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The use of a principal ideal domain structure for the analysis and design of multidimensional systems is discussed. As a
first step it is shown that a lattice structure can be introduced for IO-relations generated by polynomial matrices in a signal
spaceX (an Abelian group). It is assumed that the matrices take values in a polynomial ringF [p] where F is a field
such thatF [p] is a commutative subring of the ring of endomorphisms ofX. After that it is analysed when a givenF [p]
acting on X can be extended to its field of fractionsF (p). The conditions on the pair(F [p], X) are quite restrictive,
i.e. each non-zeroa(p) ∈ F [p] has to be an automorphism onX before the extension is possible. However, when this
condition is met, say for operators{p1, p2, . . . , pn−1}, a polynomial ringF [p1, p2, . . . , pn] acting onX can be extended
to F (p1, p2, . . . , pn−1)[pn], resulting in a principal ideal domain structure. Hence in this case all the rigorous principles of
‘ordinary’ polynomial systems theory for the analysis and design of systems is applicable. As an example, both an observer
for estimating non-measurable outputs and a stabilizing controller for a distributed parameter system are designed.
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1. Introduction

Polynomial systems theoryfor time-invariant linear differ-
ential and difference systems is a well-established and ef-
ficient tool for the analysis and design of control systems
(Blomberg and Ylinen, 1983; Kǔcera, 1979; Rosenbrock,
1970; Wolovich, 1974). The methodology utilises the al-
gebraic properties of polynomials with real or complex
coefficients and the strong interplay between the ring of
polynomials and the general theory of linear constant co-
efficient differential/difference equations. The key for the
‘success’ of this theory seems to be its computational na-
ture, i.e. the ringF [p] of polynomials over a fieldF in
an operatorp normally satisfies the assumptions of a di-
vision algorithm which can be used to find common fac-
tors and to manipulate polynomial matrices into suitable
canonical forms in an algorithmic way. Thus all necessary
computations inside the theory can be implemented on a
computer.

Polynomial systems theory was originally developed
for analysis and design of control systems. Therefore only
input-output systems describing cause-effect relationships
were considered. Later on, the theory has been general-
ized to so-calledbehavioural systems theory, where the
variables of systems are nota priori divided into inputs
and outputs (Willems, 1991; 1997; Valcher and Willems,
1999).

The extension of polynomial systems theory multi-
dimensional systems (nD systems) has been done, e.g.,
in (Oberst, 1990). The resulting structure is a ring
F [p1, p2, . . . , pn] of polynomials over a fieldF in two
or more operatorsp1, p2, . . . , pn acting on a given signal
space. This is not a principal ideal domain but a Noethe-
rian domain which offers a much weaker methodology
for manipulation on models. The theory relies on con-
cepts and methods of module algebra and shows that on
some assumptions about the signal space, computational
techniques are again available for the analysis and de-
sign of multivariable systems. This computational the-
ory, however, is quite complex. A good introduction to
the theory from the behavioural point of view is given in
(Wood, 2000). In (Napoli and Zampieri, 1999; Zampieri,
1998) the connections of the input-output representation
and state space representation of 2D systems are studied.
In particular, the causality with respect to given ‘past’ and
‘future’ is considered.

In this paper, our goal is to look for simpler algebraic
structures for the analysis and design of multidimensional
systems. Multidimensional systems are usually used as
models ofdynamiclinear distributed parameter systems.
This means that at least one, saypn, of the operators is a
differentiation or shift operator with respect totime. The
multidimensional polynomial ringF [p1, p2, . . . , pn] can
be represented as the ringF [p1, p2, . . . , pn−1][pn] of or-
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dinary polynomials in this operator with polynomial coef-
ficients.

Under relatively weak conditions for the signal space
the polynomial ring of coefficients can be extended to its
field of fractions F (p1, p2, . . . , pn−1). If this extension
can be made, a ring of polynomials with rational coeffi-
cients is obtained. This is an Euclidean domain so that
all methods developed for ordinary polynomial systems
seem to be applicable. This kind of construction was ap-
plied to the classical theory of two-dimensional systems
(Morf et al., 1977). Unfortunately, there is a serious re-
striction for that. It is easy to show that rational forms can
be considered as mappings from signals to signals only if
their denominators are automorphisms of the signal space
(Blomberg and Ylinen, 1983). This usually means that
the original signal space has to be restricted or extended
to satisfy this condition. On the other hand, this property
is strongly motivated by the causality requirement.

The structure of the paper is such that the results
related to polynomial systems over an arbitrary field are
considered first. The most important one is the construc-
tion of a module of fractions over a ring of fractions.
Given a denominator set, this construction can always be
done but then the original signal space is also extended
to a space of rational signals. The system models are ex-
tended correspondingly. The requirements for the denom-
inators needed for identifying the original system with a
subsystem of the extended system are given.

After the application of the results tonD systems,
we suppose that operatorsp1, . . . , pn−1 are such that
the non-zero elements ofF [p1, . . . , pn−1] are automor-
phisms. We can proceed without this assumption but then
the results are applicable only to the extended system with
rational signals. Basic methods for observer and con-
troller design are presented.

The methology is applied to the design of a feedback
controller for the system in which a metal wire is pulled
out from a heating treatment with a constant velocity, and
the control problem is to manipulate the temperature dis-
tribution of the pulled wire to a desired temperature. Also,
a temperature estimator is designed. In the example we
take a signal space which can be considered as a ‘projec-
tion’ of the space of infinitely differentiable 2D signals.

Finally, some agreements concerning the concepts
and notation regarding functions (or mappings) and rela-
tions are made. We will basically identify functions and
relations with their graphs, i.e. consider them as sets of
ordered pairs. Thus functions are simply relations of a
special type. Furthermore, a relationR has always an in-
verse relationR−1 as a relation usually called aconverse,
but a functionf has the inversef−1 as a function if and
only if it is injective. The composite relationR◦S of two
relationsS andR as well as the composite functionf◦g

of two functionsg and f is always defined regardless of
its domains and ranges.

2. Polynomials of Endomorphisms
and IO-Relations

In this section, we review some basic concepts of poly-
nomial systems theory. See, e.g. (Blomberg and Ylinen,
1983; Ylinen, 1980) for a more detailed approach.

A polynomial system description consists of equa-
tions of the form

(a0+a1p+· · ·+anpn)︸ ︷︷ ︸
a(p)

y=(b0+b1p+· · ·+bmpm)︸ ︷︷ ︸
b(p)

u,

(1)

whereu, y ∈ X andX is an additive Abelian group. We
have a0, . . . an,b0 . . . bm, p ∈ End(X). The coefficients
ai,bi of the polynomials are assumed to belong to a com-
mutative subfieldF of the ring End(X). If pf = fp
for every f ∈ F , then F [p] forms a commutative sub-
ring of End(X). In this case,X can be considered as a
left-module overF [p].

Suppose thatX is so ‘rich’ that p is an indeter-
minate over F , i.e. for each a(p) ∈ F [p] we have
a(p) = a0 + a1p + · · · + anpn = 0 if and only if
a0 = a1 = · · · = an = 0 Then the representation
of each a(p) ∈ F [p] is unique and thedegree function
d(a(p)) = max{m | am 6= 0}, d(0) = −∞, is well de-
fined. This implies further that the polynomial ringF [p]
satisfies thedivision algorithm, i.e. for arbitrary non-zero
a(p), b(p) ∈ F [p] there existq(p), r(p) ∈ F [p] such
that

a(p) = q(p)b(p) + r(p), d
(
r(p)

)
< d

(
b(p)

)
. (2)

Due to the existence of a division algorithm,F [p] also
satisfies the axioms of a principal ideal domain, and, in
fact, it is an Euclidean domain.

F [p] is also an integral domain so that it can be ex-
tended to thefield of fractionsdenoted byF (p). More
generalrings of fractionsare discussed in Section 4.

A polynomial IO-relationS is defined by

S =
{
(u, y) ∈ X ×X | a(p)y = b(p)u

}
, (3)

where (u, y) is an ordered input-output pair of the rela-
tion and a(p), b(p) ∈ F [p]. This formalism can be natu-
rally extented to a multivariable case: here the IO-relation
S from Xr to Xs is defined as

S =
{
(u, y) ∈ Xr ×Xs | A(p)y = B(p)u

}
, (4)
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where the matrix pair(A(p), B(p)), A(p) ∈ F [p]s×s and
B(p) ∈ F [p]s×r is said to generate the IO-relationS.
The defining equation in (4) can be written as

A(p)y −B(p)u =
[

A(p) ··· −B(p)
] [

y

u

]
= 0. (5)

The partitioned matrix[A(p) ··· − B(p) ] can be consid-
ered as a morphismXs × Xr ∼= Xs+r → Xs, whose
kernel, as a set of ordered pairs, is the converse (relation)
of S:

S−1 =
{
(y, u) ∈ Xs ×Xr | (u, y) ∈ S

}
= Ker

[
A(p) ··· −B(p)

]
. (6)

Typically, an IO-relation may have an infinite number of
differentgenerators[A(p) ···−B(p) ], which are then said
to be input-output equivalent. A generator [A(p) ··· −
B(p) ] is calledregular if det A(p) 6= 0 and a relation
S is regular if it has a regular generator. The regularity
is necessary from the realizability point of view, i.e. it is
needed for constructing realizable input-output mappings.

In a typical system analysis or design problem we
are, however, more interested in interconnected systems
described bycompositionsof IO-relations, than merely in
the analysis of one IO-relation. In order to have a prac-
tical theory for the composition of IO-relations, we have
to assume further that thedomainof each IO-relation (4)
to be connected is ‘full’, i.e.DS = Xr. This is guar-
anteed if therange of RA(p) in a regular generator
[A(p) ··· − B(p) ] (6) is the wholeXs, which, further-
more, is satisfied if the moduleX is divisible, i.e. if each
non-zeroa(p) ∈ F [p] is surjective (i.e. an epimorphism)
onX.

An arbitrary composition of a set of IO-relations de-
scribing thesubsystemscan be determined by theinter-
connection constraints(Blomberg and Ylinen, 1983). Ev-
ery composition can be reduced to the general form de-
picted by Fig. 1.

Fig. 1. General composition.

HereSi is theinternal IO-relationdetermined by the
subsystems and interconnection constraints andS0 is the

overall IO-relationdescribing the system which we are in-
terested in. Correspondingly,u0 and y0 are the chosen
overall input and output, andy1 constitutes the internal
output consisting of the outputs of the interconnected sub-
systems. Each input of the subsystems is either an overall
input or an internal output depending on the interconnec-
tion constraints.

Combining the IO-relations and interconnection con-
straints gives the following model for the internal IO-
relation:[

A1(p) A2(p) −B1(p)
A3(p) A4(p) −B2(p)

]  y1

y0

u0

 = 0. (7)

For constructing the model of the overall IO-relation

S0 =
{
(u0, y0) | ∃y1

[(
u0, (y1, y0)

)
∈ Si

]}
, (8)

however, the internal outputy1 should be eliminated.

3. Order and Equivalence Relations
for the IO-relations

In this section, we will show how a lattice structure can
be introduced for our IO-relations defined over a polyno-
mial ring F [p]. Note that the fieldF is arbitrary, and thus
this theory also applies when the fieldF contains oper-
ators acting on a given signal space. The work follows
closely the approaches adopted in (Ylinen, 1975; Ylinen
and Blomberg, 1989).

Proposition 1. Let S and S′ be IO-relations generated
by the pairs (A(p), B(p)) ∈ F [p]s×s × F [p]s×r and
(A′(p), B′(p)) ∈ F [p]s×s × F [p]s×r, respectively. Then
S ⊂ S′ if and only if there exists an epimorphism of
groups ϕ : R[A(p) ··· − B(p) ] → R[A′(p) ··· − B′(p) ],
such that[

A′(p) ··· −B′(p)
]

= ϕ◦
[

A(p) ··· −B(p)
]
. (9)

Furthermore,S = S′ if and only if ϕ is an isomorpism.

Proof. Assume first that (9) holds. Clearly,Ker[A(p) ··· −
B(p) ] ⊂ Ker(ϕ◦ [A(p) ··· −B(p) ]) becauseϕ is a mor-
phism and, consequently,S ⊂ S′. In addition, S = S′

if and only if R[A(p) ··· − B(p) ] ∩ Kerϕ = {0}. Since
Kerϕ ⊂ R[A(p) ··· − B(p) ], we haveS = S′ if and
only if Kerϕ = {0}, so thatϕ becomes an isomorphism
betweenR[A(p) ··· −B(p) ] andR[A′(p) ··· −B′(p) ].

Assume now thatS ⊂ S′, i.e. Ker[A(p) km −
B(p) ] ⊂ Ker[A′(p) ··· − B(p) ]. The group morphisms
[A(p) ··· − B(p) ] and [A′(p) ··· − B′(p) ] can be de-
composed into[A(p) ··· B(p) ] = [ A(p) ··· − B(p) ]∗ ◦ P
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and [A′(p) ··· − B′(p) ] = [A′(p) ··· − B′(p) ]∗ ◦ P ,
whereP is the canonical surjection fromXs ×Xr onto
the factor groupXs × Xr/S−1. [A(p) ··· − B(p) ]∗ :
Xs × Xr/S−1 → Xs and [A′(p) ··· − B′(p) ]∗ :
Xs × Xr/S−1 → Xs are morphisms of groups and
[A(p) ··· − B(p) ]∗ is a monomorpism of groups. Hence
its left inverse exists and, consequently,P = ([ A(p) ··· −
B(p) ]∗)−1 ◦ [A(p) ··· −B(p)], which gives[

A′(p) ··· −B′(p)
]

=
[

A′(p) ··· −B′(p)
]∗

◦
([

A(p) ··· −B(p)
]∗)−1

◦
[

A(p) ··· −B(p)
]
. (10)

Define ϕ , [A′(p) ··· −B′(p) ]∗ ◦ ([A(p) ··· −B(p) ]∗)−1.
It is an epimorphism of groups fromR[A(p) ··· − B(p) ]
to R[A′(p) ··· − B′(p) ]. If S = S′, then [A′(p) ··· −
B′(p) ]∗ is a monomorphism of groups, which implies
that ϕ is an isomorphism betweenR[A(p) ··· − B(p) ]
andR[A′(p) ··· −B′(p) ].

This proposition is weak in the sense that it only im-
plies the existence of a morphismϕ but does not guaran-
tee that this morphism would be also a matrix inF [p]s×s.
The following proposition shows that this indeed is the
case. The proof was given earlier only in (Ylinen and
Blomberg, 1989). A shorter but a more module theoretic
proof of the proposition can be found in (Hinrichsen and
Prätzel-Wolters, 1980).

Proposition 2. Let S and S′ be two regular IO-relations
generated by[A(p) ··· − B(p)] and [A′(p) ··· − B′(p) ],
respectively, withA(p), A′(p) ∈ F [p]s×s, B(p), B′(p) ∈
F [p]s×r. Suppose thatS ⊂ S′. Assume that every non-
zero elementc(p) of F [p] is an epimorphism andc(p) ∈
F [p] is an automorphism if and only ifc(p) ∈ F − {0}.
Then there exists a matrixM(p) ∈ F [p]s×s such that[
A′(p) ··· −B′(p)

]
= M(p)

[
A(p) ··· −B(p)

]
. (11)

Furthermore,S = S′ if and only if M(p) is unimodular.

Proof. S ⊂ S′ is equivalent toS ∩ S′ = S. This implies

Ker
[

A(p) ··· −B(p)
]

= Ker
[
A(p) ··· −B(p)

]
∩ Ker

[
A′(p) ··· −B′(p)

]

= Ker

 A(p) ··· −B(p)

A′(p) ··· −B′(p)

. (12)

BecauseF [p] is a principal ideal domain, we can find a
unimodular matrixN(p) such that

N(p)

 A(p) ··· −B(p)

A′(p) ··· −B′(p)

 =

 Ã(p) ··· −B̃(p)

0 ··· −B̃′(p)

 ,

(13)

which does not change the kernel. However, because the
relation S = {(u, y) | A(p)y = B(p)u} has as its do-
main the wholeXr, B̃′(p) has to be zero. Thus

Ker
[

A(p) ··· −B(p)
]

= KerN(p)

 A(p) ··· −B(p)

A′(p) ··· −B′(p)


= Ker

[
Ã(p) ··· −B̃(p)

0 ··· 0

]

= Ker
[

Ã(p) ··· −B̃(p)
]
. (14)

Conversely, A(p) ··· −B(p)

A′(p) ··· −B′(p)



=

 Q1(p) ··· Q2(p)

Q3(p) ··· Q4(p)


︸ ︷︷ ︸

Q(p)

[
Ã(p) ··· −B̃(p)

0 ··· 0

]

=

 Q1(p)Ã(p) ··· −Q1(p)B̃(p)

Q3(p)Ã(p) ··· −Q3(p)B̃(p)

 , (15)

where Q(p) = N(p)−1. Because[ Ã(p) ··· − B̃(p) ]
and [Q1(p)Ã(p) ··· − Q1(p)B̃(p) ] have to generate the
same IO-relationS, Q1(p) has to be unimodular. Thus
N(p) can be chosen so thatQ1(p) = I and, conse-
quently, Ã(p) = A(p) and B̃(p) = B(p). ThusA′(p) =
Q3(p)A(p) and B′(p) = Q3(p)B(p) and Q3(p) quali-
fies asM(p) in the proposition.

Finally, if S = S′, M(p) must be an isomorphism,
which implies that it is unimodular according to the as-
sumptions.

The polynomial matrices satisfying (11) with uni-
modularM(p) are said to berow equivalent. Thus, on the
assumptions of Proposition 2,two regular generators are
input-output equivalent if and only if they are row equiva-
lent.

Let (A(p), B(p)) ∈ F [p]s×s × F [p]s×r generate
a regular IO-relation. Let the rational matrixG(p) ∈



Polynomial systems theory applied to the analysis and design of multidimensional systems 19

F (p)s×r be defined byG(p) = A(p)−1B(p). Then
the IO-relationS generated by(A(p), B(p)) is said to
be associated withG(p), and G(p) is called thetrans-
fer matrix determined by(A(p), B(p)). Two regular
IO-relations associated withG(p), as well as the corre-
sponding generators, are calledtransfer equivalent. Ob-
viously, row equivalent generators are transfer equiva-
lent. The set of all transfer equivalent IO-relations asso-
ciated withG(p) can be ordered with a set inclusion, i.e.
S ≤ S′ ⇐⇒ S ⊂ S′. The first element of this set, if
it exists, is called theminimal IO-relationassociated with
G(p).

Proposition 3. Let S and S′ be two regular IO-relations
generated by[A(p) ··· − B(p) ] and [A′(p) ··· − B′(p) ],
respectively, withA(p), A′(p) ∈ F [p]s×s, B(p), B′(p) ∈
F [p]s×r. Suppose thatS ⊂ S′. Then S and S′

are associated with the same transfer matrixG(p) ∈
F (p)s×r. Furthermore, a regular relationS̃ generated
by [ Ã(p) ··· − B̃(p) ], Ã(p) ∈ F [p]s×s, B̃(p) ∈ F [p]s×r

is the minimal IO-relation associated with a transfer ma-
trix G̃(p) ∈ F (p)s×r if and only if Ã(p) and B̃(p) are
left coprime.

Proof. The first statement is a direct consequence of
Proposition 2. Suppose now that̃A(p) and B̃(p) are
left coprime. Assume that there exists a regular genera-
tor [A(p) ··· −B(p) ] for S such thatS ⊂ S̃. According
to Proposition 2, there exists a non-unimodularN(p) ∈
F [p]s×s such that[ Ã(p) ··· − B̃(p) ] = N(p)[A(p) ··· −
B(p) ], which contradicts the assumption that̃A(p) and
B̃(p) are left coprime. Suppose now that there exists
a regular, minimal IO-relationS̃ associated withG(p)
and S̃ is generated by[ Ã(p) ··· − B̃(p) ]. Assume fur-

ther that Ã(p) and B̃(p) are not left coprime. Then
[ Ã(p) ··· − B̃(p) ] = N(p)[A′(p) ··· − B′(p) ] for some
A′(p), N(p) ∈ F [p]s×s, B′(p) ∈ F [p]r×s, and N(p) is
not unimodular. However, according to Proposition 2, this
implies thatS′ ⊂ S̃, which leads to a contradiction.

Finally, the existence of the minimal IO-relation for
a transfer matrixG(p) ∈ F (p)s×r can be shown with
a constructive proof. For a reference, see, e.g. (Ylinen,
1975), where the construction is done by using the Smith-
McMillan form of G(p).

Note that the minimality of transfer equivalent rela-
tions can be studied in a more general, behavioural frame-
work without dividing signals into inputs and outputs
(Oberst, 1990). The minimality of the IO-relation associ-
ated with a transfer matrixG(p) is an important concept
in the sense that a non-minimal IO-relation can be decom-
posed into two subsystems, a minimal ‘controllable’ sub-
system and an ‘uncontrollable’ subsystem, which is not

affected by the input signalsu ∈ Xr (Blomberg and Yli-
nen, 1983; Willems, 1991).

A concrete (one-dimensional) example of a pair
(F [p], X) that satisfies the assumptions for the construc-
tion of the lattice structure is(C[d/dt], C∞(R)), where
C∞(R) is the space of infinitely differentiable complex-
valued functions onR (Blomberg and Ylinen, 1983).
However, if the subspace of compactly supported func-
tions in C∞(R), C∞

c (R), is taken asX, the construction
is not valid any more because in this space for arbitrary
a(d/dt) ∈ C[d/dt], x ∈ C∞

c (R), a(d/dt)x = 0 implies
that eithera(d/dt) = 0 or x = 0. Furthermore, it is
quite easy to show thata(d/dt) ∈ C[d/dt] is an epimor-
phism on X if and only if a(d/dt) ∈ C − {0}. Thus
this structure contradicts the ‘automorphism condition’ in
Proposition 2.

The propositions above pose a rigorous connection
between IO-relations and their polynomial matrix descrip-
tions. In particular, the effects of the manipulation of poly-
nomial matrices on the corresponding IO-relations can be
studied and ‘safe’ methods can be developed. On the other
hand, the properties of the IO-relations can be tested using
polynomial matrix manipulations.

4. Modules of Fractions

In this section, we analyse when it is possible to extend the
scalar ringF [p] of a moduleX to its field of fractions
F (p) or, more generally, to aring of fractions. This mate-
rial depends heavily on the results presented in (North-
cott, 1968). Consider a subsetD of a ring F [p] (F
is an arbitrary field) and assume thatD is closed under
multiplication and0 /∈ D. To shorten the notation, we
also assume that1 ∈ D. Then F [p] can be extented
to the ring F [p]D of fractions, where the elements are
equivalence classes of the formb(p)/a(p), b(p) ∈ F [p],
a(p) ∈ D. Two equivalent classesb(p)/a(p), d(p)/c(p)
are equal if and only if there existss(p) ∈ D such that
s(p)(c(p)a(p) − B(p)d(p)) = 0. Addition and multipli-
cation are defined as

b(p)/a(p) + d(p)/c(p)

=
(
c(p)b(p) + a(p)d(p)

)
/
(
a(p)c(p)

)
(16)

and

(b(p)/a(p)) (d(p)/c(p))=
(
b(p)d(p)

)
/
(
a(p)c(p)

)
, (17)

respectively.F [p] can be embedded inF [p]D with the
morphismjD : F [p] → F [p]D, a(p) 7→ a(p)/1.

Consider next the Abelian groupX, which is a left
module overF [p]. When F [p] is extended toF [p]D
then X has to be extented also toXD, where an ele-
ment of XD is an equivalence class of the formx/a(p),
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x ∈ X and a(p) ∈ D. Furthermore, equivalence classes
y/a(p) ∈ XD and x/b(p) ∈ XD are equal if and only if
there existsc(p) ∈ D, so thatc(p)(b(p)x − a(p)y) = 0.
The addition is defined inXD as

x/a(p) + y/b(p) =
(
b(p)x + a(p)y

)
/
(
a(p)b(p)

)
. (18)

In order to makeXD a left module overF [p]D, the scalar
multiplication is defined as

(b(p)/a(p)) (x/c(p)) =
(
b(p)x

)
/
(
a(p)c(p)

)
. (19)

XD is also aF [p] module and the mappingj : X →
XD, x 7→ x/1 is a morphism ofF [p]-modules. Clearly,
the embeddingj is a monomorphism if and only if ev-
ery a(p) ∈ D is a monomorphism. In this case,X can
be considered as a submodule of theF [p]-module XD.
Furthermore,j is an epimorphism if and only if every
a(p) ∈ D is an epimorphism. ThusX can be identified
with XD if and only if every a(p) ∈ D is an isomor-
phism of F [p]-modules.

Note that if D = F [p] − {0}, then XD is a vector
space over the fieldFD, and if each element inF [p] −
{0} is a monomorphism,X can be embedded inXD.
However, if we wish to considerX as a vector space over
F (p), we have to give for an arbitraryx/a(p), x ∈ X
and a(p) ∈ F [p]− {0} the meaningx/a(p) = a(p)−1x
(this vector space structure is quite commonly used in the
control literature), wherea(p)−1 is the inverse ofa(p) as
an endomorphism ofX. Hence we have to further assume
that eacha(p) ∈ F (p) is an epimorphism, otherwise for
x /∈ R(a(p)), a−1x would not be well defined.

Consider now a SISO IO-relationS ⊂ X×X which
is generated by[ a(p) ···−B(p) ] ∈ F [p]×F [p]. If we can-
not identify X with XD, but we want to use the embed-
ding x 7→ x/1, an interesting problem would be to anal-
yse whether there exists an IO-relationSD in XD×XD

such that the diagram of composite relations in Fig. 2 com-
mutes, i.e.j ◦ S = SD ◦ j, and how we can construct it.
Note that the commutative diagrams are usually used for
functions but the generalization to relations is straightfor-
ward. For the problem above we have the following result:

Fig. 2. Commutative relation diagram.

Proposition 4. Consider the relation diagram of Fig. 2.

(i) j ◦ S ⊂ SD ◦ j if and only if for every(u, y) ∈
X ×X we have(u, y) ∈ S ⇒ (u/1, y/1) ∈ SD.

(ii) The diagram is commutative, i.e.j ◦S = SD ◦ j,
if for every (u, y) ∈ X × X we have(u, y) ∈ S ⇐⇒
(u/1, y/1) ∈ SD.

(iii) If the diagram is commutative and everyd(p) ∈
D is a monomorphism, then for every(u, y) ∈ X × X
we have(u, y) ∈ S ⇐⇒ (u/1, y/1) ∈ SD.

Proof. (i) Suppose first thatj ◦ S ⊂ SD ◦ j, and take
an arbitrary (u, y) ∈ S. Then (u, y/1) ∈ j ◦ S, and
further (u, y/1) ∈ SD ◦ j. Thus there existsx/1 such
that u/1 = x/1 and (x/1, y/1) ∈ SD, which implies
that (u/1, y/1) ∈ SD.

Conversely, suppose that(u, y) ∈ S ⇒
(u/1, y/1) ∈ SD. Then an arbitrary(u, y/1) ∈ j ◦ S
if and only if there exists az such that(u, z) ∈ S and
y/1 = z/1. Consequently, there exists az such that
(u/1, z/1) ∈ SD and y/1 = z/1, which is equivalent
to (u/1, y/1) ∈ SD and finally to (u, y/1) ∈ SD ◦ j.

(ii) Suppose next that(u, y) ∈ S ⇐⇒
(u/1, y/1) ∈ SD. Now an arbitrary(u, y/1) ∈ j ◦ S
if and only if there exists az such that(u, z) ∈ S and
y/1 = z/1 i.e. if and only if there exists az such that
(u/1, z/1) ∈ SD and y/1 = z/1. According to the pre-
vious paragraph, this is equivalent to(u, y/1) ∈ SD ◦ j.

(iii) Suppose thatj ◦S = SD ◦ j. From (i) it follows
that (u, y) ∈ S ⇒ (u/1, y/1) ∈ SD. Take an arbitrary
(u/1, y/1) ∈ SD. We have(u, y/1) ∈ SD ◦ j = j ◦ S,
which implies that there exists az such that(u, z) ∈ S
and y/1 = z/1. If every d(p) ∈ D is a monomor-
phism then j is a monomorphism and, consequently,
y/1 = z/1 ⇒ y = z. Thus (u, y) ∈ S.

Note that the condition(u, y) ∈ S ⇒ (u/1, y/1) ∈
SD is satisfied ifSD is chosen as

SD =
{(

u/c(p), y/d(p)
)
∈ XD ×XD |

a(p)y/d(p) = b(p)u/c(p)} . (20)

On the other hand, if(u/1, y/1) ∈ SD, then also
(u/1, (y + z)/1) ∈ SD, where d(p)z = 0 for some
d(p) ∈ D. This means that when the original IO-relation
S is embedded into the structure of a module of fractions,
signal pairs(0, z) with d(p)z = 0 for somed(p) ∈ D
are added to the original pairs(u, y) ∈ S.

It is also easy to show that[ a(p) ··· − B(p) ] can
be replaced by an arbitrarytransfer equivalentgenerator
[ a′(p) ··· − b′(p) ] satisfying

e(p)
[

a(p) ··· −B(p)
]

= e′(p)
[

a′(p) ··· −b′(p)
]
, e(p), e′(p) ∈ D. (21)
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For example, ifp , d/dt and X = C∞(R), then
an arbitrary polynomial inC[p] − {C} has a non-zero
kernel, i.e. it is not a monomorphism. Thus the exten-
sion of the original IO-relationS by signal pairs(0, z)
with d(p)z = 0 for somed(p) ∈ D is not a very con-
sistent description of the original relationS, especially if
D contains polynomials having zeros with positive real
parts in C. This can be avoided by making the denom-
inators d(p) ∈ D monomorphisms, e.g. by setting the
initial conditions to zero. More formally, it can be done
by restricting the original signal spaceX to the space

X0|0) , {x | x ∈ X, t < 0 ⇒ x(t) = 0} . (22)

Because of this restriction, all non-zero polynomials are
monomorphisms, so that the original IO-relationS be-
comes a mappingX0|0) → X0|0).

5. Modules of Fractions of Multidimensional
Systems

In this section, we consider the possibility of using the
algebraic machinery developed in previous sections in a
multi-dimensional relation. So assume that we have a
polynomial ring F [p1, p2, . . . , pn] = F [p], F is a field
and F [p] can be considered as a subring of the ring of
endomorphisms of a given Abelian groupX. Our IO-
relations are then of the form

S =
{
(u, y) ∈ Xr ×Xs) | A(p)y = B(p)u

}
, (23)

where A(p) ∈ F [p]s×s, B(p) ∈ F [p]s×r. Further sup-
pose that the operators{p1, p2, . . . , pn} are indetermi-
nates, i.e. each polynomial inF [p] has a unique repre-
sentation. This further implies thatF [p] is an integral
domain. However, it is not a principal ideal domain but a
Noetherian domain.

Now we would like to pick up one of the operators,
say pn, and extend the original IO-relation ‘against’ this
operator to the module of fractions over the principal ideal
domain F (p1, p2, . . . , pn−1)[pn] and to use the lattice
structure constructed in Section 3 to analyse our system.
According to the theory presented in previous sections,
the extension keeps the IO-relation if each non-zero ele-
ment in F [p1, p2, . . . , pn−1] is an automorphism ofX.
Note, however, that if we do not want to keep the origi-
nal IO-relation but accept its extension to the module of
fractions XD with D = F [p1, p2, . . . , pn−1] − {0}, the
denominators do not need to be automorphisms.

Furthermore, in order to utilise our lattice structure
for an arbitrary IO-relation defined as in (23), the follow-
ing assumptions have to hold:

• The IO-relation has to be regular, i.e.det A(p) 6= 0.

• Each non-zero element ofF (p1, p2, . . . , pn−1)[pn]
is an epimorphism.

• An element of F (p1, p2, . . . , pn−1)[pn] is
an automorphism if and only if it belongs to
F (p1, p2, . . . , pn−1)− {0}.

One direct application of this algebraic system would
be partial differential equations with constant coefficients
(Hätönen and Ylinen, 2000). For example, suppose
that X is the spaceC∞(D) of infinitely differentiable
complex-valued functions on an open setD ⊂ R2,
(x, t) 7→ u(x, t), p1 = px , ∂/∂x, p2 = pt , ∂/∂t
and F = C. Now, the spaceX (over C) can be extended
to the vector spaceXC[px]∗ over C(px). The differentia-
tion pt can be extended to this space by

pt (u/a(px)) = ptu/a(px). (24)

Because, in general, the polynomialsa(px) 6= 0 are not
automorphisms ofX, X itself cannot be considered as a
subspace ofXC[px]∗ . However, if D is square, i.e. of the
form D1 ×D2, and X is restricted, e.g. to the space

X0|x0) , {u | u ∈ X, x < x0 ⇒ u(x, t) = 0} (25)

for somex0 ∈ D1, then for each (restricted) polynomial
a(px) 6= 0 the equation

a(px)y = u, y, u ∈ X0|x0) (26)

has a unique solutiony(·, t) for each t and u(·, t). Fur-
thermore, this solution is infinitely differentiable with re-
spect tot. Hence eacha(px) 6= 0 is an automorphism
and X0|x0) can be considered as a vector space over
C(px).

Thus X0|x0) can be considered as a module over
C(px)[pt] and the structure is analogous to the structure
of time-invariant ordinary differential polynomials.

6. Analysis

Suppose again thatX consists of (real or complex-
valued) functions on an appropriate space-time domain
and at least one of the dimensions ofX is time or, more
definitely, a suitabletime-interval T ⊂ R. Suppose fur-
ther thatp is the chosen basic operator and the other oper-
ators are included into the coefficient ring which, further,
is extended to the fieldF of fractions in the way pre-
sented in previous sections. If the signal spaceX is such
that the denominators are not automorphisms, it has to be
extended to the module of fractions. However, we will not
make any notational distinction between these two cases.

The causalityof a system means that if there exists
a cause-effect relationship between two variables, the fu-
ture of the output is uniquely determined by the past of
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the system and the future of the input. This implies that
if the past of the system is given, the output is uniquely
determined by the input, i.e. for a given past the system is
a mapping.

Thus the relationS ⊂ Xr × Xs generated by
[A(p) ··· − B(p) ] is causal if for each (u, y) ∈ S and
t ∈ T the relation

S(u,y)|t) ,
{
(u′, y′) | (u′, y′) ∈ S,

(u′, y′) | (−∞, t) ∩ T

= (u, y) | (−∞, t) ∩ T
}

(27)

is the mappingXr
u|t) → Xs

y|t), where

Xr
u|t) ,

{
u′ | (u′ ∈ X, u′ | (−∞, t) ∩ T

= u | (−∞, t) ∩ T
}

(28)

and Xs
y|t) is defined accordingly. Note thatS(u,y)|t) can

be written as

S(u,y)|t) = (u, y) + S(0,0)|t). (29)

Thus the IO-relationS is causal if the polynomial matri-
ces are such thatA(p) | Xs

0|t) is a monomorphism and
RB(p) | Xr

0|t) ⊂ RA(p) | Xs
0|t) is not a linear mapping

except if (u, y) | t) = (0, 0)|t).
Consider the example for thenD case of Section 5,

i.e. the polynomialsC[px][pt]. Suppose thatS is a IO-
relation generated by

a(px)y(·, t) = u(·, t), t ∈ T, (30)

where the input-output dependence is ‘pointwise’ with re-
spect to timet. Suppose further that the boundary condi-
tions are given by boundary values for outputy and they
are ’fixed’, i.e. they do not depend on inputu. It is nat-
ural to require that this kind of system should be causal.
This implies that the IO-relationS should be a mapping,
i.e. the boundary conditions are such that the morphism
a(px) is invertible. One way to reach this is the restric-
tion of X to X0|x)(25), i.e. the use of zero boundary val-
ues. This is not necessary because the extension to the
module of fractionsXD with D = C[px] − {0} is pos-
sible, too. The restricted ‘rational signals’ are defined by
(x/1) | t) = x | t)/1. Note, however, that in this case we
accept the fact that the IO-relations describing the systems
are unique only up to the transfer equivalence and their
outputs can contain arbitrary additional termsz such that
d(px)z = 0 for somed(px) 6= 0.

The relation generated by[A(p) ··· −B(p) ] is stable
if the solutionsy of the equation

A(p)y = 0 (31)

get asymptotically close to zero as timet →∞.

The relationgeneratedby [A(p) ··· − B(p) ] is con-
trollable if A(p) and B(p) are left coprime, i.e. their
common left divisors are all unimodular.

Using elementary row operations and the division al-
gorithm, the model of an arbitrary composition described
in Section 2 can be brought to an upper-triangular form
(Blomberg and Ylinen, 1983; Ylinen, 1975): A1(p) A2(p) −B1(p)

0 A4(p) −B2(p)


 y1

y0

u0

 = 0, (32)

whereu0 and y0 are the overall input and output andy1

the internal output of the composition, respectively. If for
each(u0, y0) satisfying the equation

A4(p)y0 = B2(p)u0 (33)

there exists ay1 such that

A1(p)y1 = −A2(p)y0 + B1(p)u0, (34)

the overall IO-relation S0 determined by the composi-
tion is generated by[ A4(p) ··· − B2(p) ]. Furthermore,
if A1(p) is unimodular, the composition is said to be
(y1(u0, y0)−)observable.

7. Observer Design

Consider the composition above. The observer design
problem is to construct a system̂S, anobserverwith two
inputs y0 and u0 so that its output̂y1 estimatesy1, i.e.
the error ỹ1 = y1 − ŷ1 is as small as possible and sta-
ble regardless of the inputu0. The problem is depicted
in Fig. 3. There are many different solutions to the esti-
mation problem. Theobservertype estimators are based
on the system model so that the observer model and the
system model belong to the same class of systems.

Fig. 3. Observer design problem.
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It is natural to require that the correcty1 be a possi-
ble output of the observer, i.e. if(u, (y1, y2)) ∈ Si, then
((y2, u), y1) ∈ Ŝ. Then Proposition 2 gives that each gen-
erator of the observer̂S [C(p) ··· −D1(p) −D2(p) ] has
to satisfy (Blomberg and Ylinen, 1983; Ylinen, 1975): C(p) −D1(p) −D2(p)

0 A4(p) −B2(p)



=

 T1(p) T2(p)

0 I


︸ ︷︷ ︸

T (p)

 A1(p) A2(p) −B1(p)

0 A4(p) −B2(p)

 (35)

for some [T1(p) ··· T2(p) ]. Furthermore, the error̃y1 sat-
isfies

T1(p)A1(p)ỹ1 = 0. (36)

The behaviour of the observer should be robust with
respect to parameter variations, which means that it has to
be proper.

Left multiplication of T (p) by another matrix of
the same type results again in a matrix of the same type.
Therefore the condition (35) can be used repeatedly for
constructing a suitableT (p). In particular,T (p) can be
factored to T1(p) T2(p)

0 I

=

 I T2(p)

0 I

 T1(p) 0

0 I

. (37)

Thus a candidate for the matrixT1(p) determining the er-
ror dynamics can be chosen first and then elementary row
operations are used to realize the properness provided that
the order ofT1(p)A1(p) is high enough. If the properness
cannot be achieved, the generator is multiplied by a new
T1(p) and the use of elementary row operations is contin-
ued, and so on, until a satisfactory result is obtained.

8. Feedback Controller Design

Consider next the feedback controller design for the rela-
tion S generated by[A(p) ··· − B(p) ] with input u and
output y. The problem is to construct a relationS2, a
feedback controller, with input y and outputu such that
the overall system behaves satisfactorily, is stable, robust,
etc. The feedback composition is depicted by Fig. 4. The
feedback controller is assumed to belong to the same class
of relations as the controlled relationS.

It can be shown (Blomberg and Ylinen, 1983; Ylinen,
1975) that the generator[C(p) ···−D(p) ] of the feedback

Fig. 4. Feedback composition.

controller satisfies A1(p) −B1(p)

−D(p) C(p)


︸ ︷︷ ︸

Ai(p)

=

 I 0

T3(p) T4(p)


︸ ︷︷ ︸

T (p)

 A1(p) −B1(p)

X(p) Y (p)


︸ ︷︷ ︸

P (p)

(38)

for some[T3(p) ··· T4(p) ] and a unimodularP (p).

Here [A1(p) ··· −B1(p) ] represents the controllable
part of the controlled system, i.e.[

A(p) ··· −B(p)
]

= L(p)
[

A1(p) ··· −B1(p)
]
,

(39)

where L(p) is the greatest common left factor ofA(p)
and B(p). The so-calledfirst candidateP (p) satisfies[

A1(p) ··· B1(p)
]

P (p)−1 =
[

I ··· 0
]

(40)

and can be constructed by applyingelementary column
operationsto [A1(p) ··· −B1(p) ].

The closed-loop behaviour of the overall system is
determined byT4(p) and the uncontrollable partL(p).
Analogously to the condition (35), also the condition (38)
can be used repeatedly.T (p) can be factored to I 0

T3(p) T4(p)

 =

 I 0

T3(p) I

 I 0

0 T4(p)

.

(41)
An appropriate matrixT4(p) is chosen first and then el-
ementary row operations are applied in order to obtain a
proper feedback controller. If this fails, the resulting gen-
erator is multiplied by a newT4(p), and so on.
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9. Illustrative Example

Consider a cooling system where a metal wire is pulled
out from a heating treatment with constant velocity, and
the control problem is to manipulate the temperature dis-
tribution of the pulled wire to a desired temperature pro-
file by utilising a cooling equipment wrapped around the
pulled metal wire.

This cooling system can be roughly described by the
following partial differential equation:

k1
∂T (x, t)

∂t
+ Vxk2

∂T (x, t)
∂x

= k3
∂2T (x, t)

∂x2
+ k4

(
Tin(x, t)− T (x, t)

)
, (42)

wherek1,k2,k3 and k4 are constants describing the heat
transfer properties of the different materials found in the
system,Vx is the constant pulling speed,T (x, t) is the
temperature distribution of the wire andTin(x, t) is the
temperature distribution of the cooling equipment. The
initial and boundary conditions for the system are

T (0, t) = 1 + f(t), T (x, 0) = 1,
∂T (L, t)

∂x
= 0, (43)

where f is an unknown disturbance andL is the length
of the cooling equipment.

In order to utilize the polynomial approach, all sig-
nals are assumed to be infinitely differentiable with re-
spect to spacex and time t, i.e. they are considered as
elements ofC∞(R × R) even thoughC∞((0, L) × R)
could also be possible. The two-dimensional polynomial
ring C[px, pt] is chosen as the scalar ring. Thus the equiv-
alent representation of the system in polynomial form is

(a1pt + a0) T (x, t) = b0Tin(x, t), (44)

where

a1 = k1, a0 = −k3p
2
x+Vxk2px+k4, b0 = k4. (45)

9.1. Observer Design

In practical applications it is quite unrealistic to assume
that the continuous temperature distribution of the pulled
wire would be directly available. To this direction, in our
case it is assumed that onlyN evenly placed temperature
point measurements can be used and the continuous tem-
perature is estimated by interpolating the temperature pro-
file between two points. In addition there is white noise
superimposed on the original measurement signals. Thus
the first problem is to estimate the continuous temperature
distribution based on the dynamical model in (42) before
any controller design, i.e. one should calculate an esti-
mateTe(x, t) of the true temperature distributionT (x, t)

based on the measured temperature distributionTm(x, t)
and Tin(x, t), where the accuracy ofTe(x, t) should be
improved using the accuracy ofTm(x, t). To take into
account the effect of the ‘measurement error’ in the ob-
server design, the following equation has to be added into
the system described by (42):

Tm(x, t) = T (x, t) + v(x, t), (46)

where Tm(x, t) is the measured temperature profile and
v(x, t) describes the effect of interpolation and white
noise in the measured temperatureTm(x, t). According
to the theory presented in Section 7, the first candidate for
the observer is the uppermost row in 1 −1 0

0 a1pt + a0 −b0


 Te

Tm

Tin

 = 0, (47)

i.e. the estimate of the distribution would be directly the
measured distributionTm(x, t) and the initial conditions
for Te(x, t) are

Te(x, t) = Tm(0, t),
∂Te(x, L)

∂x
=

∂Tm(0, L)
∂x

,

Te(x, 0) = Tm(x, 0).

(48)

However, due to the measurement error, this candi-
date is a poor choice, and new ‘poles’ have to be added
into the system. A natural choice for the ‘pole polyno-
mial’ seems to bea1pt + a0 + α, where α is a positive
constant such that the error behaviour is stable. This gives a1pt + a0 + α −(a1pt + a0 + α) 0

0 a1pt + a0 −b0


and by adding the second row to the first row (i.e. using
elementary row operations) one gets a1pt + a0 + α −α −b0

0 a1pt + a0 −b0

 . (49)

Note that only elementary operations ofC[px, pt]
were used so that the extension to the module of fractions
was not needed. From (49) the estimate can be written in
the form

k1ptTe(x, t)

= α
(
Tm(x, t)− Te(x, t)

)
− Vxk2

∂Te(x, t)
∂x

+ k3
∂2Te(x, t)

∂x2
+ k4 (Tin(x, t)− Te(x, t)) , (50)

which is more or less a Kalman filter type of structure.
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To evaluate how the observer performs in ‘practice’,
the original system was simulated together with the ob-
server. The simulations were done in the Matlab envi-
ronment by discretising the partial differential equations
using standard methods. The observer input was the noisy
interpolated signal, as was explained earlier. On the other
hand, T (0, t) was selected to be a constant function that
had low frequency oscillations superimposed on it. In
Fig. 5 the original signalT , the noisy interpolated signal
Tm, and the estimated temperature profileTe are shown
versus space at a selected time point. The observer seems
to work just as the theory suggested.

Fig. 5. Estimation of the temperature profile.

9.2. Controller Design

To demonstrate the controller design methodology, it was
decided that for the controller problem in the cooling sys-
tem the essential requirement is to have a temperature pro-
file that would match as accurately as possible a reference
temperature profileTref(x) even when there are distur-
bances in the incoming temperatureT (0, t). In the con-
troller design it is assumed that the temperature profile of
Tin(x, t) can be manipulated directly. The controller de-
sign methodology described in Section 8, however, can be
used only for stabilising a system so that if the system has
a non-zero output att = 0 and at the same time the feed-
back is switched on, the output of the system will settle
back to the zero position asymptotically due to feedback
as t → ∞. A simple way to overcome this problem is to
transform the original signals into difference signals from
reference signals.

In Fig. 6 the resulting signal flowchart is shown,
where S1 refers to the original system,S2 is the ob-
server, S3 is the controller, andM denotes the fact
that only the interpolated noisy signal is available from

Fig. 6. Signal flowchart of the closed loop system.

the original system. The difference signals areTe,d =
Te − Te,ref and Tin,d = Tin − Tin,ref . In order to work
with the error signal, the model in (42) has to be rewritten
for

Td(x, t) = T (x, t)− Tref(x, t). (51)

By inserting (51) into (42) one gets(
k1pt − k3p

2
x + k2Vxpx + k4

)
Td

= k4Tin,d + k4Tin,ref + (k3p
2
x − k2Vxpx − k4)Tref .

The resulting system is affine (i.e. with a zero input there
will be a non-zero output from the system) because of the
‘exogenous’ terms related toTref and Tin,ref . In order to
utilise the design procedure shown in Section 8, this con-
stant term should be manipulated to zero. This is easily
achieved by solving

Tin,ref =
1
k4

(−k3p
2
x + k2Vxpx + k4)Tref (52)

for Tin,ref . This equation can be further simplified by se-
lecting Tref(x) as a function that decreases (increases)
linearly from Tref(0) to Tref(L) but satisfies the bound-
ary conditions forT . In this case one can reduce (52) to

Tin,ref =
1
k4

(−k2Vxc1 − k4Tref),

where c1 is the slope ofTref .

Now both Tin,d and Td can be considered as sig-
nals u ∈ C∞(R × R) such that u(0, t) = 0 and
∂u(L, t)/∂x = 0 for all t. However, in order to get
boundary conditions for making an originally unknown
non-zeroa(px) a monomorphism, the signal space is re-
stricted to the space

X =

{
u ∈ C∞(R× R) | u(0, t) = 0,

n > 0 ⇒ ∂nu(L, t)
∂xn

= 0

}
. (53)
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After transforming the original system into a suitable form
for the controller design, the next step is to find a first
candidate for the controller. Simple calculations show that
the lowest row of

A(pt)

[
Td

Tin,d

]
=

[
a1pt + a0 −b0

−(a1/b0)pt 1

] [
Td

Tin,d

]
= 0

(54)

is a suitable candidate (becausedet A(pt) = constant).
In order to ensure thatTd(x, t) will asymptotically ap-
proach zero ast →∞, a new ‘pole factor’pt + λ has to
be introduced. After adding this ‘pole’ and two elemen-
tary row operations, the system can be written as[

a1pt + a0 + λ −b0

−a0 + λa1 b0

]
. (55)

In these operations the elementary operations of
C(px)[pt] are also needed, which means that the signal
space should also be extended to the corresponding mod-
ule of fractions. However, due to the scaling of variables,
their boundary values are zero so that the extension is not
needed.

The controller is only proper with respect to time
and to increase the robustness of the system one more
pole should be added. However, in order to keep the
calculations simple, we settle for this proper controller.
From (55) it is directly seen that the resulting controller is
the solution of the following partial differential equation:

Tin,d(x, t) =
1
k4

(
− k3

∂2Td(x, t)
∂x2

+ Vxk2
∂Td(x, t)

∂x
− αk1Td(x, t)

)
, (56)

whereTd can be replaced by the estimateTd,e.

In Fig. 7 it is shown how the temperature distribution
of the pulled wire evolves as a function of time in the sim-
ulation model. The figure displays nicely how the temper-
ature distribution approaches asymptotically the reference
distribution as a function of time.

10. Conclusions

Distributed-parameter systems with parameters varying
with respect to time and space are very difficult to analyze
and design. In this paper a methodology based on the gen-
eralization of the polynomial systems theory of ordinary
time-invariant linear systems has been presented. The ba-
sic structure was the ring of polynomials with polynomial
coefficients.

The analysis and design of a distributed-parameter
control system proved the applicability of the meth-
odology.

Fig. 7. Control of the temperature profile.
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