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The use of a principal ideal domain structure for the analysis and design of multidimensional systems is discussed. As a
first step it is shown that a lattice structure can be introduced for IO-relations generated by polynomial matrices in a signal
space X (an Abelian group). It is assumed that the matrices take values in a polynomiaFifjsigwhere F is a field

such thatF[p] is a commutative subring of the ring of endomorphismsXaf After that it is analysed when a givefi[p]

acting on X can be extended to its field of fractionf8(p). The conditions on the paifF[p], X) are quite restrictive,

i.e. each non-zera(p) € F[p] has to be an automorphism oki before the extension is possible. However, when this
condition is met, say for operatok®1, pz, . . ., pn—1}, @ polynomial ringF[p1, p2, . . ., ps] actingonX can be extended

to F(p1,p2,...,pn—1)[pn], resulting in a principal ideal domain structure. Hence in this case all the rigorous principles of
‘ordinary’ polynomial systems theory for the analysis and design of systems is applicable. As an example, both an observer
for estimating non-measurable outputs and a stabilizing controller for a distributed parameter system are designed.
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1. Introduction The extension of polynomial systems theory multi-
dimensional systems:D systems) has been done, e.g.,

Polynomial systems theofyr time-invariant linear differ- ~ in (Oberst, 1990). The resulting structure is a ring
ential and difference systems is a well-established and ef-F[p1,p2, - .., pn] of polynomials over a fieldF in two
ficient tool for the analysis and design of control systems OF more operatorgs, pz, . . ., p, acting on a given signal
(Blomberg and Ylinen, 1983; Kiera, 1979; Rosenbrock, space. This is not a principal ideal domain but a Noethe-
1970; Wolovich, 1974). The methodology utilises the al- rian domain which offers a much weaker methodology
gebraic properties of polynomials with real or complex for manipulation on models. The theory relies on con-
coefficients and the strong interplay between the ring of cepts and methods of module algebra and shows that on
polynomials and the general theory of linear constant co- Some assumptions about the signal space, computational
efficient differential/difference equations. The key for the techniques are again available for the analysis and de-
‘success’ of this theory seems to be its computational na-Sign of multivariable systems. This computational the-
ture, i.e. the ringF[p] of polynomials over a fieldF in ory, however, is quite complex. A good introduction to
an operatorp normally satisfies the assumptions of a di- the theory from the behavioural point of view is given in
vision algorithm which can be used to find common fac- (Wood, 2000). In (Napoli and Zampieri, 1999; Zampieri,
tors and to manipulate polynomial matrices into suitable 1998) the connections of the input-output representation
canonical forms in an algorithmic way. Thus all necessary and state space representation of 2D systems are studied.

computations inside the theory can be implemented on aln particular, the causality with respect to given ‘past’ and
computer. ‘future’ is considered.

Polynomial systems theory was originally developed In this paper, our goal is to look for simpler algebraic
for analysis and design of control systems. Therefore only structures for the analysis and design of multidimensional
input-output systems describing cause-effect relationshipssystems. Multidimensional systems are usually used as
were considered. Later on, the theory has been generalmodels ofdynamiclinear distributed parameter systems.
ized to so-callechehavioural systems thegrwhere the  This means that at least one, spy, of the operators is a
variables of systems are natpriori divided into inputs differentiation or shift operator with respecttime The
and outputs (Willems, 1991; 1997; Valcher and Willems, multidimensional polynomial ring'[p1, p2, - .., p»] €an
1999). be represented as the rirfg[p1, p2, - . ., pn—1][pn] Of OF-
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dinary polynomials in this operator with polynomial coef- of two functionsg and f is always defined regardless of
ficients. its domains and ranges.

Under relatively weak conditions for the signal space
the polynomial ring of coefficients can be extended to its
field of fractions F(p1, pa,...,pn_1). If this extension 2. Polynomials of Endomorphisms
can be made, a ring of polynomials with rational coeffi- and 10-Relations
cients is obtained. This is an Euclidean domain so that
all methods developed for ordinary polynomial systems In this section, we review some basic concepts of poly-
seem to be applicable. This kind of construction was ap- nomial systems theory. See, e.g. (Blomberg and Ylinen,
plied to the classical theory of two-dimensional systems 1983; Ylinen, 1980) for a more detailed approach.

(Morf et al, 1977). Unfortunately, there is a serious re-
striction for that. It is easy to show that rational forms can
be considered as mappings from signals to signals only if
their denominators are automorphisms of the signal space (
(Blomberg and Ylinen, 1983). This usually means that

A polynomial system description consists of equa-
tions of the form

ag+arp+---+anp") y=(bo+bip+---+bmp™) u,

the original signal space has to be restricted or extended a(p) b(p)
to satisfy this condition. On the other hand, this property @)
is strongly motivated by the causality requirement. whereu, y € X and X is an additive Abelian group. We

have ag, ... anbo . .. by, p € End(X). The coefficients
a;,b; of the polynomials are assumed to belong to a com-
mutative subfieldF" of the ring End(X). If pf = fp

for every f € F, then F[p] forms a commutative sub-
ring of End(X). In this case, X can be considered as a

The structure of the paper is such that the results
related to polynomial systems over an arbitrary field are
considered first. The most important one is the construc-
tion of a module of fractions over a ring of fractions.
Given a denominator set, this construction can always be
done but then the original signal space is also extendedl€ft-module overF[p].
to a space of rational signals. The system models are ex- Suppose thatX is so ‘rich’ that p is anindeter-
tended correspondingly. The requirements for the denom-minate over F, i.e. for eacha(p) € F[p] we have
inators needed for identifying the original system with a a(p) = a9 + a1p + -+ + a,p™ = 0 if and only if

subsystem of the extended system are given. ag = ap = --- = a, = 0 Then the representation
After the application of the results teD systems,  Of €acha(p) € Fp] is unique and thelegree function
we suppose that operators, . ..,p,_1 are such that  d(a(p)) = max{m | an # 0}, d(0) = —ooc, is well de-

the non-zero elements of[p: . .., p,_1] are automor- finejd.' This ir"npli.es furthgr tha.t the ponnpmiaI rink[p]
phisms. We can proceed without this assumption but thensatisfies thalivision algorlthm i.e. for arbitrary non-zero
the results are applicable only to the extended system witha(P), b(p) € F[p] there existq(p), r(p) € F[p] such
rational signals. Basic methods for observer and con-that

troller design are presented.
= b(p) + , d <d(b(p)). (2
The methology is applied to the design of a feedback alp) = a(p)blp) +r(p) (@) (tw)- @

controller for th_e system in Wh_ich a metal wire is pulled Due to the existence of a division algorithn[p] also
out from a heating treatment with a constant velocity, and ¢,icfies the axioms of a principal ideal domain, and, in
the control problem is to manipulate the temperature dis- 5+t it is an Euclidean domain.

tribution of the pulled wire to a desired temperature. Also, . . ) ]

a temperature estimator is designed. In the example we ~ F'[p] is also an integral domain so that it can be ex-
take a signal space which can be considered as a ‘projectended to thefield of fractionsdenoted by F'(p). More
tion’ of the space of infinitely differentiable 2D signals. ~ 9enerafings of fractionsare discussed in Section 4.

Finally, some agreements concerning the concepts A polynomial 10-relation S is defined by
and notation regarding functions (or mappings) and rela-
tions are made. We will basically identify functions and S={(u,y) € X x X | a(p)y = b(p)u}, 3)
relations with their graphs, i.e. consider them as sets of
ordered pairs. Thus functions are simply relations of a where (u,y) is an ordered input-output pair of the rela-
special type. Furthermore, a relatidgh has always anin-  tion and a(p), b(p) € F[p]. This formalism can be natu-
verse relationR~! as a relation usually calledcanverse rally extented to a multivariable case: here the I10-relation
but a functionf has the inversg—! as afunctionifand S from X" to X* is defined as
only if it is injective. The composite relatioRo.S of two
relationsS and R as well as the composite functigfvg S={(u,y) € X" x X*| Al(p)y = B(p)u}, (4)
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where the matrix pait A(p), B(p)), A(p) € F[p]*** and overall 1O-relationdescribing the system which we are in-
B(p) € F[p]**" is said to generate the |O-relatiofi. terested in. Correspondingly,, and y, are the chosen
The defining equation in (4) can be written as overall input and output, ang; constitutes the internal
output consisting of the outputs of the interconnected sub-
Y systems. Each input of the subsystems is either an overall
=0. (5 ; ) : .
input or an internal output depending on the interconnec-
tion constraints.

The partitioned matrix A(p) : — B(p)| can be consid- Combining the I0-relations and interconnection con-

ered as a morphisnk® x X" =~ Xst" — X5 whose  straints gives the following model for the internal 10-
kernel, as a set of ordered pairs, is the converse (relationyelation:

Ap)y = B(pu= | AW) : —B() | [

u

of S:
u1
S—l _ {(y’u) cXsx X" | (u7y) c S} Al(p) A2(p) 7B1(p) Yo =0 (7)
As(p) Aa(p) —Ba(p o
= Ker[ 4(p) © -BW) |- (6)
For constructing the model of the overall |O-relation
Typically, an IO-relation may have an infinite number of
differentgenerators| A(p) : — B(p) ], which are then said So = {(uo,v0) | Iy [(vo, (y1,%0)) € Si]}, (8)

to be input-output equivalent A generator[ A(p) : —
B(p)] is calledregular if det A(p) # 0 and a relation
S is regular if it has a regular generator. The regularity
is necessary from the realizability point of view, i.e. itis 3  Order and Equivalence Relations
needed for constructing realizable input-output mappings. for the 10-relations

In a typical system analysis or design problem we
are, however, more interested in interconnected systemdn this section, we will show how a lattice structure can
described byomposition®f |O-relations, than merely in  be introduced for our 10-relations defined over a polyno-
the analysis of one IO-relation. In order to have a prac- mial ring F[p]. Note that the fieldF' is arbitrary, and thus
tical theory for the composition of I10-relations, we have this theory also applies when the field contains oper-
to assume further that thomainof each 10-relation (4)  ators acting on a given signal space. The work follows
to be connected is ‘full’, i.e DS = X". This is guar- closely the approaches adopted in (Ylinen, 1975; Ylinen
anteed if therange of RA(p) in a regular generator and Blomberg, 1989).
[A(p) : — B(p)] (6) is the whole X®, which, further-
more, is satisfied if the modul& is divisible i.e. if each ~ Proposition 1. Let S and 5" be I0-relations generated
non-zeroa(p) € F[p| is surjective (i.e. an epimorphism) by the pairs (A(p), B(p)) € F[p|*** x F[p]**" and
onX. (A'(p), B'(p)) € Flp]**® x F[p]**", respectively. Then
S c S if and only if there exists an epimorphism of
groups ¢ : R[A(p) : — B(p)] — R[A'(p) : — B'(p)],
such that

however, the internal outpuf; should be eliminated.

An arbitrary composition of a set of |0-relations de-
scribing thesubsystemsan be determined by thater-
connection constraint@lomberg and Ylinen, 1983). Ev-
ery composition can be reduced to the general form de- [ ,/ C B — ol A : _RB (9
A [ 4G) : ~B®) | = AW)  ~Bw) |. ©)

|mmmmmmmmmmm s s s s = Furthermore, S = S’ if and only if ¢ is an isomorpism.
1 S :
i " : Proof. Assume first that (9) holds. Clearliger[ A(p) : —
w, | o i B(p)] Cc Ker(po[A(p) : — B(p)]) becausep is a mor-
! ”I S n 1y, phism and, consequentlyy ¢ S’. In addition, S = S’
1
Kerp C R[A(p) : — B(p)], we haveS = S’ if and

e if and only if R[ A(p) : — B(p)] N Keryp = {0}. Since
1
1
1

only if Kery = {0}, so thaty becomes an isomorphism
_______________________ " betweenR[A(p) : — B(p)] andR[A'(p) : — B'(p)].
Assume now thatS C S’, i.e. Ker[A(p) km —
B(p)] C Ker[A'(p) : — B(p)]. The group morphisms

Here S, is theinternal IO-relationdetermined by the ~ [A(p) : — B(p)] and [A'(p) : — B'(p)] can be de-
subsystems and interconnection constraints 8nds the composed intd A(p) : B(p)] = [A(p) : — B(p)]* o P

Fig. 1. General composition.
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and [A(p) : — B'(p)] = [A'(p): — B'(p)]" o P,
where P is the canonical surjection from’X® x X" onto
the factor groupX® x X"/S=t. [A(p): — B(p)]* :
X* x X"/S7t — X* and [A'(p): — B'(p)]*

X* x X"/S™! — X* are morphisms of groups and
[A(p) : — B(p)]* is a monomorpism of groups. Hence
its left inverse exists and, consequently,= ([ A(p) :
B(p)]*)~* o [A(p) : — B(p)], which gives

*

[Aw) : -Bo) |

A(p) i ~B'p)]

(10)

Definey = [A'(p) : — B'(p)]* o ([A(p) : = B(p)]*)~".
It is an epimorphism of groups froR[ A(p) : — B(p)]
to R[A'(p) : — B'(p)]. If S =5’ then[A/(p) :
B'(p)]* is a monomorphism of groups, which implies
that ¢ is an isomorphism betweeR[ A(p) : — B(p)]
andR[A'(p) : = B'(p)]. =

This proposition is weak in the sense that it only im-
plies the existence of a morphisg but does not guaran-
tee that this morphism would be also a matrixp]***.
The following proposition shows that this indeed is the
case. The proof was given earlier only in (Ylinen and
Blomberg, 1989). A shorter but a more module theoretic
proof of the proposition can be found in (Hinrichsen and
Pratzel-Wolters, 1980).

Proposition 2. Let .S and S’ be two regular 10-relations
generated by{A(p) : — B(p)] and [A'(p) : — B'(p)],
respectively, withA(p), A’ (p) € F[p]**°, B(p), B'(p) €
F[p]*>*". Suppose thaS C S’. Assume that every non-
zero element(p) of F[p] is an epimorphism and(p) €
Fp] is an automorphism if and only i#(p) € F — {0}.
Then there exists a matri/ (p) € F'[p]***® such that

Ap) P ~Bp) | =Me) [ Ap) : -Bo) | @D

Furthermore,S = S’ if and only if M (p) is unimodular.
Proof. S ¢ S’ is equivalent toS N S’ = S. This implies
Ker | A(p) : —B(p) |

= Ker [A(p) —B(p)] N Ker[A'(p) —B’(p)}

(12)

BecauseF'[p] is a principal ideal domain, we can find a
unimodular matrixN (p) such that

A(p) * —Blp) A(p)
A'(p) + =B'(p)

N(p)

B@]

13)
which does not change the kernel. However, because the
relation S = {(u,y) | A(p)y = B(p)u} has as its do-
main the wholeX", B’(p) has to be zero. Thus

Ker| A(p) i —B() |
A(p) — B(p)
= Ker N(p)
A'(p) + —B'(p)
ke A(p)  —B(p)
0 0
=Ker[ d(p) 1 ~B() | (14)
Conversely,
A(p) : —B(p)
A'(p) + —B'(p)
:'Qm»s@@> Alp) © —B(p)
Qs(p) * Qalp) 0 0
Q(p)
[ Qi) AD) : ~Qi(p)B(p)
= _ ~ ,  (15)
| Q3(P)A(p) 1 —Qs(p)B(p)
where Q(p) = N(p)~'. Because[A(p): — B(p)]

and [Q:1(p)A(p) : — Q1(p)B(p)] have to generate the
same |O-relationS, Q:(p) has to be unimodular. Thus
N(p) can be chosen so thab,(p) = I and, conse-
quently, A(p) = A(p) and B(p) = B(p). Thus A’ (p)
Qs3(p)A(p) and B'(p) = Qs(p)B(p) and Qs(p) quali-
fies asM (p) in the proposition.

Finally, if S =S’, M(p) must be an isomorphism,
which implies that it is unimodular according to the as-
sumptions. ]

The polynomial matrices satisfying (11) with uni-
modular M (p) are said to beow equivalent Thus, on the
assumptions of Proposition Byo regular generators are
input-output equivalent if and only if they are row equiva-
lent

Let (A(p), B(p)) € FIp|**® x F[p]**" generate
a regular 10-relation. Let the rational matri&(p) €
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F(p)**" be defined byG(p) = A(p)~'B(p). Then affected by the input signals € X" (Blomberg and Yli-
the 10-relation S generated by(A(p), B(p)) is said to nen, 1983; Willems, 1991).

be associated witfG(p), and G(p) is called thetrans- A concrete (one-dimensional) example of a pair
fer matrix determined by (A(p), B(p)). Two regular  (p[p], X) that satisfies the assumptions for the construc-
|O-relations associated witli*(p), as well as the corre-  tion of the lattice structure i$C[d/dt], C>=(R)), where
sponding generators, are calleensfer equivalentOb-  coco(R) s the space of infinitely differentiable complex-
viously, row equivalent generators are transfer equiva- yajyed functions onR (Blomberg and Ylinen, 1983).
lent. The set of all transfer equivalent IO-relations asso- However, if the subspace of compactly supported func-
ciated with G(p) can be ordered with a set inclusion, i.e. tjonsin C>=(R), C>*(R), is taken asX, the construction
§ <8 <« S§cC S The first element of this set, if s not valid any more because in this space for arbitrary
it exists, is called theninimal 10-relationassociated with a(d/dt) € C[d/dt], z € C=(R), a(d/dt)z = 0 implies
G(p). that eithera(d/d¢t) = 0 or = = 0. Furthermore, it is

" . quite easy to show that(d/dt) € C[d/d¢] is an epimor-
Proposition 3. Let S and S’ be two regular |O-relations phism on X if and only if a(d/dt) € C — {0}. Thus
generated by{ A(p) : — B(p)] and [A'(p) : = B'(P)],  this structure contradicts the ‘automorphism condition’ in
respectively, withA(p), A'(p) € F[p|***, B(p), B'(p) € Proposition 2.

Flp". .Supposle that§ ¢ 5'. Then S and &' The propositions above pose a rigorous connection
are a:sxiomated with the same transf(_ar matiXp) € between 10-relations and their polynomial matrix descrip-
Fp)> .Furtbermorg, a regulaz Xr?latjons generit?d tions. In particular, the effects of the manipulation of poly-
.by [A(p? - B(p)], A.(p) < F[p].( K B.(p) € Plpf nomial matrices on the corresponding 10-relations can be
S the minimal IOS-LeTIatlon assom_atgd with a transfer ma- studied and ‘safe’ methods can be developed. On the other
trix G(p) € F(p)**" if and only if A(p) and B(p) are  pon4 the properties of the I0-relations can be tested using
left coprime. polynomial matrix manipulations.

Proof. The first statement is a direct consequence of

Proposition 2. Suppose now that(p) and B(p) are 4. Modules of Fractions
left coprime. Assume that there exists a regular genera-

tor [A(p) : — B(p)] for S suchthatS c S. According In this section, we analyse when itis possible to extend the
to Proposition 2, there exists a non-unimodul¥i(p) € scalar ring F'[p] of a module X to its field of fractions
F[p]*** such that[A(p) : — B(p)] = N(p)[A(p) : — F(p) or, more generally, to @ng of fractions This mate-

B(p)], which contradicts the assumption thd{p) and rial depends heavi!y on the results pregented in (North-
B(p) are left coprime. Suppose now that there exists COtt, 1968). Consider a subsé? of a ring Flp] (£
a regular, minimal 10-relationS associated withG/(p) is an arbitrary field) and assume thak is closed under

and S is generated by A(p) : — B(p)]. Assume fur- ~ Multiplication and0 ¢ D. To shorten the notation, we
! also assume that € D. Then F[p| can be extented

to the ring F[p]p of fractions, where the elements are
equivalence classes of the forblp)/a(p), b(p) € Flp],
a(p) € D. Two equivalent classes(p)/a(p),d(p)/c(p)
are equal if and only if there existgp) € D such that
s(p)(c(p)a(p) — B(p)d(p)) = 0. Addition and multipli-
cation are defined as

ther that A(p) and B(p) are not left coprime. Then
[A(p) : = B(p)] = N(p)[A'(p) : — B'(p)] for some
A'(p),N(p) € Flp]***, B'(p) € F[p]"**, and N(p) is
not unimodular. However, according to Proposition 2, this
implies thatS’ ¢ S, which leads to a contradiction.

[ |

Finally, the existence of the minimal 10-relation for b(p)/a(p) + d(p)/c(p)
a transfer matrixG(p) € F(p)**" can be shown with
a constructive proof. For a reference, see, e.g. (Ylinen, = (c(p)b(p) + a(p)d(p))/(a(p)c(p)) (16)
1975), where the construction is done by using the Smith-
McMillan form of G(p). and

Note that the minimality of transfer equivalent rela-  (b(p)/a(p)) (d(p)/c(p)) = (b(p)d(p))/(a(p)c(p)), (17)
tions can be studied in a more general, behavioural frame-
work without dividing signals into inputs and outputs respectively. F'[p] can be embedded i#'[p|p with the
(Oberst, 1990). The minimality of the IO-relation associ- Morphism;p : Flp] — F[p|p,a(p) — a(p)/1.
ated with a transfer matrixz(p) is an important concept Consider next the Abelian groufy, which is a left
in the sense that a non-minimal IO-relation can be decom-module over F[p]. When F[p] is extended toF[p|p
posed into two subsystems, a minimal ‘controllable’ sub- then X has to be extented also t& ,, where an ele-
system and an ‘uncontrollable’ subsystem, which is not ment of X, is an equivalence class of the foraya(p),
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z € X anda(p) € D. Furthermore, equivalence classes Proposition 4. Consider the relation diagram of Fig. 2.

y/a(p) € Xp andz/b(p) € Xp are equal if and only if
there existse(p) € D, so thatce(p)(b(p)z — a(p)y) = 0.
The addition is defined ilXp as

z/a(p) +y/b(p) = (b(p)z + a(p)y)/(a(p)b(p)). (18)

In order to makeX , aleft module overF[p|p, the scalar
multiplication is defined as

(b(p)/a(p)) (z/c(p)) = (b(p)x)/(a(p)c(p)).

Xp is also aF[p] module and the mapping : X —
Xp,z — x/1 is a morphism ofF[p]-modules. Clearly,
the embeddingj is a monomorphism if and only if ev-
ery a(p) € D is a monomorphism. In this cas& can
be considered as a submodule of th¢p]-module Xp,.
Furthermore,j is an epimorphism if and only if every
a(p) € D is an epimorphism. Thus can be identified
with Xp if and only if every a(p) € D is an isomor-
phism of F[p]-modules.

Note that if D = F[p] — {0}, then X, is a vector
space over the field"p, and if each element irF'[p] —
{0} is a monomorphismX can be embedded iXp.
However, if we wish to consideX as a vector space over
F(p), we have to give for an arbitrary/a(p),z € X
and a(p) € F[p] — {0} the meaningz/a(p) = a(p) 'z

(19)

(i) joS C Sp oy ifand only if for every(u,y) €
X x X we have(u,y) € S = (u/1,y/1) € Sp.

(i) The diagram is commutative, i.g.0.S = Sp o j,
if for every (u,y) € X x X we have(u,y) € S <—
(u/1,y/1) € Sp.

(iii) If the diagram is commutative and everi{p) €
D is a monomorphism, then for evefy,y) € X x X
we have(u,y) € S < (u/l,y/1) € Sp.

Proof. (i) Suppose first thatj o S C Sp o j, and take
an arbitrary (u,y) € S. Then (u,y/1) € jo S, and
further (u,y/1) € Sp o j. Thus there exists:/1 such
that u/1 = x/1 and (z/1,y/1) € Sp, which implies
that (u/1,y/1) € Sp.

Conversely, suppose thatu,y) € S =
(u/1,y/1) € Sp. Then an arbitrary(u,y/1) € jo S
if and only if there exists & such that(u,z) € S and
y/1 = z/1. Consequently, there exists a such that
(u/1,z/1) € Sp and y/1 = z/1, which is equivalent
to (u/1,y/1) € Sp and finally to (u,y/1) € Sp o j.

(i) Suppose next that(u,y) € S —
(u/l,y/1) € Sp. Now an arbitrary(u,y/1) € jo S
if and only if there exists & such that(u,z) € S and
y/1 = z/1 i.e. if and only if there exists & such that
(u/1,z/1) € Sp andy/1 = z/1. According to the pre-

(this vector space structure is quite commonly used in thevious paragraph, this is equivalent ta, /1) € Sp o j.

control literature), where(p) ~! is the inverse ofi(p) as

an endomorphism oKX . Hence we have to further assume

that eacha(p) € F(p) is an epimorphism, otherwise for
x ¢ R(a(p)), a~ 'z would not be well defined.

Consider now a SISO I0-relatiofi ¢ X x X which
is generated bya(p) : —B(p)] € F[p] x F[p]. If we can-
not identify X with Xp, but we want to use the embed-
ding « — x/1, an interesting problem would be to anal-
yse whether there exists an 10-relatiéy in Xp x Xp

such that the diagram of composite relations in Fig. 2 com-

mutes, i.e.j o S = Sp o j, and how we can construct it.

(i) Suppose thatj o S = Sp o 5. From (i) it follows
that (u,y) € S = (u/l,y/1) € Sp. Take an arbitrary
(u/1,y/1) € Sp. We have(u,y/1) € Spoj=jolS,
which implies that there exists a such that(u, z) € S
and y/1 = z/1. If every d(p) € D is a monomor-
phism then; is a monomorphism and, consequently,
y/1=2/1=y =2 Thus(u,y) € S. [

Note that the condition(u,y) € S = (u/1,y/1) €
Sp is satisfied if Sp is chosen as

Sp = {(u/c(p),y/d(p)) € Xp x Xp |

Note that the commutative diagrams are usually used for
functions but the generalization to relations is straightfor-

a(p)y/d(p) = b(p)u/c(p)} -
ward. For the problem above we have the following result: )
On the other hand, if(u/1,y/1) € Sp, then also

(u/1,(y + 2)/1) € Sp, where d(p)z = 0 for some
d(p) € D. This means that when the original 10-relation
S is embedded into the structure of a module of fractions,
signal pairs(0, z) with d(p)z = 0 for somed(p) € D

are added to the original paifs, y) € S.

(20)

X —X

4 2 It is also easy to show thata(p) : — B(p)] can
be replaced by an arbitratyansfer equivalengenerator
§ [a'(p) : —¥'(p)] satisfying
X ;'XD

Fig. 2. Commutative relation diagram.
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For example, ifp = d/dt and X = C>(R), then e Each non-zero element af (p1, p2, . - -, Pn—1)[Pn]
an arbitrary polynomial inC[p] — {C} has a non-zero is an epimorphism.
kernel, i.e. it is not a monomorphism. Thus the exten-
sion of the original I0-relationS by signal pairs(0, z)
with d(p)z = 0 for somed(p) € D is not a very con-
sistent description of the original relatio$, especially if F(p1,p2,-..,pn-1) = 10}.

D contains polynomials having zeros with positive real One direct application of this algebraic system would
parts in C. This can be avoided by making the denom- pe partial differential equations with constant coefficients
inators d(p) € D monomorphisms, e.g. by setting the (Hst6nen and Ylinen, 2000). For example, suppose
initial conditions to zero. More formally, it can be done that x is the spaceC™= (D) of infinitely differentiable

by restricting the original signal spacg to the space complex-valued functions on an open sBt c R2
(z,1) = u(z,t), ;1 = pa 2 0/0x, p2 = py £ 9/0t

and F' = C. Now, the spaceX (over C) can be extended
to the vector space¢(,,}- over C(p,). The differentia-
tion p, can be extended to this space by

e An element of F(p1,p2,...,pn—1)[pn] IS
an automorphism if and only if it belongs to

Xojo) £{z |z € X, t<0= x(t) =0}. (22)

Because of this restriction, all non-zero polynomials are
monomorphisms, so that the original 10-relati¢h be-

comes a mappingojo) — Xojo)- pe (u/a(ps)) = pru/a(ps). (24)

Because, in general, the polynomialép,.) # 0 are not
5. Modules of Fractions of Multidimensional automorphisms of{, X itself cannot be considered as a
Systems subspace ofX¢,,j-. However, if D is square, i.e. of the
form D, x Dy, and X is restricted, e.g. to the space
In this section, we consider the possibility of using the
algebraic machinery developed in previous sections in a  Xojao) = {u | u € X,z <z = u(xz,t) =0}  (25)
multi-dimensional relation. So assume that we have a
polynomial ring F'[p1, po, ...,pn] = F[p], F is a field
and F[p] can be considered as a subring of the ring of
endomorphisms of a given Abelian grouf. Our 10-
relations are then of the form

for somexy € D,, then for each (restricted) polynomial
a(py) # 0 the equation

a(pﬂf)y =u, Y,uc XO\wo) (26)

has a unique solution(-,¢) for eacht and u(-,t). Fur-
S ={(u,y) € X" x X*) | A(p)y = B(p)u}, (23)  thermore, this solution is infinitely differentiable with re-
spect tot. Hence eachu(p,) # 0 is an automorphism

where A(p) € Fp]*”*, B(p) € F[p]*”". Furthersup- anq x " can be considered as a vector space over
pose that the operator§p;,po,...,p,} are indetermi- C(pa).

nates, i.e. each polynomial iff[p] has a unique repre-
sentation. This further implies thaF'[p] is an integral
domain. However, it is not a principal ideal domain but a
Noetherian domain.

Now we would like to pick up one of the operators,
say p,, and extend the original IO-relation ‘against’ this 6. Analysis
operator to the module of fractions over the principal ideal _ _
domain F(py,ps, ..., pn_1)[ps] and to use the lattice Suppose again thaf’ consists of (real or complex-
structure constructed in Section 3 to analyse our systemvalued) functions on an appropriate space-time domain
According to the theory presented in previous sections, @nd at least one of the dimensions &f is time or, more

the extension keeps the 10-relation if each non-zero ele-definitely, a suitabléime-interval 7' C R. Suppose fur-
ment in F[p1,ps, ..., pn_s1] is an automorphism ofy.  therthatp is the chosen basic operator and the other oper-

Note, however, that if we do not want to keep the origi- ators are included into the coefficient ring which, further,

nal 10-relation but accept its extension to the module of iS extended to the field” of fractions in the way pre-
fractions Xp with D = Flpy,pa,...,pn_1] — {0}, the sented in previous sections. If the signal spacds such

denominators do not need to be automorphisms. that the denominators are not automorphisms, it has to be
. - . extended to the module of fractions. However, we will not

Furthermore, in order to utilise our lattice structure make anv notational distinction between these two cases

for an arbitrary 10-relation defined as in (23), the follow- y '

ing assumptions have to hold: The causalityof a system means that if there exists
a cause-effect relationship between two variables, the fu-
e The IO-relation has to be regular, i.éet A(p) # 0. ture of the output is uniquely determined by the past of

Thus Xy, can be considered as a module over
C(pz)[p:] and the structure is analogous to the structure
of time-invariant ordinary differential polynomials.
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the system and the future of the input. This implies that
if the past of the system is given, the output is uniquely
determined by the input, i.e. for a given past the system is
a mapping.

Thus the relationS <c X" x X*® generated by
[A(p) : — B(p)] is causalif for each (u,y) € S and
t € T the relation

Sy = {@,y) | W,y)es,
(W, y') | (=00, t)NT

= (wy)| (=00, t)NT}  (27)
is the mappingX7 ;) — X/, where
Xon = {u'| (' e X, u' | (o0, t)NT
=u| (—o0,t)NT} (28)

and X7, is defined accordingly. Note tha, ;) can
be written as

Syt = (W, y) + S0,0)0)- (29)

Thus the I0-relationS is causal if the polynomial matri-
ces are such thatl(p) | X3y is @ monomorphism and
RB(p) | Xg, € RA(p) | X5, is not alinear mapping
exceptif (u,y) | t) = (0,0)|t).

Consider the example for theD case of Section 5,
i.e. the polynomialsC[p,][p:]. Suppose thatS is a |10-
relation generated by

a(pm)y('v t) = u('? t)v

where the input-output dependence is ‘pointwise’ with re-
spect to timet. Suppose further that the boundary condi-
tions are given by boundary values for outputand they
are 'fixed’, i.e. they do not depend on input It is nat-
ural to require that this kind of system should be causal.
This implies that the 10-relatior$ should be a mapping,
i.e. the boundary conditions are such that the morphism
a(p;) is invertible. One way to reach this is the restric-
tion of X to X ,(25), i.e. the use of zero boundary val-

teT, (30)

ues. This is not necessary because the extension to the

module of fractionsXp with D = C[p,] — {0} is pos-
sible, too. The restricted ‘rational signals’ are defined by
(x/1) | t) =z | t)/1. Note, however, that in this case we

accept the fact that the 10-relations describing the systems

are unique only up to the transfer equivalence and their
outputs can contain arbitrary additional termsuch that
d(pg)z = 0 for somed(p,) # 0.

The relation generated byA(p) : — B(p) ] is stable
if the solutionsy of the equation

A(p)y =0

get asymptotically close to zero as time— oco.

(1)

The relationgeneratedby [ A(p) : — B(p)] is con-
trollable if A(p) and B(p) areleft coprime i.e. their
common left divisors are all unimodular.

Using elementary row operations and the division al-
gorithm, the model of an arbitrary composition described
in Section 2 can be brought to an upper-triangular form
(Blomberg and Ylinen, 1983; Ylinen, 1975):

Ai(p) Ax(p) —Bilp) | | 91
Yo :Oa (32)
0 Aulp) =Ba(p) | | o,

whereuy andy, are the overall input and output and
the internal output of the composition, respectively. If for
each (up, yo) satisfying the equation

A4(p)yo = Ba(p)uo (33)
there exists aj; such that
Ai(p)yr = —A2(p)yo + Bi(p)uo, (34)

the overall IO-relation S, determined by the composi-
tion is generated by A4(p) : — Ba(p)]. Furthermore,

if A;(p) is unimodular, the composition is said to be
(y1 (uo, yo)—)observable

7. Observer Design

Consider the composition above. The observer design
problem is to construct a systefy anobservemwith two
inputs yo and ug so that its outpufy; estimatesy, i.e.

the errory; = y; — 71 is as small as possible and sta-
ble regardless of the inputy. The problem is depicted

in Fig. 3. There are many different solutions to the esti-
mation problem. Thebservertype estimators are based
on the system model so that the observer model and the
system model belong to the same class of systems.

1

1

1 Se 1 .:D‘]

i s . o —
o

Iu Si v Mo [
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1 1

1 1

R SR S 1

|—> 2

&

Fig. 3. Observer design problem.
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It is natural to require that the corregt be a possi-

ble output of the observer, i.e. {fu, (y1,y2)) € S;, then i i
-~ ", . | 123 hd 1

((y2,u),y1) € S. TheD Proposition 2 gives that each gen- : > 5 —'_E'
erator of the observe§ [C(p) : — Di1(p) — D2(p)] has ) '
to satisfy (Blomberg and Ylinen, 1983; Ylinen, 1975): E !
: 1
C(p) —Di(p) —Da(p) i ;
L 1
0 A4lp) —Balp) i Sz «— i
= ;

Ai(p) Az2(p) —Bi(p)
0 Au(p) —Ba(p)

(35) oo
Fig. 4. Feedback composition.

B [ﬂ (») T2(p)]

0 I

| —
T(p)

controller satisfies
for some[ 11 (p) :T2(p)]. Furthermore, the errog; sat-

isfies Ai(p) —Bi(p)
T1(p)Ar(p)yr = 0. (36) “D(p) OO

The behaviour of the observer should be robust with A, (p)
respect to parameter variations, which means that it has to
be proper. 1 0 Ai(p) —Bi(p)

= 38

Left multiplication of T'(p) by another matrix of Ts(p) Talp) X(p) Y (38)
the same type results again in a matrix of the same type.
Therefore the condition (35) can be used repeatedly for T(p) P(p)
constructing a suitabl@’(p). In particular,T'(p) can be . i
factored to for some[T3(p) :Tu(p)] and a unimodulaP(p).

Here[A;(p) : — Bi(p)] represents the controllable
Ti(p) O ] @7) part of the controlled system, i.e.

0 I

[Tl(p) Tz(p)][l Tg(p):|
0 I 0 I [A(p) : —B(p)}:L(p)[Al(p) : —Bl(p)}v

Thus a candidate for the matri& (p) determining the er- _ (39)
ror dynamics can be chosen first and then elementary rowVhere L(p) is the greatest common left factor of(p)
operations are used to realize the properness provided tha®nd B(p). The so-calledirst candidateP(p) satisfies
the order ofT (p) A1 (p) is high enough. If the properness
cannot be achieved, the generator is multiplied by a new [ Ai(p) 1 Bi(p) } P(p)~" = { I :o0 } (40)
T (p) and the use of elementary row operations is contin-
ued, and so on, until a satisfactory result is obtained. and can be constructed by applyietementary column
operationsto [ A;(p) : — B1(p)].

The closed-loop behaviour of the overall system is
determined byTy(p) and the uncontrollable park(p).

. F k Controller Design
8. Feedback Controller Desig Analogously to the condition (35), also the condition (38)

Consider next the feedback controller design for the rela- can be used repeatedly.(p) can be factored to

tion S generated by A(p) : — B(p)] with input « and

output y. The problem is to construct a relatiosh, a I 0 _ I 0 Ir o

feedback controllerwith input y and outputu such that Typ) Tu) | | Blp) I 0 Tup) |

the overall system behaves satisfactorily, is stable, robust, (41)

etc. The feedback composition is depicted by Fig. 4. The a anoropriate matrixty (p) is chosen first and then el-
feedback controller is assumed to belong to the same ClaS%mentary row operations are applied in order to obtain a

of relations as the controlled relatiost . ) proper feedback controller. If this fails, the resulting gen-
It can be shown (Blomberg and Ylinen, 1983; Ylinen, gratoris multiplied by a neviy (p), and so on.

1975) that the generatdiC'(p) : — D(p)] of the feedback
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9. lllustrative Example

Consider a cooling system where a metal wire is pulled
out from a heating treatment with constant velocity, and

the control problem is to manipulate the temperature dis-

tribution of the pulled wire to a desired temperature pro-
file by utilising a cooling equipment wrapped around the
pulled metal wire.

This cooling system can be roughly described by the
following partial differential equation:

OT (x,t)
ot
0*T (z,t)
Ox?
where k1,ko,ks and k4 are constants describing the heat
transfer properties of the different materials found in the

system, V. is the constant pulling speed;(x,t) is the
temperature distribution of the wire arifi,, (z,t) is the
temperature distribution of the cooling equipment. The

k1

Voky OT (x,t)
Ox

k3 + ky (Tin(aja t) - T(J), t))v (42)

based on the measured temperature distribufigfiz, ¢)

and Ti, (z, t), where the accuracy df.(z,t) should be
improved using the accuracy df,,(z,¢). To take into
account the effect of the ‘measurement error’ in the ob-
server design, the following equation has to be added into
the system described by (42):

Tw(z,t) =T(x,t) + v(z,t), (46)

where T, (2, t) is the measured temperature profile and
v(x,t) describes the effect of interpolation and white
noise in the measured temperatdfg (x,t). According

to the theory presented in Section 7, the first candidate for
the observer is the uppermost row in

1 -1 0 T
Tw | =0, (47)
0 aipt+ag —bg T,

i.e. the estimate of the distribution would be directly the
measured distributiorTy, (x,t) and the initial conditions

initial and boundary conditions for the system are for Te(,1) are

OT.(z,L)  9Tw(0,L)

T(L,t
OT(L,1) oz ox

ox

where f is an unknown disturbance antl is the length
of the cooling equipment.

In order to utilize the polynomial approach, all sig-
nals are assumed to be infinitely differentiable with re-
spect to spacer and timet, i.e. they are considered as
elements ofC*° (R x R) even thoughC>((0, L) x R)
could also be possible. The two-dimensional polynomial

To(z,t) = T (0, 1),

T(0,t) =1+ f(t), T(z,0) =1, =0, (43)

(48)
Te(z,0) = Tin(2,0).

However, due to the measurement error, this candi-
date is a poor choice, and new ‘poles’ have to be added
into the system. A natural choice for the ‘pole polyno-
mial’ seems to beu;p; + ag + a, where « is a positive
constant such that the error behaviour is stable. This gives

ring Clp., p+] is chosen as the scalar ring. Thus the equiv- apr+ag+o —(apr+ag+a) 0
alent representation of the system in polynomial form is
0 a1pt + ao —bo
(a1pt + ao) T(z,t) = boTin(z, 1), (44) _ _ , _
and by adding the second row to the first row (i.e. using
where elementary row operations) one gets
ar = ki, ag= —kspi+Vikopy+ks, b= k. (45) aip + ag + « — —
(49)
9.1. Observer Design 0 aipy +ao —bo

In practical applications it is quite unrealistic to assume Note that only elementary operations @ffp,, p:|

that the continuous temperature distribution of the pulled Were used so that the extension to the module of fractions
wire would be directly available. To this direction, in our Was not needed. From (49) the estimate can be written in
case it is assumed that only evenly placed temperature the form

point measurements can be used and the continuous tem-
perature is estimated by interpolating the temperature pro-
file between two points. In addition there is white noise
superimposed on the original measurement signals. Thus
the first problem is to estimate the continuous temperature
distribution based on the dynamical model in (42) before
any controller design, i.e. one should calculate an esti-
mateT,(x,t) of the true temperature distributidfi(z, ¢)

k1piTe (17, t)

= oIl 1) ~ T, 1)) — Vb T2 1)
O*Te(,t)
5T a2

which is more or less a Kalman filter type of structure.

+k +k34 (Tin(x7t) —Te($,t)), (50)
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To evaluate how the observer performs in ‘practice’, g T
the original system was simulated together with the ob- i » S, l
server. The simulations were done in the Matlab envi-
ronment by discretising the partial differential equations M
using standard methods. The observer input was the noisy J
interpolated signal, as was explained earlier. On the other & T
hand, T'(0,t) was selected to be a constant function that I_ <
had low frequency oscillations superimposed on it. In %
Fig. 5 the original signall’, the noisy interpolated signal T, T +
T, and the estimated temperature profile are shown ‘ 53
versus space at a selected time point. The observer seems - =
to work just as the theory suggested. T Toor
Temperalure 2 1=100 and 1=200
e ‘ ' ' o Fig. 6. Signal flowchart of the closed loop system.
a0 e
} . ,/ the original system. The difference signals &gq =
% / Te — Teret @and Tin g = Tiy — Tinrer. In order to work
1T el . 1 with the error signal, the model in (42) has to be rewritten

2 ‘3: ....... 1odes for

:%\ i G e Y T e Td(l', t) = T(l’, t) — Tmf(l’, t). (51)

2 i By inserting (51) into (42) one gets

il \\m ] (k1pe — ksps + kaVaps + ka) Ta
=1
- k4ﬂn,d + k4ﬂn,ref + (k3pi - k2‘/d,p¢n - k4)Tref-
The resulting system is affine (i.e. with a zero input there

o . s = = = = s - will be a non-zero output from the system) because of the
‘exogenous’ terms related td,os and T, ye¢. In order to
utilise the design procedure shown in Section 8, this con-
stant term should be manipulated to zero. This is easily
achieved by solving

Fig. 5. Estimation of the temperature profile.

i 1
9.2. Controller DGSIgn ﬂn,ref = ki(*kfipi + kQVTpT + k4)Tref (52)

4
To c_Iemonstrate the controller design methodology, it was for Tin ref- This equation can be further simplified by se-
decided that fo_r the co_ntroller problem in the cooling sys- |ecting T}.;(z) as a function that decreases (increases)
tem the essential requirement is to have a temperature protinearly from T;.;(0) to T.¢(L) but satisfies the bound-

file that would match as accurately as possible a referencegry conditions forT". In this case one can reduce (52) to
temperature profilel}.s(z) even when there are distur- 1

bances in the incoming temperatuf&0, ¢). In the con- Tinret = —(—kaVper — kaTrer),
troller design it is assumed that the temperature profile of ks
Tin(z,t) can be manipulated directly. The controller de- wherec; is the slope ofT}.;.
sigh methodology described in Section 8, however, can be Now both T3, ¢ and 7y can be considered as sig-
used only for stabilising a system so that if the system hasnals v € C*°(R x R) such thatu(0,#) = 0 and
anon-zero output at = 0 and at the same time the feed- ou(L,t)/0z = 0 for all t. However, in order to get
back is switched on, the output of the system will settle boundary conditions for making an originally unknown
back to the zero position asymptotically due to feedback non-zeroa(p,) a monomorphism, the signal space is re-
ast — oo. A simple way to overcome this problem is to stricted to the space
transform the original signals into difference signals from
reference signals. X = {u € C™(R x R) | u(0,t) = 0,

In Fig. 6 the resulting signal flowchart is shown,
where S; refers to the original systemS; is the ob-
server, Ss is the controller, andM denotes the fact n>0= 9"u(L,1) _ 0}. (53)
that only the interpolated noisy signal is available from oz
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After transforming the original system into a suitable form ’ sontrolled iemperature distoibutons
for the controller design, the next step is to find a first '
candidate for the controller. Simple calculations show that  o=r
the lowest row of

Ty
TViIL,d

08-

Ty
T'in,d

=0

o
&

A(pt)

[a1pt+ao —bo
—(a1/bo)pr 1

Temperature
=
=
T

is a suitable candidate (becaudet A(p;) = constant).
In order to ensure thaf;(x,t) will asymptotically ap-
proach zero as — oo, a new ‘pole factor'p, + A hasto
be introduced. After adding this ‘pole’ and two elemen-

07

(i) of

tary row operations, the system can be written as ogst
a1pt T o T )\ —b() . (55) L"6(:1 :I» iIO 1la % zo zl:: 3‘0 slu 40
—ag + )\al b()

In these operations the elementary operations of Fig. 7. Control of the temperature profile.
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