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1. Introduction

The question of the continuous dependence of solutions

to an optimal control problem on data (the so-called sta-
bility analysis of solutions or well-posedness) is very im-
portant from the point of view of practical applications of
theory. Indeed, if the problem is related to a physical phe-
nomenon, its data can be considered only an arbitrarily
close approximation to exact values. Consequently, if the
solution does not depend continuously on the data, it is
not actually determined.

Example 1. Let us consider the one-dimensional system
with a scalar parameter € [1/2, 1]

#t(t) = 2%(t),

% (t) = u(t) — wa'(t),
u(t) € [0,1]
with boundary conditions
z1(0)=0, z'(m)=0,

22(0) andz?(r) are free,

and the cost functional
T () = / () (@ (£) — 10°V/27) dt — inf.
0
In a way analogous to (Idczak, 1998) one can show that

for any parametew € [1/2, 1] the above optimal control
problem possesses an optimal solutiar,, »).

w? w
t Supported by grant 7 T11A 004 21 of the State Committee for
Scientific Research, Poland.

One can show that for any € [1/2,1)
Jo (x5, ut) > —4 x 1037/ 27.

w? w
If w = 1, then the control system has a solutiop (not
unique) only foru = 0. Moreover,

Jo (xF,u}) = —4 x 10°.

w? w

So, we see that as — 1, the optimal value has a jump,
i.e. itis not continuous with respect to at the pointw =

1. In this case, we say that the optimal control problem is
ill posed. ¢

The stability analysis of solutions to finite-
dimensional mathematical programming problems
was investigated, e.g. in (Ban&t al, 1983; Fiacco,
1981; Levitin, 1975; Robinson, 1974). A survey of the
results for the case of abstract Banach spaces is given in
(Malanowski, 1993).

We study the continuous dependence of solutions and
optimal values on data for the optimal control problem
associated with the Goursat-Darboux problem

0%w

= (x w ow ow u)
6x8y_g 7ya 7ax76y7 9
(x,y) € P=10,1] x [0,1] a.e,

w(z,0) = ¢ 1‘), w(0,y) =¥(y), x,y € [07 1]7

11 (NH)
I(w,u) = /G(x, Yy, w,u) dx dy — min,

00

u €Uy = {u e L*(P); u(z,y) € M,

(z,y) € Pae}

(in linear and nonlinear cases).
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Systems of this type (in control theory they are called [ € L!(P,R),1',1? € L'([0,1],R) and a constant € R
two-dimensional (2D) continuous Fornasini-Marchesini such that
systems) have been investigated by many authors (see,

e.g. (Bergmanret al, 1989; Pulvirenti and Santagati, i r ’ )
1975; Surryanarayama, 1973)). They can be applied to z(@,y) = / L(s,t)ds dt+/l (s)ds
describe the absorption gas phenomenon (Idczak and Wal- 00 0
czak, 1994; Tikhonov and Samarski, 1958). Y

Our aim is to obtain stability results analogous to + /12 (t)dt +c 1)
those obtained in (Walczak, 2001) for an ordinary prob- 0

lem. The main tools used in the study of the stabil-

ity question in the case of abstract Banach spaces arefo" (#,¥) € P.

the implicit function theorem for generalized equations The above integral formula implies that the partial
(Robinson, 1980), the open mapping theorem for set- derivatives

valued maps (Robinson, 1976), and composite optimiza- )

tion (loffe, 1994). Our proofs make no appeal to the above 0z (z,9) 0z (z,y), 0"z (z,y)
approaches. dx 77 oy dxdy

First, we consider Problem (NH) in the case when qyist a.e. onP and
the system is linear, autonomous, and the/&etdoes not

vary. The approach used here is based on the Cauchy for- 92 Y

mula for a solution to a linear autonomous system. Since, e (x,y) = /l (z,t)dt + 1" (z),
in the nonlinear case, we have no formula for solving sys- 0

tem (NH), in this case we use a different method, based on -

the Gronwall lemma for functions of two variables and the %( ) = /l( )ds + 12 (y)
continuity of the mappingM —— Uy, (in the Hausdorff Ay »Y = 5Y7es v’
sense). Let us point out the fact that this method cannot 0

be applied in the linear case. 0?2

920y (Iry) =1 (Ivy)

2. Space of Solutions to the Goursat— for (z,y) € P a.e. (Idczak, 1990).

Darboux Problem Moreover, it is easy to see that a functien P — R

By a function of an interval (ojasiewicz, 1988) we mean is absolutely continuous and satisfies the conditions

a mapping F' defined on the set of all closed intervals

[z1, z2] X [y1,32] contained inP, with values inR. We 2(0,y)=0 for ye[0.1],

say thatF' is additive if 2(z,0) =0 for ze]0,1],
FQUR)=F(Q)+F(R) if and only if there exists a functioh € L* (P,R) such
for any closed intervalg), R C P such thatQ U R is an that zy
interval contained inP and InQ N IntR = 0. 2 (2,y) = //l(s £) ds dt @
Letafunctionz : P — R of two variables be given. 7 0 ’
The function F, of an interval given by
for (z,y) € P.
F.([1,22] X [y1,92]) = 2 (22,52) — 2 (21,32) By AC?*(P,R) we denote the set of all functions

z : P — R, each of them having the integral rep-

resentation (1) with functiond € L?(P,R),I,[*> €

for [z1,22] x [y1,42] C P is called the function of an  L*([0,1],R).

interval associated with. By ACZ(P,R) we denote the set of all functions
We say that a function : P — R oftwo variablesis  z : P — R each of them having the integral represen-

absolutely continuous (Walczak, 1987) {0, -), z(-, 0) tation (2) with function! € L?(P,R).

are absolutely continuous functions ¢@y 1] and F, is By AC2(P,R") (AC2(P,R")) we denote the set
an absolutely continuous function of an interval. of all vector-valued functions: = (z!,22,...,2") :

It can be shown (Walczak, 1987) that: P — R is P — R” such that each coordinate functiah: P — R
absolutely continuous if and only if there exist functions belongs toAC?(P,R) (ACZ(P,R)).

—z(x2,y1) + 2(w1,51)
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It is easy to see thatC2(P,R") with the scalar  where

product
l(s)ds+c,

9= [uo
<va>Acg(P,lR”) = /<l (s,t) .k (s, )>Rn dsdt, 0,
0/

P = [ k(s)ds+d.
where
z Y
2lzy) = [ [ (s t)dsdt, 3. Linear System
00
! 3.1. Problem Formulation and Basic Assumptions
w(z,y) = /k(s,t)dsdt
00 Consider the family of optimal control problems

2

383 (x, y)+A 7 (CU y)—f—Ag (z,y)
Crwhacaipiny = [ (1600) K (s.8))g, dsc ) = B, ()€ Pas
J v (2,0) = @* (), v (0,y) = ¥* (y) (LF)

() K () forall z,y € [0,1],
s), 5) )gnds

and AC?(P,R™) with the scalar product

+
kano:1/cﬁ(myﬂwny>ﬂwmy»dzd%

P

+ [ {2 (), K (1)), dt + (c,d)gn ,
< )= N where A%, Ak AR ¢ R BF ¢ R ok gk ¢

AC?([0,1],R") and ¢*(0) = ¢*(0) = c* for k =

o O —__

where 0,1,2,.... Problem (I*) is considered in the space
AC?(P,R™) of solutionsv and in the setdy; = {u €
Vi L*(P,R™) : u(x,y) € M a.e} of controls u. The set
/l $,1) det+/l (s)ds M is a convex and compact subsetRf*.
0 It is easy to see that, using the substitution
+/ﬂ Yt +c. 2 () = v (e,y) = o* (2) = 9F () + ¢,
0 we get the equivalent problem
T Y xT
0%z 0z L 07
k(s,t)dsdt k'(s)d K
= [ [ Kstyasdes [#sas S (@) + AL (@) + A5 (2.0)
00 0 +Ak (ﬂ?, )_Bku(xay)+bk(‘ray)7
(LH")
+/k()dt+d z(z,0)=2(0,y) =0 forall (z,y) € P,
° I ) = [Pz (@) o) dedy,
are Hilbert spaces. In much the same way as in (ld- P
czak, 1996) it can be proved that #f, — 2z, weakly in where
ACZ (P,R™), then z,, = z uniformly on P.
In the sequel, we denote byAC?([0,1],R") the W (z,y) = —AF— d oF (z) — Ab— d W (y)
standard space of all absolutely continuous functions dx dx
of2 one variabley : [0,1] — IR{_" sgch that ¢ € L (1,)_Akwk (m)+Akck7
L?#([0,1],R™). The scalar product ilAC*([0, 1], R"™) is
given by F* (z,y,2,u) = G* (oz,y, 24" (z)+y* (y)fck‘,u).
L Problem (LH) will be considered in the space
<¢,¢>ACQ([O 1.R") / Lds+ (e, d)gn ACZ(P,R™) of solutions z and in the set/,, of con-
o trols u.

0
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For simplicity, we prove our results for Prob-
lem (LH*). However, Problems (LH) and (L¥) are equiv-

(L4) for any bounded seB C R", there exists a func-
tion v5 € L'(P,R*) such that

alent, and therefore all results which are to be proved can

be used for (E).
For the system

0%z

0z 0z
= k2 el
+ A2 (2,y) = BFu (z,y) + b* (z,y),

3)
(z,y) € Pa.e,
2(z,0)=2(0,y) =0 forall z,yel0,1],
the following theorem holds (Bergmamtal., 1989):

Theorem 1. For any u € L?(P,R™) the system (3) pos-
sesses a unique solutiorf € ACZ(P,R™) given by the
formula

2 (z,y)

Ty

= // R (s,t,x,y) (Bku (s,t) 4+ b" (s,1) )dsdt,
00
(4)

where the functionR* : P x P — R™*" (called the Rie-
mann function) has the form

and the sequenc@”i’fj is defined by the recurrence formu-
lae
Tk, = TF

4] 4,51

Ak ok Ak Tk AR
1 1,742 1,7—1 (5)

Tgo =1, TF, =0fori=—1orj=—1,
for k=0,1,2,....

We shall make the following assumptions:
(LO) b* — b0 in L2 (P,R"),

(L1) the function P > (z,y) — FF(z,y,z,u) € R
is measurable forz,u) € R™ x R™, and k =
0,1,2,...,

(L2) the functionR"” xR™ > (z,u) — F¥ (x,y,2z,u) €
R is continuous for (z,y) € P a.e., k
0,1,2,...,

(L3) the functionR™ > u — F*(x,y,2,u) € R is
convex for (z,y) € P a.e,z € R® andk =
0,1,2,...,

|F* (2,y,2,u)| <75 (2,9) + |u|

for (z,y) € P ae,z € B,u € R™ andk =
0,1,2,...,

(L5) the sequences of matriceA*)ien, (AY)ren,
(AK)ren tend to matricesA®, A9, AS, respec-
tively, in the norm of R"*", and (B*),cy tends
to B inthe norm of R»*™ (by the norm of a ma-
trix A we mean the valugA| = (3" a?;)?).

2]

Fork=0,1,2,...,set

7k ={zF € AC} (P,R™) :
such that* is the solution of (3) corresp. to}

there exista, € Uy,

and
m* = inf J* (2, u)

with respect to(z,u) such thatz is the solution of (3)
corresponding ta: € Uy,.

In a standard way one can prove the following result:

Theorem 2. Assume that (L1)—(L4) hold. Then, for any
k=0,1,2,..., there exists an optimal solution of Prob-
lem (LH), i.e. foranyk = 0,1, 2, ... there exist control
u® € Uy and the trajectoryz® ¢ Z* corresponding to
u¥, such that

J* (zk' uf) =mF.

Write
AF = { (2F,uk) € ACZ (P,R™) x Uy, : 2* satisfies (3)
(6)

with «* and.J* (zf,uf) = mk}.

This set will be referred to as the set of optimal solutions,
or the optimal set.

Lemmal. Let

c= sup

ke{0,1,... }

max{|A*|, |A}], [A3],|B*[,1}.

Then
1. foranyk=0,1,2,...,
|Rk (l’,y,S,t)‘ S 636

for (x,y,s,t) € P x P,
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2. if ¢ >0 and K are such that, for any: > K, Proof. (a) Let z¥ € ACZ(P,R") be the solution of (3)
corresponding ta:*. From (4) we have
|AF — A% < S |Ak - A9 < 2, [Ak—AY <
3’ 3’ 3’ 925k
daoy =Y = B*u* (z,y) + 0" (z,y)

then, fork > K, we have

ro
i+7 i+ + 7Rk IR Bk k 5 +bk ; d
(T — T2 < e for e {0,1,2,...) /8x (5:8,2,8) (B (2,0) + 87 (5,9) ds

and, consequently, /aﬁ (2, t,2,) (B¥ (2,8) + 0 (2,0)) di
‘Rk (z,y,8,t) — R° (z,y, s, 1) < 3ee*
Ty
(s, t,x,
for any (z,y,s,t) € P x P (i.e. R¥ — R uni- / v)

0

formlyon P x P as k — o). (Bk k (st +bk(8 t))dsdt

The proof of this lemma (using the induction argu- ¢4, (z,y) € P.

ment) has only a technical character and is very arduous. ) _ o
Sinceu* (x,y) € M, which is bounded B* — B°

Let us recall that the weak upper limit of a sequence and R* are analytic, from (L0O) and Lemma 1 we get that
of the setsV* C X (X is a Banach space) is defined there exists a constapt> 0 such that
as the set of all cluster points (with respect to the weak
topology) of sequence$v*) wherev* € V¥ for k = X
1,2,3,.... We denote this set agLimsup V* (Aubin HZ HACS(P,R" / ‘axay z,Y)
and Frankowska, 1990).

1
dxdy)2 <p

for k=0,1,2,....
Theorem 3. If

k .k k —
1. Problems (LH) satisfy the conditions (L0)—(L5), (b) Let (z*’u*) €A fork=1,2,3,.... Thenwe have

: 0 < JO (59 ok =
2. the sequence of cost functional& (z, ) tends to m’ <0 (Bw,) for k=1,23,...,

0 i n
J>(z,u) uniformly on B x Uy, forany bounded set 0 o 29 is the trajectory of (3) withk = 0, correspond-

/5y 2 n
B C AC;(P,R™), ingto u® for k =1,2,.... Lete > 0. By (LO) and (L5),
there exists a such that, for anyk > K,

then
. . ¥ - A0 < 2, [ak - A9 < 2
(a) there exists a ball3 (0, p) C ACF(P,R™) such that 3 3
Z+F < B(0,p) for k = 0,1,2,..., i.e. there ex- A5 — A9| < < |B* — BY| <,
ists p > 0 such that, for anyz* € Z*, we have 3 (7)
k
12" acz(prm) < P / ’bk (2,y) = b° (z,y)| dedy < .

(b) the sequence of optimal values® tends to an opti-

mal valuem?, By direct calculations, from Lemma 1 and (7) we ob-

o _ tain, for £ > K and (z,y) € P,
(c) the weak upper limit of the optimal setd* c

ACZ(P,R™) x L?(P,R™) is a non-empty set, and | (z,y) — 2 (z, y)|
wLimsup A* ¢ A°.
z Yy
If the set.A* is a singleton, i.e. A = {(zF u*)} - / B (5, t,,0) — B (508,
for k = 0,1,2,..., then z* tends to2? weakly - T bH

in AC2(P,R") and u* tends tou? weakly in 00

L? (P,R™). ’Bkuf (s,t) + b* (s,t)| dsdt
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+/ }RO (s7t,x,y)| |Bk fBO| ’uf (s,t)|dsdt
00

Ty
+//’RO (s,t,x,y)| ‘bk (s,t)—b° (s,t)’dsdtgsé,
00

where ¢ > 0. This means thakup, ,\cp |2F (z,y)
-2 (2,y) | is arbitrarily small (for a sufficiently largé).

From the Scorza-Dragoni Theorem (Ekeland and Temam,

1976) applied to the functiod|py 5x s (Where B is

the ball with radiusp described in (a)) we have that for

any n > 0 there exists a compact sét, C P such that
w(P\P,) < n and F° p,xBxM IS uniformly continu-
ous. Thus for a sufficiently largé we have

|77 () = I (5, ul))|

*

§/|FO (z,9. 7 (2,) ,ul (z,9))
Py

—F° (,y, 2% (z,y) , ul (z,9))]
+ / |FO (2, y, 2] (z,y) , ul (x,y))
P\ Py,

7F0 (l‘,y,Zf (xay)vuf (xay))|
<uPy)n+ne=¢

where ¢ > 0 and ¢ is arbitrarily small.
Thus, for anyz > 0,

m? < J° (Zg,uf) < JO (zf,ui) +£ (8)
for a sufficiently largek.
From Assumption 2 and (a) we have
|Jk (zf,u’,f)fJO (zf,u’j)| <& (9)
for a sufficiently large:. Consequently, by (8) and (9),

mong(zk uk)+25:mk+2§

* 9 *

for a sufficiently largek.
Similarly, we can prove that, for sufficiently large

mF < m® + 2z
We have thus proved that* — m° ask — oo.

(c) Let (2F u*) be an optimal process for (U'f), i.e.
(zF uk) € AF for k = 0,1,2,.... Sinceu®(x,y) €
M and M is compact, (u*)ren is bounded. Since
L?(P,R™) is reflexive, the sequend@” )<y is compact
in the weak topology of the spack?(P,R™). Without
loss of generality, we can assume thdt— @ € Uy, in

the weak topology. From the formula of solution (4) we
have that, for any(z,y) € P,

2 (2,y)
z y
= /Rk (s,t,z,y) (BYul (s,t) + b (s,t)) ds dt
00
zy

= (Rk (s,t,x,y) 7R0 (Svtax,y))

x (BRul (s,t) +b" (s,t)) dsdt
zy

0 k_ BOY ok (s
[ [ R st (84 = B7) (a1

00
+ b7 (s,t) — b7 (s,1) )ds dt
Y

+ /Ro(s,t7x7y)
00

X (Bou]*C (s,) +b°(s,t)) dsdt.

By virtue of Lemma 1 we havekR* = R°. By (L0),
(L5) and from the boundedness a@ff the first and the
second integral tend to zero. By the weak convergence of
u”, the last integral tends to

T Y
//RO (s,t,2,1)
00

x (B (s, t)ul (s, t) +b° (s, 1)) dsdt.

In this way we have proved that' tends pointwisely
to somez® € ACZ(P,R"™) which is the solution to (LH)
with k& = 0, corresponding ta:’. Further, we prove that
(29, 4°) is an optimal process for (L with & = 0. Sup-
pose that it is not true. Letz?, u!) be an optimal process
for (LH*) with k& = 0. Let

JY (207110) —J° (zg,uo) =a>0.

*

(10)

Then we have

mk —m® = J* (zi‘,uk) —JY (zf,ug)

= [Jk (zf,uf) —Jo (zf,uf)]
+ [JO (zf,uf) —JY (Eo,ﬂo)] + a.

By (b), m* — m°. From Assumption (2) and (a) we
get that the first component tends to zerofas— .
Moreover, limy, ., JO(zF, u¥) > JO(2°,@°) by (L2)-
(L4). In this way we have a contradiction with (10) and
the proofis complete. =



Stability analysis of solutions to an optimal control problem associated with a Goursat-Darboux problem

3.2. Main Results for a Linear System

Based on Theorem 3, we obtain the following sufficient
conditions for the stability of a two-dimensional optimal
control system:

Corollary 1. Suppose that, for any = 0,1,..., Prob-
lem (LHF) satisfies Assumptions (L0)—(L5) and, for any
bounded seB C R™, there exists a sequence of functions
vk € LY(P,R*) such that

|F* (z,y,2,u) — F* (2,y, 2,u)| <75 (2,7)
for (z,y) € P a.e,(z,u) € BxM andk=0,1,2,....
Moreover, we assume that;, — 0 in L'(P,R*). Then

(a) the sequence of optimal values® tends to an opti-
mal valuem?® as k — o,

(b) wLimsup.A* C A° and wLimsup A* # 0.

Proof. Let B be any bounded set in the space
AC? (P,R™). It is easy to see that it € B, then
z(z,y) € B C R™ for any (z,y) € P, where B is
bounded. By assumption, we have that, for dayu) €
BXZ/{M,
’Jk (z,u) —

Jo(z7u)’ S/’F’“(m,y,z(m,y),u(m,y))

_FO (xvyvz(xay)yu

< /%’% (z,y) dz dy.

P

(z,))]

Since~% — 0 in L' (P,R*), the sequence of cost func-

tionals J* converges uniformly toJ° on BxUy; for
any bounded se3 ¢ ACZ (P,R"). In this way, the as-

sumptions of Theorem 3 are fulfilled and, by this theorem,

(@) and (b) are true. =

Corollary 2. If
1. we have
F*(z,y,2,u) = Gy (ac, y, " (z,7), z)

+ (G (z,y, 0" (z,y) . 2) ,u)
wherew®(-) € LP(P,R?), p > 1 and functions
PxR*xR" 3 (z,y,w,2) — Gy (z,y,w,2) = R,
PxR*xR" 3 (z,y,w, 2) — G2 (z,y,w, z) — R™

are measurable with respect tac,y) and continu-
ous with respect tdw, z),

6 amcs

2. w* — WY in the norm topology ofL? (P, R?)
k — oo,

3. for any bounded seB C R", there existsC' > 0
such that

‘Gi (m,y,w,z)| < C(l + |w|p)

for (z,y) € P a.e,weR? z € B,

4. Problems (LH) satisfy Assumptions (LO)—(L5),
then the conditions (a) and (b) of Corollary 1 hold.

Proof. We shall prove that the sequence of cost func-
tionals J*(z,u) tends to J°(z,u) uniformly on any
set BxUy where B C ACZ(P,R™) is bounded.
Suppose that this is not true. Then there exist some
bounded seBCACE(P,R"), € > 0 and some sequence
(2%, u¥);en, such thatz® € B, u € Uy, and

79 () = 1 () >

fori=1,2,3,....

By the reflexivity of AC? (P,R™), we may assume
(extracting, if necessary, a subsequence) thattends to
somez® uniformly on P asi — co. We have

11)

’Jk,i (5 ube) — J° (Zk17uki)
/!Gl z,y, W (2,y), 2" (2,9))
— Gy (z,y,0° (2,9),2° (z,9))| dzdy

+ 161 e @) 2 )
P

2 (z,y))| dedy

2 (x,y))

- Gl (J?, Y, wO (J}, y) ’

=+ / |G2 ('Tvyawki (1‘72/),

P

— G (2,y,0° (2,9) ,2° (2,9))] [u" (2, y)| dz dy

+ G2 (x,y,wo (:p,y)720 (1'73/))
/

- G2 (%%W

Since u*: € Uy, it is commonly bounded. By Kras-
noselskii's theorem on the continuity of the Nemytskii op-
erator, the right-hand side of the above inequality tends
to zero asi — oo. This contradicts (11), and we have
thus proved that the sequence of cost functionigz, )
tends t0.J%(z, ) uniformly on any setB x Uy, where

B C ACZ(P,R™) is bounded. Applying Theorem (3),
we complete the proof. =

(z,y),z (wy)‘u xy)’dxdy.
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Next, let us consider a mixed case, i.e. when the costwhere %, y* € AC?([0,1],R), ¢; is continuous and
functional is of the form

J* (zyu) = / (G (29,2 (2,9)) & (2,9))
P
+ <G2 (:L"y,'l)k (fE,y) ’

z(z,y) u(z,y) ydzdy, (12)

whereG, : P xR®" - R*%, Gy : P xR" x R* — R™,

k=0,1,2,....
Corollary 3. If
1. the cost functional is of the form (12),

2.

then the optimal values and the sets of optimal processes

the functionG; is measurable with respect {@, y)
and continuous with respect to (analogouslyGs),

. for any bounded seB C R", there exista(:) €

LP(P,R") and C > 0, such that
|G1 ($,y,Z)| <a (xay) )
‘GQ (x,y,v,2)| < (1 + |,U|p)

for (z,y) € P a.e.,z€ B andv € R",

. w” tends tow? in the weak topology of (P, R*)

when ¢ € [1,00), or weaklyx when g = oo; v*
tends tov? in the norm topology of.” (P, R®),

. the optimal control problems (LY satisfy Assump-

tions (LO)—(L5),

satisfy the conditions (a) and (b) of Corollary 1.

@4 is continuous and convex with respect4oe [0, 1],
u(:) € L*(P,[0,1]), z € AC?(P,R), wf(),wh() €
L'(P,[-1,1]). By Theorem 2, the problem (13), (14)
possesses at least one optimal solution but, in general,
it is not easy to find an optimal process for this system.
Suppose thatd® A¥ B* — 0 in R; ¢*,¢* — 0 in
AC?%([0,1],R), wF,wk — 0in LY(P,R) ask — oo.

In the limit case, we obtain the problem

Zay (T, ) + 2y (2,9) = u(z,y),
Z(O,y) = Z(Ovy) =0,

(14)

e = [ [@-22@)

P
+ i (1—2)u(z, y)+4:cy} dzdy. (15)

By Theorem 2, the above problem possesses an optimal
process and, applying the extremum principle, we are able
to find effectively an optimal solutioriz?, %) and an op-

timal value m°. In fact, the Lagrange function for the
system (14), (15) is of the form

L(z,u)

— [[@=22n)+ ;0 -2 o) + 1oy
P

+0 (2, Y) 22y (2, ) + 2y (7, y) — u(z,y) ] dz dy (16)

Remark 1. The obtained results remain true for a fam- Wherev € L? (P, R).

ily of problems (L¥), whereas the following additional as-

sumption concerning the functions®, 1/* is satisfied:

Example 2. Consider a two-dimensional continuous op-

" — %, YF — ¢ in AC?([0,1],R™).

timal control system with variable parameters

2y (2,y) + Af 2z (2, y) + (14 45) 2 (2,9)

=1+ B u(z,y),
2(2,0) = ¢* (2), 2(0,y) =¥*(y),
[0,1],

(13)

u(x,y) €

Hew = [ [@=2)z+ ot @) 61 @ 00)

P2

+ wé: (‘T7 y) ¢2 (‘Tvy’u (‘r’y))

+-(1—2)u(z,y)+ 4a:y}dxdy — min,

RNy

The extremum principle implies that
L. (22,u?) h =0 forany h € ACZ (P,R"), and
L(2),u?) < L(2,u) a7

for any admissible control..

Taking account of (16) and integrating by parts, we
get

L. (zrus) b = /<x72>h<x,y>

P2

+v (.CE, Z—,I) (hﬂfy (I, Z—,I) + hy (xvy)) dx dy

-/

P T

/(x—Q)da:dy—l—v(a:,y)

1
Jr/v(z,y)dthy(ac,y) dzdy =0
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forany h € AC? (P,R"). Thus Let (X, p) be a metric space. We define a distance

) from a pointzy € X to a bounded sefl C X as

3 1,
v(:v,y)+/v(af,y) dz+(1-y) (—2+2x—2x ) =0. dist(xo, A) = inf{p(z0,a); a € A}.

The above equation is of the \olterra type, and there- The Hausdorff distancer (A, B) between the bounded
fore there exists a unique solutiom, of this equation.  SetsA, B C X is defined as
By direct calculation, it is easy to check that (z,y) =
(1-2)(1-y). pu(A,B) =inf{e > 0; AC N(B,e), BC N(A,¢)}
The minimum condition (17) takes the form
where, for a givere > 0 and a bounded set' C X,

Ja-a(u-7)wwmasa
5 N(C,e) ={z € X; dist(z,C) < &}.

gp/(l—m) (v-3) utwpasay

The function py restricted to the seZxZ, where
Z is the family of all closed bounded subsets &f is a

forall u(z,y) € [0, 1]. This implies metric inZ (Kisielewicz, 1991). Itis called the Hausdorff
metric.
1 for z€[0,1], ye[0,3
ul (z,y) = (18) , ,
0 for z€0,1], ye [3,1] Lemma2. If k,c> 0, v: P — R is continuous and
and that, by (14) and (15), Ty

0<u(z,y) < / kv(s,t)dsdt +¢, (z,y) € P,

(17671).@/ fOfl’E[O,”, yG[O,%] 00
zy (2,y) =

—x\ 3 3
(1—e )2 for z€0,1], ye | (1:39) then
and 55 v(z,y) < e, (x,y) € P.

0 0 0,0

m’ =J (z*,u*)—64. -
Applying Theorem 2 to our example, we see that, for any Proof. Write
k = 1,2,3,..., there exists at least one optimal pro-
cess(z¥,u?) for the system (13), (14), and the sequence
(uF)en tends tou? weakly in L2, (zF)pey tends to u(r,y) = kuv(s,t)dsdt +¢, (x,y) € P,
20 weakly in ACZ(P,R"™), where v? and 20 are de- 00
fined by (18) and (19), respectively. Moreover, the se-
quence(m*) of the optimal values for the systems (13),
(14) tends tom° = 55/64 and the sequencg:}), _ of
the optimal trajectories tends td uniformly on P.

T Y

w(z,y) = e "u(z,y), (v,y)€ P.

From the continuity ofv it follows that u possesses

In this way, we degiuce that, in general, it is difficult  the partial derivativedu(z, y)/0x and du(z, y)/dy ev-
to find an optimal solution for (13), (14), but the process grywhere onP. Moreover,

(20, u?) given by (18), (19) and the optimal value® =
55/65 are a good approximation fofz”, z¥) and m*

*9 “x Y

with a sufficiently largek. ¢ %(%y) _ /kv(x,t) dt
xr
0
4. Nonlinear System oy
< /k(//kv(s,T)dsdT—i—c) dt

4.1. Preliminaries 4 59
In this part we give a definition of a Hausdorff metric and Ty

prove some generalization of the Gronwall lemma regard- =k? /(y —7)vu(s, 7)dsdr + key
ing the case of functions of two variables. 2%
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for (x,y) € P. Consequently,
ow B —kay —kay ou
5y (DY) = — kye T ulz,y) + e o (2,y)

— kye " u(z,y)

© Y
—|—eikmyk2y//v(s,7') dsdr
00

zy

/!

— kye " u(z, y) + kye” Vu(z, y)

Ty
— k2o~ kay //TU(S,T) dsdr <0
00

for (x,y) € P and, analogously,

— e keyp2 Tu(s,7)dsdr + e *Vkey

(z,y) € P.

Consequently,
w(z,y) < w(0,0) =
for (z,y) € P. This implies
v(z,y) < u(z,y) = e uw(z,y) < Ve
for (z,

y) € P. [

4.2. Main Result

In this part we consider the family of homogeneous prob-
lems

0%z & 0z 0z
= —, Pa.
3x3y f (xayuz7 axu aya“’)? (‘T7y) E aea
2(xz,0)=0, 2(0,y)=0, =z,y¢€][0,1],
I (NHF)
J*(z,u) = / F*(x,y, z,u) dz dy — min,
00
ueUr ={ue L?(P,R™); u(z,y) € MF,
(z,y) € P a.e},

k =0,1,.... Problem (NH) will be referred to as the
‘limit problem’. In the sequel, we shall assume that the
functions

fFiPxR*xR® xR" x M — R,

FF.:PxR"x M — R,

(N

where M = J;—, M*, and the sets\/*
0,1,..., satisfy the following conditions:

CR™, k=

(N1) the setsM* are compact and\/* — MO in
R™ with respect to the Hausdorff metric;
(N2) the functionsf* are measurable ifix,y) € P a.e.,

continuous inu € M and there exists a constant
L > 0 such that

’fk(m,y,z,zm,zy,u) - fk(x7yawawrvaau)|

SL(‘Z_w|+|zz_ww|+|zy_wy‘)

for (z,
k =

)EP A.€., 2, 2y, 2y, W, Wy, Wy € R™, u €
0,1

)

(N3) there exist constants, b > 0 such that
|fk(‘ra Y, 2, 2g, Zy»u)‘ é a |Z| =+ b

r (z,y) € P a.e.,zz;,2 € RPue M, k=
0,1,...;

(N4) for any bounded sefl C R™ x R™ x R™, there ex-
ists a sequencdyh),  C L*(P,R*) such that
o8 ——0 in L?(P,R*) and

’fk(x,y,z,zw,zy,u) —fo(a:,y,z,zl.,zy,u)’
< ¢h(z.y)
for (z,y) € P ae,k=1,2,...;

(N5) the function 9 is of the type

fo(xa Y, 2, Zx, Zyvu)
= OzO(J,‘7y, Zy Zxs Zy) + ﬁo(xa Y, 2y 2z Zy)u7

where 3° is measurable ifz,y) € P, continuous
in (2, 2z, zy) € R"xR™xR"™ and, for any bounded
set A C R™ x R™ x R", there exists a function
va € L?(P,RT) such that

’BO(xa Y, 2, 2g, Zy)‘ S 'YA(LU7 y)

for (z,y) € P a.e.,(z,23,2y) € A,

6) the functions F'* are measurable ifz,y) € P,
continuous in(z,u) € R™ x R™ and, for each
bounded setB C R™, there exists a functiomg €
L'(P,R*) such that

‘Fk(x,y7z,u)| <vgp(z,y)

for (x,y) e P ae.,ze B,ue M, k=0,1,...;
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(N7) for any bounded seB C R", there exists a sequence In the proof of the main theorem, we shall use the
(V%) pen C L'(P,RY) such thatyl ——0 in following three lemmas:
L'(P,R¥) and Lemma 3. There exists a constant such that
’Fk(%yy%u)—FO($7yaz>U)| §¢’1§($>y) 8225( ) 82’5( ) 32’ ( )
X — T
9y YY) Oz Y By €,y

for (zr,y) e Pae,zeB,ue M, k=1,2,....

ko
Remark 2. From Assumption (N1) it follows that the sets 10" (#:¥) € Pae. andu €U®, k=0,1,...

Mk E=01,..., ly bounded iR™. .
’ 0.1, are commonty bounded! Proof. From Assumption (N3) we have

Remark 3. From Assumption (N2) it follows that the
functions f* are continuous in(z, z,, z,,u) C R™ x
R™ x R™ x M.

aZk
Ozxdy

(, ,y>\

In much the same way as in (Idczekal, 1994), one
can show that there existe N and « € (0,1) such that
each operator

ozk 2k
|t st G, G et

<alzf(z,y)|+b, (x,y) € Pae.

Fi: L*(P,R™) 3
. forued® k=0,1,.... Hence
— (e [[ s / o [ guten) € PR k -
00 0 0 ‘Zu(x’y)|:’/ st dsdt‘

where v € U*, k = 0,1,..., is contracting with the
constanta € (0,1) with respect to the Bielecki norm in < a// (s, 0)| dsdt + b, (z,y) € P
L?*(P,R™) given by By u T

1

_ —2l(z+y) 2 qrd 3 for u e U*, K =0,1,.... Applying the previous lemma
lgll; = l9(z,y)|" dady |, with v(z,y) = ’z’qj(x,y) , k=a, c="b, we obtain
0
g € L*(P,R"). |z5(x,y)| <e*, (z,y)€P,

Consequently,F* possesses a unique fixed poiglt € foruelU® k=0,1,.... Thus

L?(P,R™). This means that the system
82 k
oxdy

< (z, y)‘ <ae*v+b, (z,y) € Pae,

0z & 0z 0z

8x8y_f ( Z’ax’f)y’u)
for u € U*, k = 0,1,.... The remaining part of the

has a unique solution;; in the spaceAC3 (P,R™). This  assertion follows from the fact that

solution is given by

o2k H 92k
rr 5 (©Y) = / S (@ t)dt, (z,y) € Pae,
k(x,y) //g s, t)dsdt, (z,y) € P, t s oy
O xT
o2k 92k
- d Pae.,
and By (z,y) = 8x6y( y)ds, (z,y) €
3227’“ A
= 2 Y), ,y) € Pa.e.
&@(xw 9u(z,y),  (z,y) for wetk k—01..... .
Let us recall that the weak convergenceAw? (P, R") As an immediate consequence of Lemma 3, we ob-

implies the uniform convergence. Using the standard ar- tain the following result:

guments, one can also easily show thatjf—zy in i )

AC2 (P,R"), then 8z, /0x—z/0x in L*(P,R") Corollary 4. The set{z, € ACj(P,R")(P) : u €
asn — oo. Uk, k=0,1,...} isbounded inACZ (P,R").
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Lemma 4. U* —— % in L>°(P,R™) with respectto  Hence
the Hausdorff metnc

| g = gioll, < 3= 17 (g20) = Fio (gho)
Proof. Fix € > 0. Let ky € N be such that
M* ¢ N(M°,2) andM° c N(M* ) Since
for k > ko. This implies that, for any fixed function* € |gix = goo| < € ||gkn — g2, »
uk (kl Z ko) )
H]:kk guo .7:30(920)“1 H guo .7:30<920)| ;

dist(u®(z,y), M®) < e, (z,y) € Pa.e.

Using the theorem on the measurable selectionWe obtain
(Kisielewicz, 1991, Thm. 3.13), we conclude that

there exists a function® € &4° such that quk

- u0||AC2(P) ng ggO”

[k (@,y) — u(a,y)| <o (e.y) € Pae., 2

e
< [P at) — P ()
that is,
k_ .0
u” —u - <e
H HL (P) S k guo _ (guO)H
ThereforeU* C N(U°,¢) for k > k.
In the same way, we check that® ¢ N (U*,¢) for
k>k,. m i (g00) = Fo(gao) ||
Lemma 5. For eache > 0, there existt € N and 6 € Q2 il Ty y ooz
(0,¢e) such that S (/ ’f" (az,y, ggo,/ggo,/ggo,uk(aﬁ,y))
ut c NUu°,6) and U° c NU*,0) 00 00 0 0
for k > k, and if u* € U* (k > k),u’ € U° are such 2 1ed 3
that [[u* — 10| o (p) < 6, then (9. oo [ gl (@) dedy

(B ZgU||AC§(P,]R") <e.
2

Proof. Let us observe that if.* € U* u® € U° 2F,
AC2(P,R™) is a solution of the system

11 Ty x
efgg/o/\ﬂow 0/920,/ [

1
2

02z & 0z 0z
axay - f ( 7y727%787y7u )
satisfying the zero-boundary conditions, ang,
AC3(P,R™) is a solution of the system

x |uf(a,y) - u(z,y)|’ dwdy)

Now, let us fixe > 0 and choose& € (0,¢) to be such

that
0%z 0 0z 0z e? e?
= _— 2 6
900y f (m,y,z,ax,ay,u), (1_a+1_a||’70||L (P,]RJr)) <¢€
which also satisfies the zero-boundary conditions, then(C' is the ballinR™ x R" x R" centred at 0 with radius
gk, = 0%2F, /0x0y is a fixed point of the operataF¥, 3r, wherer is described in Lemma 3). Let; € N be

and g%, :u82z20/8x8y is a fixed point of the operator ~ such that (cf. Lemma 4)

FY. Moreover,
Ut c NU°,5) and U° c NU*,9)

g = guoll, = (17 () = Fao (o)
) for k > k;, and letk, satisfy (cf. Assumption (N4))
< Hffk(gﬁk)—]:ﬁk(ggo)Hl )
k
]
+ (| 7o (gus) = Fuo(guo) [, el <

for k > ko.

Set k = max{ky,ko} and fix & > k. If u* €
U* u® € Y° are such thatju® — u|| L= (prm) < d, then

IN

a|lg = guoll,

+ H‘Fz]fk(ggo) — fgo(ggo)Hl '
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we obtain

k 0
[ ZuOHAcg(P,Rn)
21
<
—1- 1-—
and the proof is complete. =
In the sequel, we shall assume that each Prob-
lem (NH), £ = 0,1,... has a solution. As in the pre-
vious part, the set of all solutions to Problem (RHwill
be denoted by4*. The minimal value of Problem (NH
will be denoted bym?”.
By an upper limit of setsA* C ACZ (P,R") x
L?(P,R™) we mean the selim sup,,_, . .A* of all clus-
ter points (in the spacelC3 (P, R”) x L?(P,R™)) of se-
quences((zjjm uF)) pen, Where (2F s U uk) € Ak,
Now, we shall prove the main result of this part:

21

o+ o H’YC||L2(P,R+) d<e

Theorem 4. If Assumptions (N1)—(N7) are satisfied and
the sets4*, k =0,1,..., are non-empty, then

(@) mF = m?,
— 00

(b) limsup A*¥ < A° (in the space AC? (P,R") x
k—oo

L2 (P, Rm)).

Proof. Fix n > 0. From the Scorza-Dragoni Theo-
rem (Ekeland and Temam, 1976), applied to the function
F° |pxcoxum (Cis described in the proof of Lemma 5), it
follows that there exists a compact sBf C P such that
w(P\P,) <n (the Lebesgue measure) aftt |, xCx M

is uniformly continuous. In particular, this means that
there existss > 0 such that

Fo(x,y,w,v)| <mn,

provided that|z — w|, |u —v| < o, (z,y) € P,.

Now, for any positive integerk, we fix a pair
(z’;k, uk) € A*. Let k,§ be the constants from Lemma 5
applied toe = o. Then, for eachk > k, there exists
ulyy € U° such that

|FO(I7yaz7u) -

0

— (z,y

uf (2, y) )€ Pae.,

k) (l‘,y)‘ <o,
and
’Z]ucl;- (z,y) — Zggk) (z,)| < Hzﬁk % HAC"’(P)
(z,y) € P.
Consequently,
|FO (2, y, 20 (2, ), u (2, ))
- FO (:L'7 y»zu?k)(mvy)vu(()k)(xa y))‘ < m,
(z,y

)e P, ae.

for k > k.

Thus
‘JO (zyr,u uk) — JO(Z(J 7u(k))‘

/‘FO z,y, zx (2, ), ui (2, 9))

P,

- FO (377% Z?L((]k) ($7y)v u?k) (J],y)) ’dﬁ? dy

b [ Pl o))

P\P,

- FO (%.% 22((3“ (xvy)a u(()k) (xvy)) ’dl’ dy

< u(Py)n + /2VB(I,y)dxdy
P\P,

for k > k (B is the ball in R" centred at 0 with
radius r» described in Lemma 3). Writing; = n +
fP\P 2vp(z,y) de dy, we have

m 7‘]0(2 07 *) < ‘]O(Z 0 7u(k)) <J ( u’»v *)+T]
for k > k. From Assumption (N7) it follows that there
exists k£ such that

’szk,u) Jo(zk, )

for k > k. So, for k > max{k, k}, we have

<7
m® < JF(2E ub) + 2 = mF 4 27
In the same way, we show that

mk <m®+ 27

for sufficiently large parameterk. Indeed, for eachi >

k, there existsuf,, € U* such that

W(@,y) — ufy (2,9)| <o, (2.y) € Pae,

and
0 k 0
|Zu2(x7y) 7Zu;(90)(1',y)| < ||Zul3 (O)HACQ(P)
(z,y) € P.
Consequently,
|0 (20, ud) — JO(20 ?>’u(°))| <7
for k > k and
mk = Jk(z’fj,:’u{:) < Jk(zq]j?oyu(o))
< JO(zk,
= (Zul(‘o) u(O)) + n

< J()(Zg‘j ) UB)

o
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for k > max{k, k}, which completes the proof of (a) r i i ozk,
(we have used here the fact thatlifce L'(P), then the = /(f (Svta Zur (8,1), = (s, 0),
set functionS — fS I du is absolutely continuous, i.e. 00
Jgldu—0asu(S) — 0). 92k, )
Now, assume that(z,w) is a cluster point ay* (s,t), uy (s,t))

in ACZ (P,R") x L*(P,R™) of some sequence
(2", u}))pen suchthat(zk,, u¥) € A*. Without loss of
generality, we may assume thdf, —z in ACZ(P,R")

40 k
f (S7t,Zu§(S,t), ax (S,t),

and u*—7 in L?>(P,R™) ask — oo. Dzl
 (s,4), uk (s, )) dsdt
We shall show that(z, @) € A°, i.e. @ € U, % = dy
23 and m® = J°(z,u). Fix ¢ > 0. Assumption (N1) zy 92k,
implies that there exist& such that + // 1O (S t, 2" (s,1), = (s,1),
Uy gk ) a$
E 0 00
uy(z,y) € N(M",¢), (x,y) € Pae. i
2k
_ Y (s,t t))dsdt
for k >k, i.e. y (51), ))
Ty -
uf € Uy = {u € L*(P,R™); u(z,y) € N(M°,¢), —— 0+ // #9 (s,t,z(s,t), %(m),
— 00 X
(z,y) € Pa.el). 00
0z _
Since M is compact, so isV(M?, ). Thus dy (s’t)’u(s’t)>ds di
for (x,y) € P. Consequently,
U(z,y) € N(MO,¢), (v,y) € Pae. () quenty
In particular,
0 _ 0z 0z _
t t t))dsdt
u(x,y) € N(M°,1/n), (z,y) € Pa.e. / / x(s ) 6y(s’ ) s, )) s

for n = 1,2,.... Fix a point (z,y) € P which satisfies  for (z,y) € P. This means that € AC3(P,R") and
the above relation for = 1,2,... (of course, the set of 9%z

such points has a full measure). There exists a sequence W(m,y)
(vn)nen Of points belonging taM°, such that roy . 9z 8}
[z, y) —val < for (z,y) € P a.e.
To complete the proof, it suffices to show thaf =
for n=1,2,.... In other words, JO(z,u). We have
0 _ 13 k k
u(z,y) = lim v, m- = klggom leH;OJ (z ukvu*)

11
i.e. u(x,y) € M° (by the closedness af/?). = lim /F’“c T,y 2 uk z,y),uk (z,y))dz dy
k—oo
Now, we shall prove that = 22. Indeed, 00
11
Zﬁg(fmy) = klim / Fk x Y, 2 uk z,y),uk (z y))
00
6z1’jk
//f s,t,zuk 5,t), O (s,1), —Fo(x,y,zﬁﬂx,y),uf(m,y)))dxdy
0z I / / FO( : drd
22 (b, 1) sl +jim, [ [ ), ) dedy
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The first term equals zero in view of Assumption (N7). Theorem 5. If the functionsg®, G*, k = 0,1,..., and
The other is equal to the setsM*, k = 0,1,..., satisfy Assumptions (NO)—
(N7), the setsB*, k = 0,1,... of solutions to Prob-

lems (N) are non-empty and the functions®, /* tend
dzd ’
// (@,9,2(@,y),ulx,y)) de dy to ¢, 4, respectively, in the spac€! ([0, 1], R™), then
on the basis of a generalization of the Krasnoselskii theo- @) 0,

m —>m
k—oo

rem (Idczak and Rogowski, 2003). Hence
1 (b) limsup B*¥ < B (in the space AC?(P,R") x
k—o0
= [ [ ey 2.0, e ) dy = 1), LA Rm),
0
Proof. It is easy to show that the functiong”, F*

given above satisfy Assumptions (N2)—(N7). Part (a) of
the assertion is obvious. To prove Part (b), assume that

which completes the proof. =

4.3. Nonhomogeneous Problem (wﬁk, ke Bk k=1,2,... and
Now, consider the family of problems (why, ut) —— . L (@,7)in AC2(P,R") x L2(P,R™).
Ow _ k(az a—wa—wu) (z,y) € Pa.e )
dzay I \DY g gyt Y o Thenw e U°, as shown in the proof of Theorem 4. More-
w(z,0) = (@), w(0,y) = (), over, (z* Zpo U uk)y e A% k=1,2,..., where
z,y € [0, 1], ;Pl’“(o) =¢M0) =, (NF) i (@,y) = win (,y) — " (2) — *(y) +
I*(w,u) = / G*(z,y, w,u) dx dy — min, (z,y) € P,
00 and
uelUr ={ue L?(P,R™); u(z,y) € M*,
(z,y) € Pael, (2% uf) —— - (z,7) in AC?*(P,R™) x L*(P,R™),
k=0,1,.... By using the substitution where

Z(wvy):w(xvy)fgok(x)*wk(y)‘i»ck’ (Ivy) GP,

it is easy to see that Problems"(Nand (NH°) with

Z(z,y) = w(x,y) — " (z) —¢°(y) + °, (z,y) € P.

Consequently, Theorem 4 implie,u) € A°. This

FH (2,1, 2, 20, 2y, 1) means thaiw, w) € B°. [ ]
) ) b ) )
=g (z,y,2 + " (@) + Y (y) +
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