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A novel procedure is given here for constructing non-negative functions with zero-valued global minima coinciding with
eigenvectors of a general real matrixA. Some of these functions are distinct because all their local minima are also global,
offering a new way of determining eigenpairs by local optimization. Apart from describing the framework of the method,
the error bounds given separately for the approximation of eigenvectors and eigenvalues provide a deeper insight into the
fundamentally different nature of their approximations.
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1. Introduction

The determination of the eigenvectors and eigenvalues of
large real matrices is of considerable importance to vari-
ous fields of science and technology. The machinery for
the solution of the problem has been worked out quite
well, and we do not attempt to give a detailed overview
of the relevant literature. However, the following clas-
sical monographs (Kato, 1966; Bellman, 1970; Golubet
al., 1996) are recommended. The methods have been de-
vised either for determining all eigenvectors of the matrix
simultaneously or successively. Various problems involve
large matrices of sizes well beyond the range of the si-
multaneous determination of the eigenpairs, while quite
a few problems require only a couple of them. The pro-
posed family of novel algorithms are iterative and yield
eigenpairs successively. Though the discussion here is re-
stricted to real eigenvectors of real matrices, the method is
also suitable for non-symmetrical matrices (with complex
eigenpairs) and complex-valued matrices.

In Section 2 non-negative functions are introduced
which play a key role in the algorithm. Section 3 contains
error bounds for the differences between the true and ap-

proximate eigenvectors and eigenvalues, while Section 4
is devoted to the numerical results. Section 5 contains a
short summary of the results obtained so far.

2. Eigenvector Functions and Their
Properties

Definition 1. The inequalityφ(x,y) ≤ ψ(x,y), x,y ∈
Rn, φ, ψ : Rn × Rn → R is called a proportionality
inequality if

φ(x,y) ≤ ψ(x,y), (1)

and the equality occurs if and only ifx andy are linearly
dependent.

Definition 2. For an arbitraryn-by-n matrix A, the func-
tion τA(x): Rn → R is called an ‘eigenvector function’
if and only if τA(x) ≥ 0, the equality holding only when
the vectorsx andAx are linearly dependent.

Corollary 1. For an arbitrary matrix A, using Defini-
tion 1, a special set of eigenvector functions can be con-
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structed which take the form ofτA(x): Rn → R+ (non-
negative reals):

τA(x) = ψ(x, Ax)− φ(x, Ax). (2)

Many inequality relations are suitable for defin-
ing eigenvector functions, such as Cauchy-Schwarz-
Buniakowsky’s, Hölder’s, Minkowski’s, Milne’s inequal-
ity, the inequality of Aczél, Popoviciu and Bellman, the
triangle inequality and the inequality based on Heron’s
formula (Hardyet al., 1934; Dragomir, 1991; Mitrinović
et al., 1993). In this paper the constructed eigenvector
functions make use of Cauchy-Schwarz-Buniakowsky’s
inequality. IfB ∈ Rn×n is a real, positive-definite ma-
trix andx,y ∈ Rn, then

(x>By)2 ≤ (x>Bx)(y>By), (3)

|x>By | ≤ (x>Bx)1/2(y>By)1/2 (4)

are Cauchy-Schwarz-Buniakowsky-type inequalities,
where the equality occurs iffx andy are proportional.1

Definition 3. Out of the multitude of possible Cauchy-
Schwarz-Buniakowsky-type eigenvector functions, we
decided to define the following four functions:

fA(x) := ‖x‖2‖Ax‖2 − (x>Ax)2, (5)

f
(ω)
A (x) := fA(x)/‖x‖4ω

, (6)

gA(x) := ‖x‖‖Ax‖ − |x>Ax|, (7)

g
(ω)
A (x) := gA(x)/ (‖x‖‖Ax‖)2ω

, (8)

with ‖ · ‖ as the Euclidean norm. Equation (5) defines
an n-variate, four-degree polynomial overR, which was
derived from (3) withB = I (the identity matrix). Equa-
tion (6) defines the normalized version of (5). It is re-
stricted tox 6= 0 and its degree of homogeneity is4−4ω,
where0 ≤ ω < 1 . Functions (7) and (8) are based on re-
lation (4). In (8),x 6∈ {z: Az = 0} and 0 ≤ ω < 1. If
ω = 1/2, (8) becomes1− | cos(ξ)|, whereξ is the angle
betweenx andAx.

Figures 1(a) and (b) show the graphs off (0)
A0

(x) and

g
(1/2)
A1

(x) associated with the following2× 2 symmetric
A0 and non-symmetricA1 matrices:

A0 =

(
0.6 −0.5
−0.5 0.6

)
, A1 =

(
−0.5 0.6

0.3 0.6

)
. (9)

Lemma 1. Let the eigenvector functionτA(x) be (c >
0)-homogeneous.

1 The proof can be found in standard works, e.g. in (Hardyet al.,
1934).
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Fig. 1. Graphs off (0)
A0

(x) and g
(1/2)
A1

(x).

(i) If τA(x) is differentiable, then∇τA(x) = 0 ⇒
τA(x) = 0.

(ii) If τA(x) is continuously differentiable, then
∇τA(x) = 0⇐⇒ τA(x) = 0.

Proof. Since τA(x) is a differentiable,(c > 0)-degree,
homogeneous function, Euler’s homogeneity relation2

(Eichhorn 1978) ensures thatx>∇τA(x) = c τA(x), so a
zero-vector gradient implies a zero function value as well.
The reverse case is trivial because the continuous differen-
tiability of the non-negative functionτA(x) implies that
the derivative is a zero-vector when the function value is
zero.

Lemma 2. For an arbitrary, strictly monotonic, increas-
ing function κ : R → R and a homogeneous eigen-
vector functionτA(x), the composite functioñκ(x) :=

2 Let f : Rn → R be r-homogeneous and differentiable on the
open and connected setD ⊆ Rn. Then

rf(w) =
∂f(w)

∂w1
w1+

∂f(w)

∂w2
w2+· · ·+

∂f(w)

∂wn
wn, w ∈D.
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κ(τA(x))−κ(0) is also an eigenvector function. Further-
more, if κ and τA(x) are differentiable, then∇κ̃(x) =
0⇒ κ̃(x) = 0.

Proof. SinceτA(x) is an eigenvector function, the strictly
increasing monotonous character ofκ ensures that̃κ(x)
is also an eigenvector function. Ifκ and τA(x) are differ-
entiable andτA(x) is homogeneous with positive degree,
then∇τA(x) = 0 ⇒ τA(x) = 0, and κ′ > 0 implies
∇κ̃(x) = ∇ (κ(τA(x))− κ(0)) = κ′(τA(x))∇τA(x) =
0 ⇒ ∇τA(x) = 0 ⇒ κ̃(x) = 0, which proves the
assertion.

One example of a composite function isκ(x) :=
exp(x) with τA(x) := fA(x). The eigenvector functions
defined above are suitable candidates for determining the
eigenpairs of matrices via optimization.

3. Error Bounds for the Approximation
of Eigenvalues and Eigenvectors

In this section the following mathematical assertions re-
late only to f

(0)
A and g

(1/2)
A , but similar propositions

can be made for generalω’s and non-symmetric matri-
ces, too. By approximating the true eigenpairs(u, λ)
of a given matrix with (x, ν), various measures can be
used for the pairwise distances of the true and approxi-
mate eigenvalues, as well as those of the true and approx-
imate eigenvectors. The following lemma shows that the
widely used Wilkinson norm‖Ax− xν‖/‖x‖ of (Parlett
1980; Wilkinson 1965) is closely related tof (0)

A (x).

Lemma 3. For any non-zerox ∈ Rn and symmetric ma-
trix A, if

(f (0)
A (x))1/2/‖x‖2 ≤ ε, (10)

then an eigenvalueλ necessarily exists for which|λ −
σA(x)| ≤ ε, whereσA(x) = x>Ax/x>x is the Rayleigh
quotient.

Proof. For any non-zerox ∈ Rn and for any symmetric
matrix A,(

f
(0)
A (x)

)1/2
/‖x‖2 = ‖Ax− xσA(x)‖/‖x‖. (11)

Direct computation yields the following sequence of
equalities, which prove the above statement:

‖Ax− xσA(x)‖2 (x>x)2

=
∥∥Ax− x(x>Ax/x>x)

∥∥2
(x>x)2 (12)

= x>x((x>x)(Ax)>(Ax)− (x>A>x)(x>Ax))

= x>xf (0)
A (x). (13)

Wilkinson’s result (Parlett 1980; Wilkinson 1965) implies
that for any non-zerox ∈ Rn and any scalarν, an eigen-
value λ exists that satisfies the inequality

|λ− ν| ≤ ‖Ax− xν‖/‖x‖. (14)

Taking into account (11) and replacing the Rayleigh-
quotient withν, we obtain the desired result.

The following theorems provide bounds for the ap-
proximation of the eigenvectors. Let the eigenvalues of
the symmetric matrixA be λ1, λ2, . . . , λn, and let the as-
sociated normalized eigenvectors beu1,u2, . . . ,un, re-
spectively. Let the angles between the eigenvectors and
vector x be α1, α2, . . . , αn. If σA(x) approximates in
the best mannerλm, the angle between the associated
eigenvectorum and x provides a measure of the accu-
racy of approximation.

Theorem 1. For an arbitrary non-zerox ∈ Rn and a
real, symmetric matrixA,(
f

(0)
A (x)

)1/2
/‖x‖2 ≤ ε =⇒ sin2 αm ≤ ε/|λm − λ̄m|,

(15)
where λm 6= 0 is the eigenvalue closest toσA(x) and
λ̄m is the following convex linear combination of the com-
plementary part of the spectrum:

λ̄m =

∑
j, j 6=m

λj cos2 αj∑
j, j 6=m

cos2 αj
. (16)

Proof. The proof can be found in Appendix.

The essence of this theorem is that the accuracy of
the approximation of an eigenvector depends not only on
the boundε but also on the structure of the spectrum.
The value of λ̄m depends on the distribution of eigen-
values in the complementary subset{λj}j=1,...,n \ λm,
as well as on the actual position of the trial eigenvector
x encoded in the parameterscos2(αj). If the spectrum
is almost degenerate, the bound, of course, loses its pre-
dictive power. However, when approximating the lowest
eigenvalue, sincēλm is a convex sum of the remaining
eigenvalues, it must be greater than or equal to the second
one. If an estimation for|λ1 − λ2| is available, Theo-
rem 1 offers a good measure for judging the accuracy of
the numerical calculation.

Theorem 2 is based on the relationship between
g
(1/2)
A (x) and tan2 (αm). The eigenvectorum remains

the best approximated eigenvector,αm is again the angle
betweenx and um, and the new parameter

¯̄λm =


∑

j, j 6=m

λ2
j cos2 αj∑

j, j 6=m

cos2 αj


1/2

(17)

is similar in form to λ̄ in Theorem 1.
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Theorem 2. For any real symmetric matrixA with eigen-
value λm 6= 0,

1− |c1| tan2 (αm)

1 + c2
2+1
2 tan2 (αm)

≤ 1− g(1/2)
A (x) ≤ 1 + |c1| tan2 (αm)

1 + |c2| tan2 (αm)
, (18)

where c1 = λ̄m/λm and c2 = ¯̄λm/λm.

Proof. The proof can be found in Appendix.

The gist of Theorem 2 is similar to that of Theorem 1,
and expresses the intertwined nature of the accuracy of
the approximation of an eigenvector and the structure of
the spectrum. Similarly as in Theorem 1, we need accept-
able estimates for the parametersc1 and c2 to keep the
predictive power of the theorem, but unlike Theorem 1,
Theorem 2 offers both lower and upper bounds on the ac-
curacy of the approximation of an eigenvector. Beyond
the bounds both theorems provide a clear insight into the
nature of eigenvector approximations. While Lemma 3
ensures that an eigenvalue exists in a bounded vicinity of
the Rayleigh-quotient, the bounds in Theorems 1 and 2
depend on the structure of the spectrum and on the ac-
tual position vectorx. In practice, their application re-
quires therefore that we know something about the struc-
ture of the spectrum, either from an independent source or
by making an educated guess.

4. Numerical Results

In order to illustrate how the eigenvector function-based
search method works, we constructed two numerical al-
gorithms. The first one is a general scheme, while the
second is a version specifically tailored to sparse sym-
metric matrices. Definitions 2, 3 and Lemma 1 ensure
that the minimum points of the eigenvector functions in
question coincide with the eigenvectors of the underlying
matrix. Thus the optimization of any of the constructed
eigenvector functions (5)–(8) provides a single eigenpair
of the symmetric matrixA.

Algorithm 1 describes the general scheme. Sev-
eral minimization algorithms are available and suitable
(Bazaraaet al., 1993) for use in Algorithm 1, the choice
depending mainly on the size of the matrix. The program
function boundA(x) (any of the functions in Section 3)
provides a measure for the actual accuracy of the approx-
imation of an eigenvalue or an eigenvector. The input is
a starting trial vectorx0, and a positive boundε is re-
lated to the underlying eigenvector functionτA(x) and
matrix A.

Algorithm 1. General optimization-based eigenvector
search.

Require: τA(x) be an eigenvector function,x0 a start-
ing trial vector,boundA(x) a measure of the accuracy of
the actual approximation, andε a suitable bound.

Ensure: an eigenpair approximation (xk, σA(xk))
k ← 0
while boundA(xk) ≥ ε

xk+1 ← successor ofxk, when minimizing
τA(x) using an iterative minimization algorithm

k ← k + 1
end while

σA(xk)← xk
>Axk/xk

>xk.

The following numerical performance tests were
accomplished on medium-sized symmetric and non-
symmetric matrices with uniformly distributed random el-
ements in the interval[−1, 1], making use of the func-
tions (6) and (8). For the optimization algorithm the very
efficient BFGS scheme (Bazaraaet al., 1993) was chosen.
It was started with a random trial vector and was termi-
nated when the condition

‖Ax− xσA(x)‖/‖x‖ < ε (19)

was met. Table 1 shows the average numbers of iteration
steps necessary to attain an accuracy of10−7 in the ap-
proximation of eigenvalues.

As the table clearly shows, the rate of convergence
for both cases speeds up with an increase in matrix size.
The degree of homogeneity also affects the algorithm’s
numerical efficiency. We found thatω = 0.5 was the
best value for both symmetric and non-symmetric matri-
ces. In both cases the average number of iteration steps

Table 1. Convergence data obtained from determining the
eigenpairs of symmetric and non-symmetric matrices
using eigenvector functionsf (ω)

A (x) and gA(x).

SYMMETRIC

SIZE f
(ω)
A (x) f

(ω)
A (x) f

(ω)
A (x) gA(x)

n ω = 0.25 ω = 0.5 ω = 0.75

25 43 31 32 30

50 68 56 59 56

100 143 105 114 107

200 269 204 210 209

NON-SYMMETRIC

SIZE f
(ω)
A (x) f

(ω)
A (x) f

(ω)
A (x) gA(x)

n ω = 0.25 ω = 0.5 ω = 0.75

25 74 61 53 44

50 119 119 85 69

100 198 173 154 132

200 325 295 307 239
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was quite low and close ton for symmetric matrices, and
about 1.5n for non-symmetric matrices (n being the di-
mension), each step having anO(n2) operation-step de-
pendence.

Algorithm 2 is a special variant of the general
scheme, which is suitable for large, sparse matrices. Here
the eigenvector functionτA(x) is

fA(x) = ‖x‖2‖Ax‖2 − (x>Ax)2, (20)

whereA is a sparse and symmetric matrix, while the cor-
responding gradient offA(x) is

2(x>xA2x + x(Ax)>Ax− 2x>Ax(Ax)). (21)

The boundboundA(x) = (fA(x))1/2/‖x‖2 (= ‖Ax−
xσA(x)‖/‖x‖) measures the accuracy of the actual
eigenvalue approximation andε is a suitable bound.
Here α = linesearch(fA(x),x,p) minimizes the function
fA(x + αp) with respect to a scalarα. Here p is
known as the search direction, whileα is the so-called
step length. In the WHILE-loop,pk is refreshed by us-
ing a limited-memory quasi-Newton formula.

Algorithm 2. Optimization-based eigenpair search for
sparse symmetric matrices.

Require: fA(x) be associated with a given sparse and
symmetric matrixA, and ε a suitable bound.

Ensure: an eigenpair approximation (xk, σA(xk))
g0 ← ∇fA(x0)
p0 ← −g0

α0 ← linesearch(fA(x),x0,p0)

x1 ← x0 + α0g0

g1 ← ∇fA(x1)
y0 ← g1 − g0

s0 ← x1 − x0

k ← 1
while (fA(x))1/2/‖x‖2 ≥ ε

pk ← −gk + 1
yk−1

>sk−1
(sk−1

>gkyk−1 +

yk−1
>gksk−1)− sk−1

>gk

yk−1
>sk−1

×
(
1 + yk−1

>yk−1

yk−1
>sk−1

)
sk−1

αk ← linesearch(fA(x),xk,pk)

xk+1 ← xk + αkgk

gk+1 ← ∇fA(xk+1)
yk ← gk+1 − gk

sk ← xk+1 − xk

k ← k + 1
end while

σA(xk)← xk
>Axk/xk

>xk.

To test the algorithm, symmetric matrices of size
2000, 4000, 8000 and 16000 were employed with a 5%
sparsity ratio. The required accuracy of the eigenvalues
was the same as before. The test machine was a standard
Pentium III PC with a 700 MHz processor and a 512 Mb
core memory. The run-times were averaged over a set of
25 sample matrices, and the cpu times were found to be
around 7, 29, 121 and 480 seconds using the MATLAB
system.

5. Conclusions

Non-negative eigenvector functions were constructed,
whose formulations were based on the so-called propor-
tionality inequalities. The zero-valued minima of these
functions coincide with the eigenvectors of an underlying
matrix, yielding selected eigenpairs via an optimization
procedure. The efficiency of the proposed method was
illustrated by applying it to random medium-sized and
large symmetric sparse matrices. The eigenvector func-
tions were used to establish error bounds on the eigenvalue
and eigenvector approximations. The first bound guaran-
tees the accuracy of the approximation of the eigenvalues,
while the other two bounds guarantee the accuracy of ap-
proximation if reasonable guesses can be made about the
structure of the spectrum. Moreover, these bounds offer a
clear insight into the nature of the approximation of eigen-
values and eigenvectors, which are quite different in char-
acter.
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Appendix

Proof of Theorem 3.By Lemma 3,(f (0)
A (x))1/2/‖x‖2 ≤

ε ⇒ |λm − σA(x)| ≤ ε. Taking into accountcosαj =
u>j x/‖x‖ andA =

∑
j λjuju>j , we have

|λm − σA(x)|=
∣∣∣∣λm −

x>

‖x‖
∑

j

λjuju>j
x
‖x‖

∣∣∣∣
=
∣∣∣∣λm − λm cos2 αm − λ̄m

∑
j, j 6=m

cos2 αj

∣∣∣∣
=
∣∣(λm − λ̄m) sin2 αm

∣∣ ≤ ε. (A1)

Proof of Theorem 4.We haveg(1/2)
A (x) = 1− | cos(ξ)|

and

cos(ξ) =
x>Ax
‖Ax‖‖x‖

=

x>

‖x‖
∑
j

λjuju>j
x
‖x‖

‖
∑
j

λjuju>j
x
‖x‖‖

=

λm cos2(αm) + λ̄m

∑
j, j 6=m

cos2 αj√
λ2

m cos2(αm) + ¯̄λ
2

m

∑
j, j 6=m

cos2 αj

=
cos2(αm) + c1(1− cos2(αm))√
cos2(αm) + c22(1− cos2(αm))

. (A2)

Simplifying the fraction by dividing the numerator and
denominator bycos2(αm)(6= 0), and taking the absolute
value, we obtain

| cos(ξ)| =
∣∣1 + c1 tan2(αm)

∣∣√
1 + c22 tan2(αm)

√
1 + tan2(αm)

. (A3)

The following lower and upper bounds can be obtained
by minorizing/majorizing the numerator, and by majoriz-
ing/minorizing the denominator:

1− |c1| tan2 (αm)

1 + c2
2+1
2 tan2 (αm)

≤
∣∣1 + c1 tan2(αm)

∣∣√
1 + c22 tan2(αm)

√
1 + tan2(αm)

≤ 1 + |c1| tan2 (αm)
1 + |c2| tan2 (αm)

. (A4)

In the case of the numerator the minorizing/majorizing
task is trivial. However, in the case of the denominator
the majorizing task is based on arithmetic and geometric
mean relations, while the minorizing task is based on the
following trigonometric inequality:

1 + |c2| tan2(αm)

≤
√

1 + c22 tan2(αm)
√

1 + tan2(αm). (A5)
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