic terms from those
of their composing parts.

Although some exceptions can be found (see, e.g.,
Wei et al., 2000) in this context a basic linguistic term
is usually an adjective (e.g.beautiful). Composed terms
can be generated by applying either a linguistic hedge to
a term (e.g.very beautiful) or by combining two terms by
means of a conjunction (e.g.very beautiful but stupid). It is
clear that the class of linguistic terms obtained in this way
does not correspond to the whole of a natural language,
but it still covers its remarkably expressive part.

The construction of suitable fuzzy sets for the lin-
guistic terms involved is typically one of the most diffi-
cult tasks when building an application. A good repre-
sentation of the connectives and the linguistic hedges is
therefore desired, since it allows for the automatic deduc-
tion of new fuzzy sets from known ones. In this paper
we will focus on the latter: the representation of linguistic
hedges (also called “linguistic modifiers”) by fuzzy modi-
fiers (also called “fuzzy hedges”), i.e. operators that trans-
form a fuzzy set into another.

In the greater part of the literature and applications
linguistic terms are modelled by means of fuzzy sets tak-
ing membership degrees in the unit interval[0, 1]. The
construction of a fuzzy set corresponding to a linguis-
tic term has a large degree of freedom: we can choose
from many possible parametrized shape functions (see,
e.g., Kerre, 1993) and, moreover, the parameters can often
be arbitrarely chosen within some small domain, all this
with negligible or no impact on the functionality of the
systems which use this model of linguistic terms. The ex-
act numerical values of the membership degrees are usu-
ally neither justifiable, nor important; only the values of0,
0.5, and1 have a special intuitive meaning, while the oth-
ers are mostly only shots. Often this is explained away by
saying that the only really important thing is that the mem-
bership degrees induce a graded ordering of “belonging
to” on the set of objects, which is the power of fuzzy set
theory.

Indeed, the mapping of elements of the universe to
the interval [0, 1] implies a crisp, linear ordering of these
elements. However, there also exists incomparable infor-
mation in the real world (Xuet al., 1999), within which
there are linguistic terms that do not correspond to a
linear ordering on the universe. It is clear that[0, 1]-
valued fuzzy set theory is inadequate to deal with non-
comparable information. The key to the solution, how-
ever, was present from the very start of fuzzy set theory.
In fact, in 1965, in his seminal paper Zadeh (1965) in-
cluded the footnote:“In a more general setting, the range
of the membership function can be taken to be a suitable
partially ordered setP .”
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The unit interval was always and still is considered
to be a very natural and transparant set of membership de-
grees (Nováket al., 1999), and it is used in a majority of
applications. From the beginning, however, some atten-
tion has been paid to other partially ordered sets as well.
In 1967 Goguen formally introduced the notion of anL-
fuzzy set with a membership function taking values in a
lattice L (Goguen, 1967). The concept of anL-fuzzy
set is still studied albeit mostly on a theoretical level, with
some practical interest limited mainly to type-2 fuzzy sets.
Since a lot of information in the real world is incompara-
ble, we believe that there is still a huge gap on the market
of applications, to be filled by systems able to represent
this kind of information. In this paper we walk in this di-
rection, deepening the research started in (De Cocket al.,
2001).

As we will explain later on, the popular[0, 1]-fuzzy
modifiers—such as powering and shifting hedges—that
are traditionally used to model linguistic modifiers, can-
not be generalized straightforwardly to theL-fuzzy case.
On the other hand, the[0, 1]-fuzzy modifiers based on
fuzzy relations as proposed in (De Cock and Kerre, 2000;
2002a) lend themselves extremely well to anL-fuzzy
generalization. In this paper we will present the research
bottom-up, first introducingL-fuzzy modifiers based on
L-fuzzy relations, and then studying the[0, 1]-fuzzy mod-
ifiers based on[0, 1]-fuzzy relations as an interesting spe-
cial case. We will also point out how and why they out-
perform the traditional representations.

2. Preliminaries

An algebraic structure(L,∨,∧) consisting of a non-
empty setL and two binary operations∨ and ∧ on L
is called alattice iff for all a, b and c in L

(L.1) a ∧ a = a,

(L.1′) a ∨ a = a,

(L.2) a ∧ b = b ∧ a,

(L.2′) a ∨ b = b ∨ a,

(L.3) a ∧ (b ∧ c) = (a ∧ b) ∧ c,

(L.3′) a ∨ (b ∨ c) = (a ∨ b) ∨ c,

(L.4) a ∧ (a ∨ b) = a,

(L.4′) a ∨ (a ∧ b) = a.

(L,∨,∧) is usually abbreviated toL, tacitly assuming the
presence of the join-operation∨ and the meet-operation
∧. Every lattice is a partially ordered set with the ordering
defined bya ≤ b iff a ∨ b = b (or, equivalently,a ≤ b
iff a ∧ b = a), for all a and b in L. A corresponding
strict ordering can be defined bya < b iff ( a ≤ b and
a 6= b). Throughout the remainder of this paper, letL de-
note acompletelattice, i.e. every subset ofL has a least

upper bound (supremum) and a greatest lower bound (in-
fimum). The smallest and the greatest elements ofL will
be denoted by 0 and 1, respectively.

Triangular norms were originally introduced by
Schweizer and Sklar (1961) in the framework of proba-
bilistic metric spaces.[0, 1]-fuzzy set theory eagerly uses
them to represent the intersection of fuzzy sets, as well
as to model connectives such asand, but andor. Several
authors studied the generalization of triangular norms and
implicators from the real unit interval to partially ordered
sets (De Cooman and Kerre, 1994; Drossos and Navara,
1997; De Baets and Mesiar, 1999). We will comply with
the following definitions:

Definition 1. (Triangular norm)A triangular norm (t-
norm for short)T on L is an associative, commutative
and increasingL2−L mappingT satisfying the bound-
ary conditionT (a, 1) = a for all a in L.

Definition 2. (Triangular conorm)A triangular conorm
(t-conorm for short)S on L is an associative, commu-
tative and increasingL2 − L mappingS satisfying the
boundary conditionS(a, 0) = a for all a in L.

Definition 3. (Residual implicator)Let T be a t-norm
on L. If IT is anL2−L mapping such thatT (a, b) ≤ c
iff a ≤ IT (b, c) for all a, b and c in L, then IT is
called theresidual implicatoron L induced byT .

If there exists a residual implicatorIT induced by a
triangular normT , then

IT (x, y) = sup
{
λ | λ ∈ L and T (x, λ) ≤ y

}
for all x and y in X. The structure(L,∨,∧, T , IT , 0, 1)
is then usually referred to as a residuated lattice. For a de-
tailed overview of residuated lattices and their properties,
we refer the reader to (Nováket al., 1999). Furthermore,
we also note that there is a strong connection between
residuated lattices and the well-studied concept of a lat-
tice implication algebra (Xuet al., 2000), which is also
a source of inspiration for properties regardingt-norms
and implicators. From now on we will assume thatT
is a t-norm, with residual implicatorIT , and thatX is
the universe of discourse, i.e. the crisp set of objects that
we want to discuss. Before arriving at the main topic of
this paper, we only need to recall some definitions from
L-fuzzy set theory.

Definition 4. (L-fuzzy set)An L-fuzzy setA on X is a
mapping fromX to L, also called themembership func-
tion of A. For all x in X, A(x) is called themem-
bership degreeof x in A. The class of allL-fuzzy sets
on X is denoted byFL(X). The kernel and thesup-
port of A are respectively defined asker(A) = {x |
x ∈ X and A(x) = 1} and supp(A) = {x | x ∈
X and A(x) > 0}.
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Definition 5. (T -intersection)For A and B L-fuzzy
sets onX, the T -intersectionof A andB is theL-fuzzy
set onX defined by(A∩T B)(x) = T (A(x), B(x)) for
x in X.

Furthermore, we will write IT (A,B) for
the pointwise extension ofIT to L-fuzzy sets,
i.e.IT (A,B)(x) = IT (A(x), B(x)) for all x in X.

Definition 6. (Inclusion)For A and B L-fuzzy sets on
X, A is included inB iff A(x) ≤ B(x) for all x in X.
As usual, we denote this byA ⊆ B.

Definition 7. (L-fuzzy relation)An L-fuzzy relation R
on X is an L-fuzzy set onX × X, i.e. an element of
FL(X ×X). Furthermore,

1. R is reflexiveiff R(x, x) = 1 for all x in X.

2. R is symmetricaliff R(x, y) = R(y, x) for all x
and y in X.

3. R is T -transitiveiff T (R(x, y), R(y, z)) ≤ R(x, z),
for all x, y and z in X.

4. R is a fuzzy T -equivalencerelation iff R satisfies
1, 2 and 3.

For all y in X, the R-foresetof y is the L-fuzzy setRy
on X defined byRy(x) = R(x, y) for all x in X.

From now on, we will also refer to[0, 1]-fuzzy set
theory ([0, 1]-fuzzy sets, [0, 1]-fuzzy relations, etc.) as
fuzzy set theory (fuzzy sets, fuzzy relations, etc.), tacitly
assuming that the membership values are taken from the
real unit interval. The class of all fuzzy sets onX will be
denoted byF(X).

3. L-fuzzy modifiers based onL-fuzzy
relations

The direct imageR(A) of a fuzzy setA under a fuzzy
relation R is a well-known concept in fuzzy set theory
(Kerre, 1993). Although many researchers might not be
familiar with the terminology “direct image”, they will
still recognize the formula as a result of the compositional
rule of inference, often referred to as the unary composi-
tion of A and R (usually denoted byA ◦ R). In (De
Cock et al., 2000) it is shown that this and other kinds
of images of fuzzy sets under fuzzy relations have a re-
markably high amount of applications, ranging from fuzzy
databases over fuzzy rough sets and fuzzy morphology for
image processing, to the representation of linguistic mod-
ifiers. The “ingredients” of the fuzzy images are fuzzy
logical operators such as at-norm and an implicator, as
well as the fuzzy relations themselves. Since these ingre-
dients can be easily generalized to theL-fuzzy case as

we recalled in the previous section, all kinds ofL-fuzzy
relational images can be defined as well. Note that this
opens the door to widening all the applications mentioned
above to domains of incomparable information. However,
in this paper we focus only on the representation of lin-
guistic modifiers byL-fuzzy modifiers.

Definition 8. (L-fuzzy modifier)An L-fuzzy modifieron
X is a mapping fromFL(X) to FL(X).

Definition 9. (L-fuzzy modifiers based onL-fuzzy rela-
tions) For every L-fuzzy relation R on X, the L-fuzzy
modifiersR♣ and R♥ are defined as

R♣(A)(y) = sup
x∈X

T
(
R(x, y), A(x)

)
,

R♥(A)(y) = inf
x∈X

IT
(
R(x, y), A(x)

)
,

respectively, for allA in FL(X) and for all y in X.

For ease of presentation, we do not mention the trian-
gular norm and residual implicator used in the shorthand
notation of fuzzy modifiers. Note that we can rewrite the
formulae above as

R♣(A)(y) = sup
x∈X

(Ry ∩T A)(x),

R♥(A)(y) = inf
x∈X

IT (Ry, A)(x).

They can be interpreted as the degree to whichRy and
A overlap, and the degree to whichRy is included inA,
respectively. The assumption that the latticeL of mem-
bership degrees under study is complete guarantees the ex-
istence of the supremum and the infimum in the formulae
above. Here♣ and ♥ can be seen as operators that act
on anL-fuzzy relationR and anL-fuzzy setA, and turn
them into anL-fuzzy set, namelyR♣(A) and R♥(A),
respectively. In (Orłowska and Radzikowska, 2001),♣
and♥ are studied under the name “fuzzy information op-
erators.” The following two propositions regarding entail-
ment are given in (Orłowska and Radzikowska, 2001):

Proposition 1. (Entailment)R is a reflexiveL-fuzzy re-
lation on X iff for all A in FL(X)

R♥(A) ⊆ A ⊆ R♣(A).

Proposition 2. (Inverse entailment)R is a T -transitive
L-fuzzy relation onX iff for all A in FL(X)

R♥(
R♥(A)

)
⊇ R♥(A),

R♣(
R♣(A)

)
⊆ R♣(A).



M. De Cock and E.E. Kerre374

Corollary 1. (Idempotency)If R is a reflexive, T -
transitive L-fuzzy relation onX, then for all A in
FL(X)

R♥(
R♥(A)

)
= R♥(A),

R♣(
R♣(A)

)
= R♣(A).

The following propositions are generalizations of the
ones studied in (De Cock and Kerre, 2002a).

Proposition 3. (Behaviour w.r.t. the kernel)For all R in
FL(X × X), for all A in FL(X), and for all y in X,
the following holds:

1. If ker(A) ∩ ker(Ry) 6= ∅ then y ∈ ker(R♣(A)).

2. If co(ker(A))∩ker(Ry) 6= ∅ theny /∈ ker(R♥(A)).

3. If Ry ⊆ A then y ∈ ker(R♥(A)).

Proof.

1. According to the condition, there exists anx0 in X
such thatA(x0) = 1 and R(x0, y) = 1. Hence
R♣(A)(y) ≥ T (R(x0, y), A(x0)) = 1.

2. According to the condition, there exists anx0 in X
such thatA(x0) < 1 and R(x0, y) = 1. Hence
R♥(A)(y) ≤ IT (R(x0, y), A(x0)) < 1.

3. The result follows from Definition 6 and

IT (x, y) = 1 iff x ≤ y.

Proposition 4. (Behaviour w.r.t. the support)For all R
in FL(X×X), for all A in FL(X), and for all y in X
the following holds:

1. If supp(A) ∩ supp(Ry) 6= ∅ then we havey ∈
supp(R♣(A)), provided thatT has no zero divisors
(i.e.a 6= 0 and b 6= 0 imply T (a, b) 6= 0).

2. If co(supp(A)) ∩ ker(Ry) 6= ∅ then we havey /∈
supp(R♥(A)).

Proof.

1. According to the condition, there exists anx0 in X
such thatA(x0) > 0 and R(x0, y) > 0. Since T
has no zero divisors,0 < T (R(x0, y), A(x0)) ≤
R♣(A)(y).

2. According to the condition, there exists anx0 in X
such thatA(x0) = 0 and R(x0, y) = 1. Hence
0 = IT (R(x0, y), A(x0)) = R♥(A)(y).

All of these properties have an important interpre-
tation when representing linguistic modifiers byL-fuzzy
modifiers, as we will discuss later on.

4. Representing Linguistic Hedges

In a fuzzy set theoretical context a linguistic term is usu-
ally represented by a fuzzy setA on a universeX, char-
acterized by anX − [0, 1] mapping (for simplicity also
denoted byA), which is called the membership function.
Hence for everyx in X, A(x) is the membership de-
gree of x in the fuzzy setA and it may vary between0
and1. This graded approach makes fuzzy set theory ex-
tremely suitable to model linguistic terms which are of-
ten inherently vague. As indicated in the Introduction,
however, the representation of a term by a[0, 1]-fuzzy set
forces total ordering on the objects of the universe, which
might not be desirable if the universe contains incompa-
rable objects. Imagine, e.g., that a man cannot say which
one of two women is prettier than the other. Assigning to
both of them a membership degree between0 and1 in the
fuzzy set ‘pretty’ inevitably implies ordering among these
women w.r.t. being pretty. At first sight the best way out
is to give them the same degree of membership. However,
that this is only a naive solution becomes apparent when
the older sister of the first woman comes along and turns
out to be prettier than her younger sibling but incompa-
rable with the second woman. To overcome this kind of
problems, we may represent linguistic terms byL-fuzzy
sets, since in this case the membership degrees are not
necessarily linearly ordered.

As we already mentioned in the Introduction, con-
structing proper fuzzy sets is a difficult part of establish-
ing a working application which usually involves expert
knowledge. Fortunately, the concept of a fuzzy set is
straightforward and can be grasped quite easily by ex-
perts of all kinds of domains, but still the construction
of membership functions often remains ratherad hocand
subjective. Having a representation for some linguistic
hedges such asvery, more or less, extremely, . . . can fa-
cilitate the task. Indeed, using these representations one
can significantly increase the number of available fuzzy
sets automatically. During the last three decades, many
[0, 1]-fuzzy modifiers were proposed for the representa-
tion of linguistic hedges acting on terms represented by
[0, 1]-fuzzy sets (see (Kerre and De Cock, 1999) for an
overview). Almost all of them can be categorized as mod-
ifiers with pure premodification, pure postmodification, or
a combination of both.

Definition 10. (Pre- and postmodification)A fuzzy mod-
ifier m on X is decomposable in a pre- and a post-
modifier if there exists anX − X mapping t and a
[0, 1]− [0, 1] mappingr such that for allA in F(X)

m(A) = r ◦A ◦ t.

In other words,

(∀x ∈ X)
(
m(A)(x) = r

(
A(t(x)

))
,



A context-based approach to linguistic hedges 375

where t is called the premodifier ofm, while r is called
the postmodifier ofm. If t is the identityX −X map-
ping, thenm is called amodifier with pure postmodifica-
tion. If, on the other hand,r is the identity[0, 1]− [0, 1]
mapping, thenm is called amodifier with pure premodi-
fication.

A very popular class of modifiers with pure postmod-
ification are the powering hedgesPα defined by

Pα(A)(x) = A(x)α

for A in F(X), x in X, and α a positive real number
(Zadeh, 1972). Well-known modifiers with pure premod-
ification are shifting modifiers, usually defined onR by

Sα(A)(x) = A(x− α)

for A in F(R), x in R, and α a real number (Lakoff,
1973; Hellendoorn, 1990). The shifting modifiers are usu-
ally defined onR because, just like all modifiers with pre-
modification, they need to perform an operationt on the
universe of discourse. Since the set of real numbers is
equipped with many well-known operations, it is a popu-
lar candidate. In many fuzzy control systems nowadays
the universe is numerical (i.e. a suitable subset ofR).
Allowing and studying non-numerical universes as well
might open the door to an uncultivated area of applica-
tions, especially those in which the input and output are
neither given by, nor intended for a measuring instrument
or a machine. In such universes, however, suitable opera-
tions do not always grow on trees. Furthermore, if such a
universe contains incomparable information, the applica-
tion of shifting hedges becomes even less straightforward.

Unfortunately, modifiers with pure postmodification
cannot simply save the day either. Unlike those with
pure premodification, they act on the membership degrees
themselves. The real unit interval is equipped with a vast
amount of well-known operations, but arbitrary lattices
are not. What is more, we do not know a variant of the
powering operation on an arbitrary lattice. Needless to
say, a combination of both kinds of modifiers only in-
creases the difficulties since one has to find solutions for
the problems on both the levels (in the universe and in the
set of membership values).

When computing the degree to whichy is very A,
for example, powering modifiers (and all modifiers with
pure postmodification) only look at the degree to whichy
is A. They completely ignore the other objects of the uni-
verse and their degree of belonging toA. Shifting mod-
ifiers do not even look at the degree to whichy is A,
but only to the degree to which some other objectz is
A (if the membership function ofA is increasing (resp.
decreasing) thenz will be to the left (resp. to the right)
of y). In this paper we advocate the use of fuzzy modi-
fiers that look at the degree to whichy is A, but which

also take into account the objects in thecontextof y. The
context ofy is defined as the objects that are related toy
by some relationR that models an approximate equality.
This relation is intrinsically fuzzy because the approxi-
mate equality is a vague concept. Hence, as a natural re-
sult, the context ofy will be an L-fuzzy set.

4.1. Resemblance Relations

The approximate equality is a vague concept: the tran-
sition betweenbeingapproximately equal andnot being
approximately equal is not abrupt but gradual. Every ob-
ject is approximately equal to itself to the highest degree
(i.e.1), but two objects can also be approximately equal to
degree1 even if they are not exactly equal. Furthermore,
the greater the distance between two objects, the less they
are approximately equal, and vice versa. Consider, e.g.
children in a primary school. Those of the same class
are usually approximately equal w.r.t. the age (i.e. “of the
same age”) although a very small minority of them are
born on exactly the same day. Those of the first and final
years are not usually approximately equal (i.e. approxi-
mately equal to degree 0) w.r.t. their age. On the other
hand, children in two successive years might be consid-
ered as being of the same age to some degree which is
smaller than 1 but greater than0.

In (De Cock and Kerre, 2001; 2002b) it is shown
that fuzzy T -equivalence relations are not suitable to
model this kind of approximate equality. An important
evidence for this statement, related to the Poincaré para-
dox (Poincaré, 1904), arises when objects can be approx-
imately equal to degree 1 without being exactly equal. If
(x1, x2, x3, . . . , xn) is a chain in the universe such that
two successive elements are approximately equal to de-
gree 1 (i.e.E(xi, xi+1) = 1), one can prove thatx1 and
xn are approximately equal to degree 1 when modelling
E by means of a fuzzyT -equivalence relation. Usually
this is not desired. Imagine, e.g., that the elements of a
chain are girls that can be ranked in beauty from the ugli-
est one to the prettiest one. Although girls standing next
to each other might be approximately equal to degree 1 in
beauty, it is likely that there is a big difference between
the first and the last one. A similar reasoning can be made
when ranking the children of the primary school from the
youngest to the eldest one.

Since this paradoxal result is due to theT -
transitivity, we suggest to omit this condition in any case
when looking for anL-fuzzy relation to model the ap-
proximate equality. If the universeX is equipped with
a meaningfulS-pseudo-metricd, T -transitivity can be
replaced by a condition based on it, reflecting the above
mentioned duality between the distance and the approxi-
mate equality.
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Definition 11. (S-pseudo-metric)Let S be a t-conorm on
L. An X2 − L mappingd is called anS-pseudo-metric
on X iff for all x, y and z in X:

(SPM.1) d(x, x) = 0,

(SPM.2) d(x, y) = d(y, x),
(SPM.3) S(d(x, y), d(y, z)) ≥ d(x, z).

The couple(X, d) is called anS-pseudo-metric space.

The class of[0, 1]-valuedSL-pseudo-metrics (based
on the Łukasiewiczt-conormSL, defined asSL(x, y) =
min(x + y, 1) for all x and y in [0, 1]) coincides with
the class of[0, 1]-valued pseudo-metrics.

Definition 12. (Resemblance relation)An L-fuzzy rela-
tion R on an S-pseudo-metric space(X, d) is called a
resemblance relationiff for all x, y, z and u in X

(R.1) R(x, x) = 1,

(R.2) d(x, y) ≤ d(z, u) implies R(x, y) ≥ R(z, u).

Note that condition (R.2) implies the symmetry of
R. If it is not straightforwardly clear which meaningful
S-pseudo-metric is available on the universe, a mapping
g from X to a S-pseudo-metric space(M, d) might do
the trick, replacing condition (R.2) by

d
(
g(x), g(y)

)
≤d

(
g(z), g(u)

)
impliesR(x, y)≥R(z, u).

As is pointed out in (Klawonn, 2002), the definition of the
resemblance relation covers a broad class of fuzzy rela-
tions. It is certainly not as restrictive as that of the fuzzy
T -equivalence relation, in the sense that some clear intu-
itive examples of the approximate equality which cannot
be modelled by fuzzyT -equivalence relations can be rep-
resented by resemblance relations. Whether resemblance
relations are strong enough to enforce a meaningful con-
cept of approximate equality (Bodenhofer, 2002) highly
depends on the meaningfulness of theS-pseudo-metric
d used in the definition. From now on, when we use the
term “resemblance relation”, we assume that it is an ac-
ceptable intuitive model of the approximate equality.

If R is a resemblance relation onX then for all y
in X, the R-foreset ofy, i.e.Ry, is theL-fuzzy set of ob-
jects resemblingy. As we will illustrate in the following,
Ry is a suitable context ofy when modelling the weak-
ening hedgesmore or less androughly and the intensifying
hedgesvery andextremely by means of theL-fuzzy mod-
ifiers based onL-fuzzy relations presented in Section 3.
Our goal is to establish representations for these linguistic
hedges that respect the semantic entailment (Lakoff 1973),
i.e. such that for allA in FL(X)

extremely A ⊆ very A ⊆ A ⊆ more or less A

⊆ roughly A, (1)

which is often assumed in the literature on fuzzy set theory
(Novák and Perfilieva, 1999).

4.2. Weakening Hedges: ‘More or Less’ and
‘Roughly’

We could say that somebody ismore or less adult “if he
resembles anadult”. Likewise, a park ismore or less large
“if it resembles alarge park”. In general,y is more or less
A if y resembles anx that is A. Hence we can say that
y is more or less A if the intersection ofA and Ry is
not empty, or to state it in a more fuzzy manner:y is more
or less A to the degree to whichRy and A overlap, i.e.

more or less A(y) = R♣(A)(y).

The semantics of this representation becomes even clearer
if A is a crisp singleton, i.e.A(z) = 1 for somez in X
and A(x) = 0 for all other x in X. We also denote
this by A = {z}. In this case for ally in X, more or less
A(y) is equal toR(z, y). In other wordsy is more or less
{z} to the degree to whichz resemblesy. Due to the
reflexivity of R (every object is approximately equal to
itself to the highest degree) and Proposition 1, the relevant
inclusion of (1) holds, i.e.

A ⊆ more or less A,

meaning that every object that isA is alsomore or less A
to the same or to a higher degree. IfR would have been
T -transitive, Proposition 2 would hold as well, implying
that more or less more or less A would be the same as
more or less A. As a corollary of the reflexivity ofR, for
every nonT -transitive resemblance relationR we have
R♣(A) ⊂ R♣(R♣(A)). Note that this is due to the re-
flexivity and the non-transitivity ofR (cf. Propositions 1
and 2). This makesR♣(R♣(A)) a suitable candidate to
modelroughly A such that

more or less A ⊆ roughly A

is satisfied. The meaning of this representation ofroughly
A comes down to:y is roughly A if y resembles anx
that ismore or less A.

4.3. Intensifying Hedges: ‘Very’ and ‘Extremely’

For the representation ofvery andextremely in an L-fuzzy
framework, we suggest an analogous scheme to that pre-
sented above formore or less androughly. Indeed: if all
men resembling Alberik in height aretall, then Alberik
must bevery tall. Likewise, a woman isvery beautiful “if
all women resembling her arebeautiful”. In general: y is
very A if all x resemblingy are A. Hencey is very A
if Ry is included inA. To state it in a more fuzzy man-
ner: y is very A to the degree to whichRy is included
in A, i.e.

very A(y) = R♥(A)(y).
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Under the natural assumption thatR is reflexive, the se-
mantic entailment (1) holds:

very A ⊆ A.

Imposing T -transitivity on R would again lead to the
counter-intuitive result thatvery very A would have the
same meaning asvery A. For a non T -transitive re-
semblance relationR, however, we haveR♥(R♥(A)) ⊂
R♥(A). Therefore we propose to modelextremely A as
R♥(R♥(A)), meaning thaty is extremely A if every x
resemblingy is very A. Of course, this representation
satisfies

extremely A ⊆ very A.

4.4. Examples

This section is entirely devoted to examples that will con-
vince the reader of the great and uniform power of the
framework of L-fuzzy modifiers presented above. In the
first example we will show how the framework can lead
to very nice results when representing modified linguistic
terms by fuzzy sets on a numerical universe, as commonly
used in applications such as fuzzy control and fuzzy ex-
pert systems. The use of traditional fuzzy modifiers such
as powering and shifting hedges is well studied for this
case. We will show, however, that our representation can
outperform them on the semantical level on the one hand
and on the uniformity and ease in application on the other.

When turning to non-numerical universes, traditional
fuzzy modifiers based on premodification become difficult
to use due to a lack of suitable operators on the universe
under study. In the second example we will show that
the fuzzy modifiers based on resemblance relations can
be applied with the same ease as in the case of numerical
universes, and that they have a greater semantical power
than all fuzzy modifiers with pure postmodification.

In the third example we will once again deal with a
non-numerical universe, but furthermore we will general-
ize the set of membership values from[0, 1] to a complete
lattice L, allowing us to deal with information that is in-
comparable w.r.t. the linguistic terms being modelled. To
our knowledge, theL-fuzzy modifiers based onL-fuzzy
relations are the first ones suitable to perform this repre-
sentation task.

Example 1. In (du Bois et al., 2002) an approach to-
wards the automatic generation of absenteeism reports is
presented. One of the variables under study is the sickness
percentage, i.e. the percentage of employees in a company
that have reported sick. To describe the values of this vari-
able, linguistic terms and their corresponding fuzzy sets
were constructed. Membership functions like the ones
presented in Figs. 1(a) and (b) for the basic termshigh and
average were generated from historical data using fuzzy

clustering techniques. In the same figures the use of pow-
ering hedges is demonstrated, namely:P0.25(A) to rep-
resentroughly A, P0.5(A) for more or less A, P2(A)
for very A, and P4(A) for extremely A. We would like
to mention that in the literature not everybody agrees that
an intensifying hedge such asvery should be applied to
a medium term such asaverage (Nováket al., 1999). To
some peoplevery average might even have a negative con-
notation. For this reason this term was not considered in
(du Boiset al., 2002), but in the present paper we study it
for the sake of completeness and to demonstrate the power
of our framework of fuzzy modifiers based on fuzzy rela-
tions.
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Fig. 1. Powering hedges applied (a) tohigh and (b) toaverage.

Although the presented representation by means of
powering hedges satisfies (1), it has an important and
well-known drawback from the intuitive point of view
(Lakoff, 1973; Hellendoorn, 1990; Kerre, 1993), namely
that it keeps the kernel and the support. In other words,
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ker(A) = ker(Pα(A)) and supp(A) = supp(Pα(A))
for all A in F(X) and for all positive real numbersα.
As an immediate consequence using this kind of repre-
sentation, it is not possible to distinct between percentages
that arehigh to degree 1 and percentages that arevery high
to degree 1, although to an occupational physician a per-
centage of 6.5 might seemhigh to degree 1 butvery high
only to a lower degree, e.g. 0.7. It is easy to see that all
fuzzy modifiers with pure postmodification have the same
shortcoming: either they keep the kernel and/or the sup-
port, or they turn it into the empty set and the universe,
respectively.

Shifting hedges do not have this property and are
therefore more suitable to model linguistic terms like
more or less high andvery high (see Fig. 2(a)). However,
if the membership function to which they are applied is
neither increasing nor decreasing, they do not satisify (1),
as can be seen from Fig. 2(b). In our opinion, the inappro-
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Fig. 2. Shifting hedges applied (a) tohigh and (b) toaverage.

priate behaviour of powering hedges w.r.t. the kernel and
the support and its influence on the shape of the member-
ship function on the one hand and the limited applicability
of shifting hedges on the other are due to the fact that they
are technical operators that do not take the context into
account.

In our approach, when determining the degree to
which x belongs to a modified fuzzy set, we make use
of the context ofx. In this example, the context ofx
might be a Π-membership function centred aroundx,
e.g.Π(x − a, x − b, x + b, x + a, .). We recall that aΠ-
membership function onR is characterized by four real
parameters and defined by

Π(α, β, γ, δ, x)

=


S(α, (α + β)/2, β, x), x ≤ β,

1, β ≤ x ≤ γ,

1− S(γ, (γ + δ)/2, δ, x), γ ≤ x

for all x in R. It is assumed thatα ≤ β ≤ γ ≤ δ.
Hence it is the union of anS-membership function and
its complement:

S(α, β, γ, x) =



0, x ≤ α,

2(x− α)2

(γ − α)2
, α ≤ x ≤ β,

1− 2(x− γ)2

(γ − α)2
, β ≤ x ≤ γ,

1, γ ≤ x.

Furthermore, we need at-norm and its residual im-
plicator to model the intersection and the inclusion which
is present in the definition of fuzzy modifiers based on
fuzzy relations. In Table 1 the most popular ones are re-
called. Figure 3 presents the membership functions gen-
erated using the fuzzy modifiers based on fuzzy relations
using TL and ITL . In all cases the kernels and the sup-
ports are changed. This is due to Propositions 3 and 4

Table 1. Somet-norms on[0, 1] and their residual implicators.

TM(x, y) = min(x, y) ITM(x, y) =

{
1 if x ≤ y

y otherwise

TP(x, y) = x·y ITP(x, y)=

{
1 if x ≤ y

y/x otherwise

TL(x, y)=max(x+y−1, 0) ITL(x, y)=min(1−x+y, 1)
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Fig. 3. Fuzzy relation based hedges applied (a) tohigh and (b)
to average.

and a proper choice of the resemblance relation that al-
lows these propositions “to do their work.” Furthermore,
it can be applied to all kinds of membership functions.

Example 2. In the universe of fairytale characters

X = {snow white, witch, wolf, dwarf,

prince, little-red-riding-hood},

fuzzy setsbeautiful, average andugly are given:

snow white witch wolf dwarf prince red-hood

beautiful 1.00 0.00 0.00 0.10 0.80 0.50

average 0.00 0.30 0.00 0.70 0.20 0.50

ugly 0.00 0.70 1.00 0.20 0.00 0.00

For g the X − [0, 1]3 mapping defined by

g(x) =
(
beautiful(x), average(x), ugly(x)

)
,

for all x in X and d the pseudo–metric on[0, 1]3 de-
fined by

d
(
(x1, y1, z1), (x2, y2, z2)

)
= max

(
|x1 − x2|, |y1 − y2|, |z1 − z2|

)
for all (x1, y1, z1) and (x2, y2, z2) in [0, 1]3 we can
model an approximate equality by the resemblance rela-
tion E on X with the following matrix representation:

E snow white witch wolf dwarf prince red-hood

snow white 1.00 0.00 0.00 0.00 1.00 0.50

witch 0.00 1.00 1.00 0.50 0.00 0.00

wolf 0.00 1.00 1.00 0.00 0.00 0.00

dwarf 0.00 0.50 0.00 1.00 0.00 0.88

prince 1.00 0.00 0.00 0.00 1.00 1.00

red-hood 0.50 0.00 0.00 0.88 1.00 1.00

Using TP and ITP , the membership degrees in the fuzzy
sets representing some modified terms are as follows:

snow- witch wolf dwarf prince red-
white hood

more or less beautiful 1.00 0.05 0.00 0.44 1.00 0.80

more or less average0.25 0.35 0.30 0.70 0.50 0.61

more or less ugly 0.00 1.00 1.00 0.35 0.00 0.18

very beautiful 0.80 0.00 0.00 0.00 0.50 0.11

very average0.00 0.00 0.00 0.57 0.00 0.00

very ugly 0.00 0.40 0.70 0.00 0.00 0.00

Note that the witch who isugly to degree0.7 is more or
less ugly to degree1, because of her resemblance to the
wolf who is ugly to degree1. This result can never be
achieved with powering hedges.

Example 3. One’s favorite “ingredients” for a dessert
might be chocolate, vanilla ice and marzipan. Depending
on the absence or the presence of one or more of these in-
gredients, a dessert can be called delicious to some lower
or higher degree. Since one likes all of the three ingredi-
ents, it is clear that adding one of them makes the dessert
plate more delicious. For example, a vanilla ice topped
with a bit of chocolate is considered to be more delicious
than a plain vanilla ice. Adding some marzipan makes
it even more delicious. On the other hand, it could be
hardly impossible to say whether a vanilla ice and choco-
late dessert is less or more delicious than a vanilla ice and
marzipan dessert. Note that we cannot solve this by stat-
ing that they are delicious to the same degree, because the
ordering discussed above would then imply that vanilla ice
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and marzipan is more delicious than chocolate, although
we have no actual ground to assume that this is true.

Due to the incomparability of the deliciousness of
some of the dessert plates[0, 1]-fuzzy set theory is in-
adequate to model the termdelicious in the universe of
dessertsX. We propose to represent this term by means
of an L-fuzzy set A on X, using membership degrees
from the lattice with the Hasse-diagram depicted in Fig. 4.
For convenience, we will use the abbreviations C (choco-

u 

c d 

a 
b 

l 

Fig. 4. LatticeL = {l, a, b, c, d, u}.

late), V (vanilla ice) and M (marzipan). Furthermore, a
concatenation of ingredient symbols refers to a combined
plate (e.g. CV refers to a chocolate and vanilla ice dessert):

A =
{
(V, a), (C, b), (CV, d), (V M, c), (CV M, u)

}
with the universe of the dessert plates given byX =
{C, V,M,CV, V M,CV M}.

Table 2 represents a reflexive and symmetricalL-
fuzzy relation R that models an approximate equality
on X. Every dessert plate is considered to be approxi-
mately equal to itself to the highest degreeu (reflexivity).
Furthermore, if two dessert plates are not exactly equal
but adding one ingredient to one of them results in the
other dessert plate, they are still considered to be approx-
imately equal to degreec. For example,R(C,CV ) = c,
R(CV M, V M) = c, etc. Otherwise, they are consid-
ered as not approximately equal, i.e. approximately equal
to the lowest degreel. Table 3 represents thet-norm T∧
and the implicatorIT induced by it on the latticeL is
depicted in Figure 4.

Table 2. L-fuzzy relationR modelling the approximate
equality onX.

R V C CV V M CV M

V u l c c l

C l u c l l

CV c c u l c

V M c l l u c

CV M l l c c u

Table 3. t-norm and implicator onL = {l, a, b, c, d, u}.

T∧ l a b c d u

l l l l l l l

a l a l a a a

b l l b l b b

c l a l c a c

d l a b a d d

u l a b c d u

IT l a b c d u

l u u u u u u

a b u b u u u

b c c u c u u

c b d b u d u

d l c b c u u

u l a b c d u

Now the membership degrees of all dessert plates in
the L-fuzzy setsR♣(A) and R♥(A) can be determined.
As an example, we compute

R♣(A)(V )

= sup
(
T∧

(
R(V, V ), A(V )

)
,

T∧
(
R(C, V ), A(C)

)
, T∧

(
R(CV, V ), A(CV )

)
,

T∧
(
R(V M, V ), A(V M)

)
,

T∧
(
R(CV M, V ), A(CV M)

))
=sup

(
T∧(u, a), T∧(l, b), T∧(c, d), T∧(c, c), T∧(l, u)

)
=sup(a, l, a, c, l) = c,

R♥(A)(CV )

= inf
(
IT

(
R(V,CV ), A(V )

)
,

IT
(
R(C,CV ), A(C)

)
, IT

(
R(CV, CV ), A(CV )

)
,

IT
(
R(V M,CV ), A(V M)

)
,

IT
(
R(CV M, CV ), A(CV M)

))
= inf

(
IT (c, a), IT (c, b), IT (u, d), IT (l, c), IT (c, u)

)
= inf(d, b, d, u, u) = b.

Computing all membership degrees, we obtain

more or less A = R♣(A) =
{
(V, c), (C, d), (CV, u),

(V M, c), (CV M, u)
}
,

very A = R♥(A) =
{
(V, a), (C, b), (CV, b),

(V M, a), (CV M, d)
}
.

The semantic entailment clear:R♣ (used to model the
weakening hedgemore or less) keeps or increases the
original membership degrees, whileR♥ (used to repre-
sent the intensifying hedgevery) corresponds to a reduc-
tion.
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5. Conclusion and Future Research

L-fuzzy modifiers based onL-fuzzy relations prove to be
powerful tools for the representation of linguistic hedges.
They provide a general framework that is far more ap-
plicable than the traditional approaches, and even in the
cases where traditional fuzzy hedges can be used, they
are still clearly outperformed by the fuzzy relation based
modifiers on the semantic level. The generalisation to a
complete latticeL allows us to use them to deal with in-
comparable information, thereby paving the way to a new
area of applications. A crucial aspect of these new mod-
ifiers are theL-fuzzy relations on which they are based.
Important topics of future research will therefore be the
construction of resemblance relations, especially in lat-
tices different from the real unit interval, as well as the
search forL-fuzzy relations suitable to model other kinds
of hedges such as those that are not linearly ordered, as
the ones discussed in this paper.
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