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CANONICAL FORMS OF SINGULAR 1D AND 2D LINEAR SYSTEMS
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The paper consists of two parts. In the first part, new canonical forms are defined for singular 1D linear systems and a
procedure to determine nonsingular matrices transforming matrices of singular systems to their canonical forms is derived.
In the second part new canonical forms of matrices of the singular 2D Roesser model are defined and a procedure for
determining realisations in canonical forms for a given 2D transfer function is presented. Necessary and sufficient conditions
for the existence of a pair of nonsingular block diagonal matrices transforming the matrices of the singular 2D Roesser model
to their canonical forms are established. A procedure for computing the pair of nonsingular matrices is presented.
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1. Introduction In this paper new canonical forms for singular 1D
and 2D linear systems will be defined and a procedure for
computing a pair of nonsingular matrices transforming the
matrices of singular 1D and 2D systems to their canonical
forms will be derived.

A survey of basic results regarding linear singular (de-
scriptor, implicit, generalized) systems can be found in
(Cobb, 1984; Dai, 1989; Kaczorek, 1992; Lewis, 1984;
1986; Lewis and Mertzios, 1989; Luenberger, 1967; The paper is organised as follows. In Section 2 new
1978; Ozcaldiran and Lewis, 1989). It is well known canonical forms of singular 1D linear systems are intro-
(Brunovsky, 1970; Kaczorek, 1992; Luenberger, 1967) duced. A method of determining realisations of a given
that if the pair (4, B) of a standard linear discrete-time 1D transfer function in canonical forms is presented in
systemz;1 = Az; + Bu; is reachable, then it can be  Section 3. The problem of transforming matrices of a sin-
transformed to its reachable canonical form. Slmllarly, if gu]ar 1D linear system to canonical forms is considered in
the pair (4, C) of the standard system is observable, then Section 4. Canonical forms of the matrices of a singular
it can transformed to its observable canonical form. Sim- 2D Roesser model are defined in Section 5. A method to
ilar results can also be obtained for linear time-varying determine realisations of a given 2D transfer function in
systems (Silverman, 1966). Aplevich (1985) established canonical forms is developed in Section 6. Conditions on
conditions for minimal representations of singular linear which the matrices of a singular 2D Roesser model can be
systems. transformed to their canonical forms are established and a
The most popular models of two-dimensional (2D) suitable procedure for their transformation is presented in
systems are those introduced by Roesser (1975), Fornasinbection 7. Concluding remarks are given in Section 8.
and Marchesini (1976; 1978) and Kurek (1985). The mod-
els were generalized to singular 2D models (Kaczorek,
1988; 1992; 1995) and positive 2D models (Kaczorek,
1996; Valcher, 1997). The realisation problem for 1D and . .
2D linear systems was considered in many books and pa—2' Canonical Form of Singular Systems
pers (Aplevich, 1985; Dai, 1989; Eising, 1978; Fornasini
and Marchesini, 1976; Gatkowski, 1981; 1992; 1997; Let R™*™ be the set ofn x m matrices with entries
Haytonet al,, 1988; Hinamoto and Fairman, 1984; Kaczo- from the field of real number® and R™ := R**!. The
rek, 1985; 1987; 1992; 1997a; 1997b; 1997c; 1998; 2000; set of non-negative integers will be denoted By and
Zak et al,, 1986). An elementary operation approach to the set ofp x m rational (proper or improper) matrices
state-space realisations of 2D linear systems was develin variable z will be denoted byR?*™(z). The n x n
oped by Galkowski (1981; 1992; 1997). identity matrix will be denoted by, .
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Consider the discrete-time linear system

Ez,,, = Ax; + Bu,,
)
Yi = Cﬂfi,

i € Z4, wherez, € R", u, € R™ andy; € RP are the

state, input and output vectors, respectively, and

E,AcR™™ BeR™™ (CeR*". (2)
It is assumed thatlet £ = 0, but
det[Ez — A] # 0 for some z € C, 3)

where C is the field of complex numbers.
The transfer matrix of (1) is given by
T(z) = C[Ez — A]"'B € RP*™(2). (4)
The matrices (2) are called a realisation of a giefx) €
RP*™(z) if they satisfy (4).

Definition 1. The matrices (2) are said to have thist
canonical formif

FE = dlag[ El EQ Em } S Rnxn,
I‘Ii
Ei=| ....i... e Rl@+D)x(git1) (5a)
0 0
forn:=m+ > ¢, i=1,...,m,
i=1
A=diag[ A, A Ay ] R
A = 0 1y, e Rla+1)x(gi+1) (5b)
a;
wherea; = [a}y...al _; 1 0...0],
B = dlag[ Bl BQ B’m :I S Rnxm7
0
Bi=| " | eRrut! (5¢)
0
1
fori=1,...,m,and
11 C12 Cim
C = C21 (22 Com c ]Rpxn7
Cp1 Cp2 Cpm

fori=1,...,pandj =1,...,m. They have theecond
canonical formif

E=diag| E; Fs E, ] e R™",
1y, 0 / /
E, = | .. i | e Rt x(@+1) (5€)
0 0
p
forn:=p+ > ¢,
i=1
A=diag| A1 A, A, | e R,
O : ’ ’
Ai | ... : azT c R(qi+1)X(Qi+1) (5f)
Iy
fori=1,...,p,
[ b D12 bim
B = b21 b22 bgm c RnXm7
L bpl bp2 bpm
b?j
bl
_ ] q;+1
by=| o | er” (50)
a
L bij
fori=1,...,pandj=1,...,m.
C=diag|[ c1 e cp | € RP*™,
=10 0 1]eRa+L (sh)

3. Determination of Realisations
in Canonical Forms

Consider the irreducible transfer function

b2l 4bg_1297 -+ bz 4 by

T(z) = 2t ar_ 12" ot aztag 4>
(6)
whereb;, i = 0,1,...,¢ anda;, j =0,1,...,r =1
are given real coefficients. Defining
o U
'l 12" a2l T+ agz*q(’7)
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Fig. 1. Block diagram for the transfer function (6).

we can write the equation

byz9 +bg—127  + o+ b2 T+ bo2 7Y

T(z) =
2Tt ap 2" a2 T a2
Y
U
in the form

Y = (bg +bg_12" " + -+ b1z I+ bz 9) E. (8)
The relation (7) can be rewritten as
U—(zr_q—i—ar,lz”q_l—l—- . -+alzl_q+aoz_q) E=0. (9)

From (8) and (9) the block diagram shown in Fig. 1 fol-
lows.

As the state variablesey(7), x2(4), ..., z4(i) we

choose the outputs of the delay elements. Using Fig. 1,

we can write the equations

fﬂl(l —+ ].) = CBQ(i),
l‘g(i + 1) = $3(i),
Tq1(i4+1) = z4(3), (10a)
g1 (1 + 1) = z4(7),
0= —aoxl(z’) - alxg(i)
— oo = 1@ (1) — @py1 (2) + u(i)
and
y(’L) = bo.’l?l(i) + bll‘g(i) + -+ bq$q+1(i). (10b)

Defining
371(2)

Tq+1(7)

we can write (10) in the form (1), where

0
€ Rl@tDx(a+1)

0

Iq | g Rla+Dx(a+),

0
B ="
0
1
C1=[by b

The matrices
form (5a)—(5d).

If we choose /()
,q + 1 then we obtain (1), where

1...

(11) have

~1,0,...

;0]

(11)

sy TQr—1,

by | € R,

the desired canonical

= xg_pq2(i) for k

0
e R(q-&-l)x(q-kl),
I
e R(a+1)x(g+1)
0 )
17 —Ar—1, , —ai, 7040] ) (12)
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1
By = ? e R+
0
Cy=[b; by by | € RI*(aFD),

Another method of determining realisations in the canon-
ical form of (6) is presented in (Kaczorek, 2000).

4. Transformation to Canonical Forms

Given the matrices (2) we establish conditions on which

they can be transformed to their canonical forms (5) and

find two nonsingular matrice®, @ € R™*™ such that the
matrices

E=PEQ, A=PAQ, B=PB, C=0Q (13)

have the canonical forms (5). If (3) is satisfied, then

(oo}
[Bz— A7 =) @270,

1=—pu

(14)

where y, < rank E—deg det[Ez— A]+1 is the nilpotence
index and the®;'s are the fundamental matrices defined

by
1 for i =
Ed; — AD; | = ®,E — &, A = or £ =0,
0 for i # 0,
(15)
and
®; =0 for ¢ < —p.
The solution of (1) is given by
i4+p—1
z;, = O, Fxg + Z @i_j_lBuj, 1€ Z+. (16)
j=0

Definition 2. The system (1) is calledi-step reachable

if for 2y = 0 and any givenzy € R™ there exists a
sequenceu; € R™, ¢ = 0,1,...,n + pu — 1 such that
Tp =Tf.

Theorem 1. The system (1) is-step reachable if and

only if
rank R,, = n, (17)

where
Rn = [(pn—le-'v@OBaq)—le"7(1)—#B]' (18)

Proof. From (16), forzy = 0 andi = n we have

n+p—1
_ _ _ n+pu—1
Ty =Ty = Z ®,,_;—1Bu; = Ryu , (19
Jj=0
where
n+upu—1 T T T T T
Ug = [uo,-~- s Uy 15Uy """ ,un_w_l] .

From (19) it follows that for anyz; € R™ there exists a
sequenceu;, i = 0,1,...,n+ p — 1 if and only if (17)
holds. [ |

Definition 3. The system (1) is calle@-step observable
if for any zy # 0 and givenu; € R™ andy; € RP for
i=—pu,...,n+ 1 itis possible to find the vectoE z.

Theorem 2. The system (1) isi-step observable if and
only if

rank O,, = n, (20)
where ) )
ce_,
O, = P (21)
Cdq
| CP,1 |
Proof. From (1) and (16) we have
itp—1
y; =Y — Z C(I)i_j_lBUj = C(I)ZEZ‘O (22)
j=0

Using (22) fori = —p,...,—1,0,...,n — 1 and (21),

we obtain

T

From (23) it follows that it is possible to find the vector
Exy if and only if (20) holds. ]

T
T T T
Yo U1l = OnFEzg.  (23)

Theorem 3. Let (2) be any given matrices satisfying (3).
Then there exist nonsingular matricés ) € R™*"™ such
that the matrices (13) have the canonical form (5) if the
system (1) isn-step reachable ana-step observable.

Proof. Using (13) and (14), we can write
[Ez—A]"' = [P(E2-A)Q] ' =Q'[Ez — A 'P!

Z Q*l@ipflzf(l?kl)

1=—u

i i)izf(”l),

1=—pu

(24)
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where

b, =Q ', P, i=—p—p+l... (25

From (18), (25) andB = P B, we have

Rn = [q>n—1B;- --a(I’OB7‘I)—1B5' "’(D_M

B]
= Q[®y1B,.... 8B,_1B,...,5_,B]
= QRn, (26)

where

R, =[®,.1B,...,%B,®_1B,...,%_,B]. (27)

If the system (1) isn-step reachable, then (17) holds and
from (26) we obtain
Q= R,R,", (28)

where R,, and R,, are square matrices consisting of

linearly independent corresponding columns of the matri-

ces R, and R, respectively.
Similarly, from (21), (25) andC' = CQ, we have

[ co_, ] [ Co_,
O_ oP_ _
0, = Coy | _ | O P=0,P, (29)
Cd, Cd,
L Cq)n—l i L één,—l i
where
co_,
_ Co_
O, =| ' (30)
Cd,
| C®,_; |

If the system (1) isw-step observable, then (20) holds and
from (29) we obtain

(31

where O,, and O,, are square matrices consisting of

linearly independent corresponding rows of the matrices

O,, and O,,, respectively. =

If the system (1) isn-step reachable and-step ob-
servable, then the matricds, A, B, C inthe canonical

o

form (5) can be found using the following procedure:

Procedure 1.

Step 1. Knowing FE, A, B, C, find the transfer ma-
trix (4).

Step 2. Using the procedure presented in Section 3,
find the realisation of the transfer matrix in the
canonical form (5).

Step 3. Using (14) and (24), find the fundamental ma-
trices ®; and ®; for i = —pu,...,—1,0,...,
n—1.

Step 4. Using (18), (27) and (21), (30), findz,, R,,
O, and O,,.

Step 5. Using (28) and (31) find the desired matrio@s
and P.

5. Canonical Forms of the Matrices of the
Singular 2D Roesser Model

Consider the singular 2D Roesser model

h h
E m:}+1u =A xjj + Buyj, (32a)
Tij+1 ij
h
yij = C xjﬁ ] (32b)
Ti

for i,j € Zy, wherez]; € R™ and z}; € R™ are
respectively the horizontal and vertical state vectors at the
point (i, j), u;; € R™ is the input vectory,; € R? is

the output vector and

E
E=[E E |, E = o
Es
E A A
By — 12 7 A 11 12 7
Ea Azr Aso
(33)
B—| B C=[C ]
32 ) 1 2 s
Ekl e R'Ilk XTL[’ Ak}l e Rnk ><’7L[7 Bk e R'Ilk ><’"L7
CpeRP*me k1 =1,2.
It is assumed thatlet £ = 0 and
E —A E —A
det 1121 11, 1222 12 ?é 0 (34)
Eo121 — Ag1, Eoozg — Aso

for somezy, z, € C x C.
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The transfer matrix of the system (32) is given by Ci = [ bmo bmy10 - boo | € RP¥mHD
—1
T(thQ) —C EllZl_Alh E1222_A12 B C‘2 — |:00100i| €R1><2m2' (36)
Eyi1z1 — Ag1, Eazp — A 1
2 my1—i m2 7
> Z bijzy Definition 5. The matrices (36) satisfying (35) for a given
i=0j= . o . .
= (35) T(z1,22) are called arealisation in canonical form of
> Z —aijz’t lzgz 7 T (21, 22).
1=0j=

with mi > ny, Mo > no.

Definition 4. The matrices (33) are said to hasenonical
formif Ej5 =0, Ey =0,

_ I, 0O ) _
By = 01 0 € Rimﬁl)x(m +1)7 Eo = Iop,,
- [0 I, (m14+1)x (m1+1)
A11 = 0 01 (S R+ ! ! R
[0 0 0
Aia=10 0 0 | e R{mFx2m2
10 0
[0 0 0 0 |
0 0 0 0
0 0 0 0
G0 (py—1,0 apo 0
Azl — anll anl—l,l M api O
anlnz anl—l,n2 aOnz O
by 1 bi—11 - b11 bo1
bml,mgfl bmlfl,mgfl e bl,mgfl bO,mgfl
bm17YL2 bmlfl,mz e blmg b0m2

2 X +1
e RY™ (mat1)

0 Im271 : 0 0
_ 0o 0 : 0 0
Ao = | ... .. : c Rim2x2m2’
0 0 : 0 Iy
0o 0 0 0
[0
. 0
Bl = : c le+1, BQ _ c R2m27
0
0
i 1

6. Determination of 2D Realisations
in Canonical Forms

Given the improper 2D transfer function

mi ma

E bwzﬁn ZZ;W.) J
i=0 j=0
T(21,22) = 7 my : (37)
> Z —aijzyt i'z;lz*]
1=0j=

of the single-input single-output 2D Roesser model (32)
with m; > n; and my > no, find a realisation in the
canonical form (36) of (37). The transfer function (37)
can be written as

mi M2

> Z bijzy" 22
1=0j=
ny n2

2

=0 j=

T(Zl ZQ) =

)
ny—mip— 7 _M2—mo— ]

—Qijz 2

== (38)

for m; > ny and my > ngy, where
ma

b= bz’ a
j=0

Taking into account the fact that

Za” TR (39)

Y(Zl,ZQ)
U(Zl,Zg)’
whereY (z1,20) =Y and U (z1,22) = U are respec-

tively the 2Dz-transforms ofy (i, j) and u(¢,j) (Kaczo-
rek, 1985) , and defining

T(Zl,ZQ) =

_ U

B= (40)
S —ar T
i=0

from (38) we obtain

Y =) bz 'E. (41)
1=0
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From (40) we have Ty (6,5 + 1) = any02 (i, ) + an,—1,025 (4, )
- + -+ agoap, (i, 5)
U+ Z a; BT =, (42) + T~y 1 (8, 5)
1=0

$Um27n2+1(7;7j + 1) = anl,lx?(ihj) + a’”lflalx};(i’j)
From (41) and (42), the block diagram shown in Fig. 2 T aowﬁn (1,7)
follows for m; = ny + 1. + 2y mpr2( ),

»0) »)
L] d GJ ba
-1 2 -m+1
u 0 E 1 Z, E 1 Zq E ]ml E 1
e e A S
ag aq an,-1
\
Q=

Fig. 2. Block diagram for the transfer function (38).

Note that in addition tom; horizontal delay ele- :
mer|1ts (Fi?.ch) ]:Nedrg)eeinz _verti(_:al dgl?y eIementsdto zp (1,5 4+ 1) = Ay ma®r (i59) 4 @y —1mp 5 (3, 5)
implement the feedback gains;,i = 0,1,...,n; an
m other vertical delay elements to implement the read-
out gainsb;,i = 0,1,...,m;. Therefore, the complete v (i G+ 1) = by 120 (6,5) A+ by 1125, 7)
block diagram shown in Fig. 2 requires; + 2m. delay " v e
elements (Fig. 3).

+-+ aOngl'fnl (Zvj)v

e by, (6, 5) bl (6, 5)

h . v ..
As the horizontal state variables?’(i,;), ..., + bo1%my 11002 ) + T 420 7),

xfm(i,j) we choose the output of the horizontal : (43)
dfle_\y‘ elemegts, _apd as the vertical state vanablesxgmrl(i,wrl) _ bml,mz_w}f(i,j)

x7(i, ), ..., v5,,,(i,j) we choose the outputs of the ver- e

tical delay elements. + bmy—1,mz 123 (4, )

e bomg 12 (4, 7)
+ b1y 12, (i, )
(i +1.9) = o3(.5), + b0,m 1200, 1 (65 5)
- . .. xv 7;’ . ,
ah(i+1,5) = 24(,4), + a5, (1, 5)

Using Fig. 3, we can write the following equations:

xng (27.7 + 1) = bm1m2x?(7;7j)+bm1*1,m2xg(i7j)
+ oo bamy a1 (6,)

ah (i4+1,5) = b 1(i,5), F01my @, (65 3) +boma @i, 11 (i, 5).
0 = 21(4,7) + u(i, j), Defining
H ‘? +1 = 5 .7 j b B . B . . . . .
n(hi+1) = 300.9) i g) = [eh(0g) i) - ot ()]
5512}(%]4’1) = xg(zvj)7 v - v/ vl - v . T
x (Zaj): [‘Tl(la]) x2(7’5.7) meQ(Za])] 5

from (43) we obtain (32) with matrice®’, A, B, andC

T 1 (G5 +1) = 2l (4, ]), of the form (36).



T. Kaczorek

1Z2 | Zy

Fig. 3. Complete block diagram for the transfer function (38).
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7. Transformation of the Matrices of the Using (46a) and (36), we obtaimank By, =

Singular Roesser Model to Their rank P E11Q1 = rankEy; = mg, rankEgy =
Canonical Forms rank Ps Fas Q2 = rank Eoo = 2ms. In a similar manner,
using (46b), (46¢) and (36), we can prove the necessity of
For the given matrices (33) establish conditions on which the conditions of Part2. =
t_hey can pe transformed to their canonical forms (36), and If (34) holds, then

find nonsingular matrices

-1
Enzr — A Eigzo — Ara

P 0 0
P = ' , Q= o , (44) Eg121 — Ag1 Eagzo — Az
0 P 0 Qs
Py, Qi € R™>™ for k = 1,2, such that the matrices =y > Tyjzy V25 VD (a7)
) i=—p1 j=—p2
= En _0 _p B B Q where the pair(uq, u2) is the nilpotence index and the
| 0 Ex Ea1 Ea T;;'s are the transition matrices defined by
B [ P E1Q1 PiE;2Q: [ By 0]Tij-1+ [0 By |Tica;—ATi1 1
PyEy1Q1 PaE2Q> o
- I, for i=75=0,
= ’ . (48)
_ B 0 for 70 andlorj # 0,
- | A A | Ann A , ,
A= A A, | T P Ay Ay ] Q@ (45)  andT;; =0 for i < —py andlorj < —pus.
] i Let
_ | P AnQr P1ApQ B 1 i -1
PyA21 Q1 PrA2Q A A 12
- i —Ag; FEagzy — Ago
[ B B, [ pB o oo ,
B = i = = _ (41 _—(i+1)
By B, PBs 1 ’ = Z Z Tijz Z9 . (49)
- - 1=—H1 J=—H2
- Then from (46), (47) and (49) we have
c=|C Gl=|0 G |Q=|C C _
[a Gl=[a ale=laa o] Ty = QTP for i,j € Z,. (50)

have the canonical forms (36). The solutionz;; of (32a) with the boundary conditions

Theorem 4. The matrices (33) can be transformed by the xgﬁ zb for 0<j<mg+pu—1
nonsingular matrices (44) to their canonical forms (36)

only if and 0<i<ni+pu —1 (51)
1. E12 = O, Egl = 0, rank E11 = mi, iS given by
rank E22 = ng.
2.rank A1 = mq, rank A5 =1, _ J:Z _ i+u171j+u271T B
rank A22 =2 (mg — 1), By =0. Tij = 171)] B ’;O ; i—k—1,j—1-1DUkl

Proof. From (45) we have

Jtp2—1
By = PuEwQ, (46a) + ; T j-1-1Era()
Apl = PeAnQ, (46b) it —1
By = PuBy, Oy = CrQs (46¢) + Y TimworyBariy. (52)

k=0

for k,1 = 1,2. From (46a) it follows thatEi, =
P FE15Qs = 0, Eoy = PoFEy1@Q1 = 0 and Ep = 0, Theorem 5. Let the matrices (33) satisfy the assumption
E5; =0 since detP, # 0 and detQy, # 0 for k =1, 2. (34) and the conditions of Theorem 4. Then there exist
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nonsingular matrices in (44) such that the matrices (46)

have the canonical forms (36) if

and

where

rank Ry, n, =n

rank Op,pn, =N,

Rnlnz = [Tnl—l,nz—lBa ceey

and

Proof. From (46), (50) and (55) we have

Ryin, =

where

If the condition (53) is satisfied, then from (57) we obtain

where R,, and R,, are square matrices consisting of
linearly independent corresponding columns of the matri-

T*Hl,*MB]

L OTnl—l,nz—l i

T B

TooB,T-10B,Ty,-1B, ...,

CT—Mly—Hz

CT 1
CTo,—

[Tnlfl,n@lea ey

Rnlnz = [Tnl—l,nz—lBa s

TOOB7 Tfl,()By TO,*IBa vy

Q = RnR;Lla

ces R, n, and R,,, .., respectively.

Bj

(53)

(54)

(55)

(56)

TooB,T-1,0B,Ty,-1B, ..., Ty, —u, B]

Q[T’I’LlfL’ﬂzle? MR

TO()Bv Tfl,OBa TO,7137 .

(57)

(58)

(59)

Similarly, from (46), (50) and (56) we have

CT—M1>—M2 C_(T—Ml’—lm
CTOO C_VTOO
On1n2 = CT—I,O OT_170 P
CT07_1 CTO,—l
L CTnl—l,ng—l | L CT’m—l,'ru—l i
= Onyn, P, (60)
where
C’T_#h—#Q
C’TOO
Onlnz = CYT*LO . (61)
CTy
L C‘Tnlflnmfl i

If the condition (54) is satisfied, then from (60) we obtain
P=0,'0,, (62)

where O,, and O,, are square matrices consisting of
linearly independent corresponding rows of the matrices
Onyn, and Oy, ,,, respectively. [ |

Matrices@ and P can be found using the following
procedure:

Procedure 2.

Step 1. Knowing £, A, B and C, find the transfer ma-
trix (35).

Step 2. Using the procedure presented in Section 6,
find the realization of the transfer matrix in the
canonical form (36) .

Step 3. Using (47) and (49), determine the fundamental
matricesT;; and T;; for i = —pq,...,n1 +1
andj = —l2,...,n2 + 1.

Step 4. Using (55), (58) and (56), (61), findz,, R,,
0,, and O,,.

Step 5. Using (59) and (62), find the desired matria@s
and P.
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In the first part of the paper the new canonical forms (5) Int. J. Circ. Theory Appl., Vol. 20, pp. 63-74.
for multi-input multi-output linear time-invariant systems  gaowski K. (1997):Elementary operation approach to state-
were introduced. A method of determining realisations of space realizations of 2-D systems- IEEE Trans. Circ.
a given 1D transfer function in canonical forms was pro- Syst. Fund. Theory Appl., Vol. 44, No. 2, pp. 120-129.
posed. Sufficient conditions for the existence of canonical Hayton G.E., Walker A.B. and Pugh A.C. (198tatrix pen-
forms for singular linear systems were established (Theo-
rem 3). A procedure for computing a pair of nonsingular
matrices P, @ transforming the matrices of singular sys-
tems to their canonical forms (5) was presented. The con-
siderations for discrete-time linear systems are also valid
for continuous-time linear systems. In the second part
new canonical forms of the matrices of the singular 2D
Roesser model were introduced. A method of determin-
ing realisations of a given 2D transfer function in canon- Kaczorek T. (1987)Realization problem for general model of
ical forms was proposed. Necessary and sufficient condi- ~ Wo-dimensional linear systems- Bull. Pol. Acad. Sci.

8. Concluding Remarks

cil equivalents of a general polynomial matrix- Int. J.
Contr., Vol. 49, No. 6, pp. 1979-1987.

Hinamoto T. and Fairman F.W. (1984Realisation of the At-
tasi state space model for 2-D filters- Int. J. Syst. Sci.,
\ol. 15, No. 2, pp. 215-228.

"Kaczorek T. (1985): Two-Dimensional Linear Systems—
Berlin: Springer.

tions for the existence of a pair of nonsingular block diag-

Techn. Sci., Vol. 35, No. 11-12, pp. 633-637.

onal matrices transforming the matrices of the singular 2D Kaczorek T. (1988)Singular general model of 2-D systems and

Roesser model to their canonical forms were established.

A procedure for computing the pair of nonsingular matri-

its solution — IEEE Trans. Automat. Contr., Vol. AC-33,
No. 11, pp. 1060-1061.

ces was presented. The considerations presented for th&aczorek T. (1992)Linear Control Systems, Vols. 1 and-2

single-input single-output singular 2D Roesser model can

be easily extended to the multi-input multi-output singu-
lar 2D Roesser model. An extension for the singular 2D
Fornasini-Marchesini-type models (1976; 1978; Kaczo-
rek, 1992) is also possible.
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