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The controllability and reconstructability (global) of the system described by a digitalN -D Roesser model are defined.
Then, necessary and sufficient conditions for system controllability and reconstructability are given. The conditions consti-
tute a generalization of the corresponding conditions for 1-D systems.
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1. Introduction

Multidimensional systems have found many applications
in different fields: digital data filtering, image process-
ing (Roesser, 1975), modelling of partial differential equa-
tions (Kaczorek, 1985; Marszalek, 1984), etc. The most
popular models for multidimensional systems were pro-
posed by Attasi (1973), Fornasini and Marchesini (1978),
and Roesser (1975). A generalization of these models was
presented in (Kurek, 1985).

In this paper we deal withN -dimensional (N -D) lin-
ear digital systems described by the Roesser model (N -
DRM), cf. (Roesser, 1975). We will consider the control-
lability and reconstructability of the system. In the pa-
per (Roesser, 1975) the observability and controllability of
the 2-DRM were considered. Unfortunately, these notions
were only local and therefore they are not very important
(Kung et al., 1977). More important and more interesting
issues are global properties of the system.

The paper is organized as follows. In Section 2 the
model is presented. In Section 3 the system’s controllabil-
ity is defined. Then necessary and sufficient conditions
for the global controllability of the system are proven.
In Section 4 the notion of reconstructability is proposed.
Next, necessary and sufficient conditions for the global
reconstructability of the system are given and a numeri-
cal example is presented. Finally, concluding remarks are
given.

2. Model

The N -DRM is described by the following equation: x1(k1 + 1, k2, . . . , kN )
...

xN (k1, k2, . . . , kN + 1)

= Ax(k) + Bu(k),

y(k) = Cx(k), (1)

where x ∈ Rn is a local (l) state vector,xi ∈ Rni ,
i = 1, 2, . . . , N , and n1 + · · ·+ nN = n, u ∈ Rm is an
input vector,y ∈ Rp is an output vector and

A =

 A11 · · · A1N
...

...
AN1 · · · ANN

 , B =

 B1
...

BN

 ,

C =
[

C1 . . . CN

]
are real matrices of appropriate dimensions.

The (standard) boundary condition set (BCS) for the
model is defined as follows (Roesser, 1975):

BCS(0, . . . , 0) :{
xi(k1, . . . , ki−1, 0, ki+1, . . . , kN ) = xi0

for k1, . . . , ki−1, ki+1, . . . , kN = 0, 1, . . .

and i = 1, . . . , N
}
. (2)
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For abbreviation, we will use the following notation:
(k1, . . . , kN ) ≥ (h1, . . . , hN ) if and only if ki ≥ hi

for i = 1, 2, . . . , N , and (k1, . . . , kN ) 6≥ (h1, . . . , hN )
if and only if for some i we have ki < hi. More-
over, we denote byIq the q × q identity matrix and then
I(z1, . . . , zN ) = block diag(z1In1 , . . . , zNInN

).

3. Controllability

Following (Bisiacco, 1985; Kurek, 1990), we define the
controllability of the system (1) as follows.

Definition 1. The N -DRM (1) is (globally) controllable
if and only if for any x(0, . . . , 0) = x0 ∈ Rn and
BCS (0, . . . , 0) equal to zero there exist(k1, . . . , kN ) >
0 and an input sequence{u(i1 . . . , iN ), (i1, . . . , iN ) ≥
0} such that x(t1, . . . , tN ) = 0 for (t1, . . . , tN ) 6<
(k1, . . . , kN ).

Remark 1. Clearly, for a (globally) controllableN -
DRM a proper input sequence can be calculated such that
x(i1, . . . , iN ) = 0 for (t1, . . . , tN ) 6≤ (k1, . . . , kN ).

Remark 2. For every initial state

x0j =
[
0 . . . 1j . . . 0

]T
, j = 1, . . . , n

there is an N -set (k1j , . . . , kNj) such that
x(i1, . . . , iN ) = 0 for (t1, . . . , tN ) 6≤ (k1j , . . . , kNj).
Therefore, because of the system linearity and the su-
perposition principle, there is always a commonN -set
(k1c, . . . , kNc) such that for anyx0 ∈ Rn we have
x(t1, . . . , tN ) = 0 for (t1, . . . , tN ) 6< (k1c, . . . , kNc)
for a (globally) controllableN -DRM.

Let us compare the above definition with the property
of l-controllability given by Roesser (1975).

Definition 2. (Roesser, 1975) TheN -DRM (1) is (lo-
cally) controllableif and only if for any x(0, . . . , 0) =
x0 ∈ Rn and BCS (0, . . . , 0) equal to zero there ex-
ist (k1, . . . , kN ) > 0 and an appropriate input se-
quence {u(i1, . . . , iN ), (i1, . . . , iN ) ≥ 0} such that
x(k1, . . . , kN ) = 0.

The difference between both notions is quite easy
to see. Whereas the latter is really a local prop-
erty, the former is rather a global one. Indeed,
since the N -DRM is linear and causal, it is obvi-
ous that (global) controllability implies that for any
BCS (0, . . . , 0) there exist(k1c, . . . , kNc) > 0 and an
input sequence{u(i1, . . . , iN ), (i1, . . . , iN ) ≥ 0} such
that BCS (k1c, . . . , kNc) is equal to zero, i.e. the system
is controllable in Kalman’s sense of controllability. How-
ever, the difference between the proposed notion of con-
trollability and that Kalman’s is caused by the fact that

the BCS cannot be considered a global state of theN -
DRM, whereas Kalman’s concept of controllability refers
to the system state. As a matter of fact, Definition 1 gives
the notion of theN -DRM controllability with respect to
the BCS. However, it is clear that anN -DRM which is
controllable according to Definition 1 is controllable with
respect to any other BCS.

Theorem 1.The N -DRM (1) is controllableif and only if

rank
[
I −AI(z1, . . . , zN )B

]
= n (3)

for z1, . . . , zN ∈ C.

Proof. For the N -DRM (1) with the BCS (0, . . . , 0)
equal to zero except forx(0, . . . , 0) = x0 we obtain, after
the N -D Z transformation,

I(z1, . . . , zN )
[
X(z1, . . . , zN )− x0

]
= AX(z1, . . . , zN ) + BU(z1, . . . , zN ), (4)

where

X(z1, . . . , zN ) = Z
{
x(k1, . . . , kN )

}
=

∞∑
i1=0

· · ·
∞∑

iN=0

x(i1, . . . , iN )z−i1
1 . . . z−iN

N . (5)

Sincex1(0, k2, . . . , kN ) = 0 for (k2, . . . , kN ) 6≤ 0,
we can write

X1(z1, . . . , zN ) = x10 + z−1
1 X̃1(z1, . . . , zN ), (6)

where

X̃1(z1, . . . , zN )

=
∞∑

i1=0

· · ·
∞∑

iN=0

x1(i1 + 1, i2, . . . , iN )z−i1
1 . . . z−iN

N .

Similarly, this occurs for Xi(z1, . . . , zN ), i =
2, 3, . . . , N . Thus

X(z1, . . . , zN )

= I(z−1
1 , . . . , z−1

N )X̃(z1, . . . , zN ) + x0, (7)

where

X(z1, . . . , zN ) =


X1(z1, . . . , zN )

...

XN (z1, . . . , zN )

 ,

X̃(z1, . . . , zN ) =


X̃1(z1, . . . , zN )

...

X̃N (z1, . . . , zN )

 ,
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x0 =


x10

...

xN0

 .

Then, since I(z−1
1 , . . . , z−1

N )I(z1, . . . , zN ) = I,
from (4) and (7) we get[

I −AI(z−1
1 , . . . , z−1

N ) −B
]

×

[
X̃(z1, . . . , zN )

U(z1, . . . , zN )

]
= Ax0. (8)

Note that there always exist nonsingular matrices
T1 ∈ Rn×n and T2 ∈ R(n+m)×(n+m) such that

T1A =

[
0

A1

]

and

T1

[
I −AI(z−1

1 , . . . , z−1
N ) −B

]
T2

=

[
Iq 0

Z1(z−1
1 , . . . , z−1

N ) Z2(z−1
1 , . . . , z−1

N )

]
, (9)

where A1 has full row rank, i.e.rank A1 = rank A =
n− q.

Then from (8) and (9) we obtain[
Iq 0

Z1(z−1
1 , . . . , z−1

N ) Z2(z−1
1 , . . . , z−1

N )

]

×

[
V1(z1, . . . , zN )

V2(z1, . . . , zN )

]
=

[
0

A1

]
x0,

where[
V1(z1, . . . , zN )

V2(z1, . . . , zN )

]
= T−1

2

[
X̃(z1, . . . , zN )

U(z1, . . . , zN )

]
,

dim V1 = q and dim V2 = n + m− q.

From this it follows easily thatV1(z1, . . . , zN ) ≡ 0.
Next, from Definition 1 and Eqns. (5) and (7) we see that
an N -DRM is controllableif and only if for any x0 there
exist X̃(z1, . . . , zN ) and U(z1, . . . , zN ) which are poly-
nomials in z−1

1 , . . . , z−1
N−1 and z−1

N . Thus, anN -DRM
is controllableif and only if there existsV2(z1, . . . , zN ),
a polynomial inz−1

1 , . . . , z−1
N−1 and z−1

N , such that

Z2(z−1
1 , . . . , z−1

N )V2(z1, . . . , zN ) = A1x0.

Since the matrixA1 has a full row rank, from
Theorem 2 in (Youla, 1979) it follows that there exists
an appropriate polynomial matrixV2(z1, . . . , zN ), i.e.
X̃(z1, . . . , zN ) and U(z1, . . . , zN ), if and only if

rank Z2(z−1
1 , . . . , z−1

N ) = n− q

for (z−1
1 ), . . . , (z−1

N ) ∈ C. Hence, based on (9), we get
(3) after the change of(z−1

1 , . . . , z−1
N ) into (z1, . . . , zN ),

respectively.

Remark 3. The controllability of theN -DRM is generic
for m ≥ N and nongeneric form = 1, 2, . . . , N − 1.
This results from (3) and (Kurek, 1990), since there exists
an uncontrollableN -DRM with m = 1, 2, . . . , N − 1
and a controllable one withm = N .

Remark 4. A necessary condition for the controlla-
bility of an N -DRM is the controllability of the pairs
(A11, B1), . . . , (ANN , BN ). Indeed, for z2 = z3 =
· · · = zN = 0 we obtain

rank


I −A11z1 0 . . . 0 B1

−A21z1 I 0 B2

...
...

...

−AN1z1 0 I BN

 = n

for z1 ∈ C. However, it simply implies that the pair
(A11, B1) is controllable. The rest of the proof is simi-
lar and therefore it is omitted.

4. Reconstructability

Following (Kurek, 1987), we define the reconstructability
of the system (1) as follows.

Definition 3. The N -DRM (1) is (causally) recon-
structableif and only if any local statex(k) ∈ Rn can
be determined from the knowledge of the past output and
input sequences of the system{

y(i1, . . . , iN ), u(i1, . . . , iN ), (i1, . . . , iN )

≤ (k1, . . . , kN )
}
.

Theorem 2.The N -DRM (1) is controllableif and only if

rank

[
I −AI(z1, . . . , zN )

C

]
= n (10)

for z1, . . . , zN ∈ C.
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Proof. (Sufficiency) Since the system is linear, we can as-
sume thatu(i1, . . . , iN ) = 0. Then, using backward shift
operatorszi, zh

j f(i1, . . . , iN ) = f(i1, . . . , ij − h, iN ),
we can rewrite (1) in the form[

I −AI(z1, . . . , zN )

C

]
x(k) =

[
0

y(k)

]
. (11)

Then, if the condition of the theorem is satis-
fied, there exist polynomial matricesH1(z1, . . . , zN ),
dim H1 = n×n, and H2(z1, . . . , zN ), dim H2 = n× p
such that (Youla, 1979)[

H1(z1, . . . , z2) H2(z1, . . . , z2)
]

×

[
I −AI(z1, . . . , zN )

C

]
= I.

Thus we have

H2(z1, . . . , zN )y(k) = x(k).

(Necessity) If the condition is not satisfied, there exist
(z10, . . . , zN0) 6= 0 and x0 6= 0 such that[

I −AI(z10, . . . , zN0)

C

]
x0 = 0.

From this, for non-zero initial conditions

BCS (0, . . . , 0) :{
xi(j1, . . . , ji−1, 0, ji+1, . . . , jN )

= zk1−i1
10 . . . z

kj−1−ij−1
j−1,0 z

kj−ij

j0 z
kj+1−ij+1
j+1,0

. . . zkN−iN

N0 x01, for 0 ≤ i ≤ k
}

we obtain

x(i1, i2, . . . , iN ) = I(zk1−i1
1 zk2−i2

2 · · · zkN−iN

N )x0

and y(i) = 0 for 0 ≤ i ≤ k. Thus the actual
statex(k) = x0 is indistinguishable from the local state
x(k) = 0.

It is easy to notice that the unreconstructable system
is also unobservable, i.e. its non-zero initial state is in-
distinguishable from the zero initial state. However, the
reconstructability of the system does not mean that the
system is observable (consider, e.g., the system (1) with
A = 0).

5. Illustrative Example

Now we present an example illustrating the controllability
and reconstructability of the system described by the 3-
DRM.

Example 1. Consider the system described by the 3-D
Roesser model withn1 = 2, n2 = 1, n3 = 1 and

A =



0.1 1
|

|

|

0
|

|

|

0.1

0.2 0.5
|

|

|

1
|

|

|

0
−−−−−−−−−−−−−
−0.2 −1

|

|

|

0
|

|

|

0.5
−−−−−−−−−−−−−
−0.5 0.1

|

|

|

1
|

|

|

−1


,

B =


0 0.1
1 −0.2

−−−−−−−
−0.5 0
−−−−−−−

0 1

 ,

C =


2 0

|

|

|

1
|

|

|

−1
0 1

|

|

|

1
|

|

|

0
−1 1

|

|

|

0
|

|

|

2

 .

Then we obtain

P1(z) =
[
I −AI(z1, z2, z3) |

|
B

]

=



1− 0.1z1 −z1

|

|

|

0
|

|

|

−0.1z3

|

|

|

0 0.1

−0.2z1 1− 0.5z1

|

|

|

−z2

|

|

|

0
|

|

|

1 −0.2
−−−−−−−−−−−−−−−−−−−−−−−−

0.2z1 z1

|

|

|

1
|

|

|

−0.5z3

|

|

|

−0.5 0
−−−−−−−−−−−−−−−−−−−−−−−−

0.5z1 −0.1z1

|

|

|

−z2

|

|

|

1 + z3

|

|

|

0 1


and

P2(z) =

 I −AI(z1, z2, z3)
−−−−−−−−−

C



=



1− 0.1z1 −z1

|

|

|

0
|

|

|

−0.1z3

−0.2z1 1− 0.5z1

|

|

|

−z2

|

|

|

0
−−−−−−−−−−−−−−−−−−−−−

0.2z1 z1

|

|

|

1
|

|

|

−0.5z3

−−−−−−−−−−−−−−−−−−−−−
0.5z1 −0.1z1

|

|

|

−z2

|

|

|

1 + z3

−−−−−−−−−−−−−−−−−−−−−
2 0

|

|

|

1
|

|

|

−1

0 1
|

|

|

1
|

|

|

0

−1 1
|

|

|

0
|

|

|

2



.
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By elementary row and column operations onP1(z),
we get

1− 0.1z1 −z1

|

|

|

0
|

|

|

−0.1z3

|

|

|

0 0.1

−0.2z1 1− 0.5z1

|

|

|

−z2

|

|

|

0
|

|

|

1 −0.2
−−−−−−−−−−−−−−−−−−−−−−−−−

0.2z1 z1

|

|

|

1
|

|

|

−0.5z3

|

|

|

−0.5 0
−−−−−−−−−−−−−−−−−−−−−−−−−

0.5z1 −0.1z1

|

|

|

−z2

|

|

|

1 + z3

|

|

|

0 1



→



a11 a12

|

|

|

a13

|

|

|

0
|

|

|

0 0

0 0
|

|

|

0
|

|

|

0.6
|

|

|

0 0
−−−−−−−−−−−−−−−−−
0 0

|

|

|

0
|

|

|

0
|

|

|

−0.5 0
−−−−−−−−−−−−−−−−−
0 0

|

|

|

0
|

|

|

0
|

|

|

0 1


,

where

a11 = 0.3333− 1.3333z3 + 0.3z1z3,

a12 = 0.1666− 0.0833z1 + 0.3333z3 + 1.8133z1z3,

a13 = 0.3333− 0.1666z2 + 0.6666z3 − 0.5333z2z3.

Then, solving the three equationsa11 = 0, a12 = 0
and a13 = 0, we find z10 = −0.7868, z20 = 1.6965 and
z30 = 0.2124 such thatrank P1(z0) = 3 < n = 4. Thus
the system is uncontrollable.

Next, by elementary column and row operations on
P2(z), we obtain

1− 0.1z1 −z1

|

|

|

0
|

|

|

−0.1z3

−0.2z1 1− 0.5z1

|

|

|

−z2

|

|

|

0
−−−−−−−−−−−−−−−−−
0.2z1 z1

|

|

|

1
|

|

|

−0.5z3
−−−−−−−−−−−−−−−−−
0.5z1 −0.1z1

|

|

|

−z2

|

|

|

1 + z3
−−−−−−−−−−−−−−−−−

2 0
|

|

|

1
|

|

|

−1

0 1
|

|

|

1
|

|

|

0

−1 1
|

|

|

0
|

|

|

2



→



−0.3262 + 0.1z3 0
|

|

|

0
|

|

|

0

2.2727 + 3z2 0
|

|

|

0
|

|

|

0
−−−−−−−−−−−−−−−−−
−8 + 18.7z2 0

|

|

|

0
|

|

|

0
−−−−−−−−−−−−−−−−−

−6.4492 0
|

|

|

0
|

|

|

0
−−−−−−−−−−−−−−−−−

0 0
|

|

|

0
|

|

|

−1

0 0
|

|

|

1
|

|

|

0

0 −1
|

|

|

0
|

|

|

0



.

However, this impliesrank P2(z) = 4. Thus the system
is reconstructable.

6. Concluding Remarks

The conditions for the controllability and reconstructabil-
ity of the N -DRM were presented. They are dual, anal-
ogously to the 1-D case. Note that slightly modified con-
ditions given in Remark 2, namely the reachability of
the pairs(A11, B1), . . . , (ANN , BN ), imply the so-called
real reachability of theN -DRM, which guarantees the
controllability of the system in Kalman’s sense with re-
spect to its standard BCS (2) (Kurek, 1987). The condi-
tions are weaker than those given in Theorem 1. Unfortu-
nately, real reachability does not guarantee the controlla-
bility of the N -DRM if the BCS has a different form than
the standard one (2), e.g., in the following case (Fornasini
and Marchesini, 1978):{

x(k1, . . . , kN ) = xk1,...,kN
, k1 + · · ·+ kN = 0

}
.

Finally, controllability is the necessary and sufficient
condition for the stabilizability of theN -DRM by state
feedback (Bisiacco, 1985). Moreover, it implies the lo-
cal and modal controllability (Kunget al., 1977; Roesser,
1975) of the system. For these reasons controllability
seems to be one of the basic properties ofN -DRMs.
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