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CANONICAL FORMS OF SINGULAR 1D AND 2D LINEAR SYSTEMS
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The paper consists of two parts. In the first part, new canonical forms are defined for singular 1D linear systems and a
procedure to determine nonsingular matrices transforming matrices of singular systems to their canonical forms is derived.
In the second part new canonical forms of matrices of the singular 2D Roesser model are defined and a procedure for
determining realisations in canonical forms for a given 2D transfer function is presented. Necessary and sufficient conditions
for the existence of a pair of nonsingular block diagonal matrices transforming the matrices of the singular 2D Roesser model
to their canonical forms are established. A procedure for computing the pair of nonsingular matrices is presented.
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1. Introduction

A survey of basic results regarding linear singular (de-
scriptor, implicit, generalized) systems can be found in
(Cobb, 1984; Dai, 1989; Kaczorek, 1992; Lewis, 1984;
1986; Lewis and Mertzios, 1989; Luenberger, 1967;
1978; Özcaldiran and Lewis, 1989). It is well known
(Brunovsky, 1970; Kaczorek, 1992; Luenberger, 1967)
that if the pair (A,B) of a standard linear discrete-time
systemxi+1 = Axi + Bui is reachable, then it can be
transformed to its reachable canonical form. Similarly, if
the pair(A,C) of the standard system is observable, then
it can transformed to its observable canonical form. Sim-
ilar results can also be obtained for linear time-varying
systems (Silverman, 1966). Aplevich (1985) established
conditions for minimal representations of singular linear
systems.

The most popular models of two-dimensional (2D)
systems are those introduced by Roesser (1975), Fornasini
and Marchesini (1976; 1978) and Kurek (1985). The mod-
els were generalized to singular 2D models (Kaczorek,
1988; 1992; 1995) and positive 2D models (Kaczorek,
1996; Valcher, 1997). The realisation problem for 1D and
2D linear systems was considered in many books and pa-
pers (Aplevich, 1985; Dai, 1989; Eising, 1978; Fornasini
and Marchesini, 1976; Gałkowski, 1981; 1992; 1997;
Haytonet al., 1988; Hinamoto and Fairman, 1984; Kaczo-
rek, 1985; 1987; 1992; 1997a; 1997b; 1997c; 1998; 2000;
Żak et al., 1986). An elementary operation approach to
state-space realisations of 2D linear systems was devel-
oped by Gałkowski (1981; 1992; 1997).

In this paper new canonical forms for singular 1D
and 2D linear systems will be defined and a procedure for
computing a pair of nonsingular matrices transforming the
matrices of singular 1D and 2D systems to their canonical
forms will be derived.

The paper is organised as follows. In Section 2 new
canonical forms of singular 1D linear systems are intro-
duced. A method of determining realisations of a given
1D transfer function in canonical forms is presented in
Section 3. The problem of transforming matrices of a sin-
gular 1D linear system to canonical forms is considered in
Section 4. Canonical forms of the matrices of a singular
2D Roesser model are defined in Section 5. A method to
determine realisations of a given 2D transfer function in
canonical forms is developed in Section 6. Conditions on
which the matrices of a singular 2D Roesser model can be
transformed to their canonical forms are established and a
suitable procedure for their transformation is presented in
Section 7. Concluding remarks are given in Section 8.

2. Canonical Form of Singular Systems

Let Rn×m be the set ofn × m matrices with entries
from the field of real numbersR and Rn := Rn×1. The
set of non-negative integers will be denoted byZ+ and
the set ofp × m rational (proper or improper) matrices
in variable z will be denoted byRp×m(z). The n × n
identity matrix will be denoted byIn.
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Consider the discrete-time linear system

Exi+1 = Axi + Bui,

yi = Cxi,
(1)

i ∈ Z+, wherexi ∈ Rn, ui ∈ Rm and yi ∈ Rp are the
state, input and output vectors, respectively, and

E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. (2)

It is assumed thatdetE = 0, but

det[Ez −A] 6= 0 for some z ∈ C, (3)

whereC is the field of complex numbers.

The transfer matrix of (1) is given by

T (z) = C[Ez −A]−1B ∈ Rp×m(z). (4)

The matrices (2) are called a realisation of a givenT (z) ∈
Rp×m(z) if they satisfy (4).

Definition 1. The matrices (2) are said to have thefirst
canonical formif

E = diag
[

E1 E2 · · · Em

]
∈ Rn×n,

Ei =

 Iqi

......
0

. . . . . . . .
0

......
0

 ∈ R(qi+1)×(qi+1) (5a)

for n := m +
m∑

i=1

qi, i = 1, . . . ,m,

A = diag
[

A1 A2 · · · Am

]
∈ Rn×n,

Ai =

 0
......

Iqi

. . . . . . . . . .
ai

 ∈ R(qi+1)×(qi+1) (5b)

whereai =
[
ai
0 . . . ai

ri−1 1 0 . . . 0
]
,

B = diag
[

B1 B2 · · · Bm

]
∈ Rn×m,

Bi =


0
...

0
1

 ∈ Rqi+1 (5c)

for i = 1, . . . ,m, and

C =


c11 c12 · · · c1m

c21 c22 · · · c2m

. . . . . . . . . . . . . . . . . . .
cp1 cp2 · · · cpm

 ∈ Rp×n,

cij =
[

b0
ij b1

ij · · · bqi

ij

]
∈ R1×(qi+1), (5d)

for i = 1, . . . , p and j = 1, . . . ,m. They have thesecond
canonical formif

E = diag
[

E1 E2 · · · Ep

]
∈ Rn×n,

Ei =

 Iq′
i

......
0

. . . . . . . .
0

......
0

 ∈ R(q′
i+1)×(q′

i+1) (5e)

for n := p +
p∑

i=1

q′i,

A = diag
[

A1 A2 · · · Ap

]
∈ Rn×n,

Ai =

 0
......· · · · · · aT

i
Iq′

i

......

 ∈ R(q′
i+1)×(q′

i+1) (5f)

for i = 1, . . . , p,

B =


b11 b12 · · · b1m

b21 b22 · · · b2m

. . . . . . . . . . . . . . . . . . .
bp1 bp2 · · · bpm

 ∈ Rn×m,

bij =


b0
ij

b1
ij
...

b
q′

i
ij

 ∈ Rq′
i+1 (5g)

for i = 1, . . . , p and j = 1, . . . ,m.

C = diag
[

c1 c2 · · · cp

]
∈ Rp×n,

ci =
[

0 · · · 0 1
]
∈ R1×q′

i+1. (5h)

3. Determination of Realisations
in Canonical Forms

Consider the irreducible transfer function

T (z) =
bqz

q + bq−1z
q−1 + · · ·+ b1z + b0

zr + ar−1zr−1 + · · ·+ a1z + a0
, q > r,

(6)

where bi, i = 0, 1, . . . , q and aj , j = 0, 1, . . . , r − 1
are given real coefficients. Defining

E :=
U

zr−q + ar−1zr−q−1 + · · ·+ a1z1−q + a0z−q
,

(7)
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Fig. 1. Block diagram for the transfer function (6).

we can write the equation

T (z) =
bqz

q + bq−1z
−1 + · · ·+ b1z

1−q + b0z
−q

zr−q + ar−1zr−q−1 + · · ·+ a1z1−q + a0z−q

=
Y

U

in the form

Y =
(
bq + bq−1z

−1 + · · ·+ b1z
1−q + b0z

−q
)
E. (8)

The relation (7) can be rewritten as

U−
(
zr−q+ar−1z

r−q−1+· · ·+a1z
1−q+a0z

−q
)
E =0. (9)

From (8) and (9) the block diagram shown in Fig. 1 fol-
lows.

As the state variablesx1(i), x2(i), . . . , xq(i) we
choose the outputs of the delay elements. Using Fig. 1,
we can write the equations

x1(i + 1) = x2(i),

x2(i + 1) = x3(i),
...

xq−1(i + 1) = xq(i),

xq+1(i + 1) = xq(i),

0 = −a0x1(i)− a1x2(i)
− · · · − ar−1xr(i)− xr+1(i) + u(i)

(10a)

and

y(i) = b0x1(i) + b1x2(i) + · · ·+ bqxq+1(i). (10b)

Defining

xi :=


x1(i)
x2(i)

...

xq+1(i)

 ,

we can write (10) in the form (1), where

E1 =

 Iq

......
0

. . . . . . .
0

......
0

 ∈ R(q+1)×(q+1),

A1 =

 0
......

Iq
. . . . . . . . .

ā

 ∈ R(q+1)×(q+1),

ā := [−a0,−a1, . . . ,−ar−1,−1, 0, . . . , 0] (11)

B1 =


0
...

0
1

 ∈ Rq+1,

C1 =
[

b0 b1 · · · bq

]
∈ R1×(q+1).

The matrices (11) have the desired canonical
form (5a)–(5d).

If we choose x′k(i) := xq−k+2(i) for k =
1, . . . , q + 1 then we obtain (1), where

E2 =

 0
......

0
. . . . . . . . .
0

......
Iq

 ∈ R(q+1)×(q+1),

A2 =

 ā′
. . . . . . . . .

Iq

......
0

 ∈ R(q+1)×(q+1),

ā′ := [0, . . . , 0,−1,−ar−1, . . . ,−a1,−a0] , (12)
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B2 =


1
0
...

0

 ∈ Rq+1,

C2 =
[

bq bq−1 · · · b0

]
∈ R1×(q+1).

Another method of determining realisations in the canon-
ical form of (6) is presented in (Kaczorek, 2000).

4. Transformation to Canonical Forms

Given the matrices (2) we establish conditions on which
they can be transformed to their canonical forms (5) and
find two nonsingular matricesP,Q ∈ Rn×n such that the
matrices

Ē = PEQ, Ā = PAQ, B̄ = PB, C̄ = CQ (13)

have the canonical forms (5). If (3) is satisfied, then

[Ez −A]−1 =
∞∑

i=−µ

Φiz
−(i+1), (14)

whereµ ≤ rank E−deg det[Ez−A]+1 is the nilpotence
index and theΦi’s are the fundamental matrices defined
by

EΦi −AΦi−1 = ΦiE − Φi−1A =

{
1 for i = 0,

0 for i 6= 0,

(15)
and

Φi = 0 for i < −µ.

The solution of (1) is given by

xi = ΦiEx0 +
i+µ−1∑

j=0

Φi−j−1Buj , i ∈ Z+. (16)

Definition 2. The system (1) is calledn-step reachable
if for x0 = 0 and any givenxf ∈ Rn there exists a
sequenceui ∈ Rm, i = 0, 1, . . . , n + µ − 1 such that
xn = xf .

Theorem 1. The system (1) isn-step reachable if and
only if

rank Rn = n, (17)

where

Rn := [Φn−1B, . . . , Φ0B,Φ−1B, . . . , Φ−µB]. (18)

Proof. From (16), forx0 = 0 and i = n we have

xf = xn =
n+µ−1∑

j=0

Φn−j−1Buj = Rnun+µ−1
0 , (19)

where

un+µ−1
0 :=

[
uT

0 , · · · , uT
n−1, u

T
n , · · · , uT

n+µ−1

]T
.

From (19) it follows that for anyxf ∈ Rn there exists a
sequenceui, i = 0, 1, . . . , n + µ − 1 if and only if (17)
holds.

Definition 3. The system (1) is calledn-step observable
if for any x0 6= 0 and givenui ∈ Rm and yi ∈ Rp for
i = −µ, . . . , n + 1 it is possible to find the vectorEx0.

Theorem 2. The system (1) isn-step observable if and
only if

rank On = n, (20)

where

On :=



CΦ−µ
...

CΦ−1

CΦ0
...

CΦn−1


. (21)

Proof. From (1) and (16) we have

y′i := yi −
i+µ−1∑

j=0

CΦi−j−1Buj = CΦiEx0. (22)

Using (22) for i = −µ, . . . ,−1, 0, . . . , n − 1 and (21),
we obtain[

y′
T
−µ, . . . , y′

T
−1, y

′T
0 , . . . , y′

T
n−1

]T

= OnEx0. (23)

From (23) it follows that it is possible to find the vector
Ex0 if and only if (20) holds.

Theorem 3. Let (2) be any given matrices satisfying (3).
Then there exist nonsingular matricesP,Q ∈ Rn×n such
that the matrices (13) have the canonical form (5) if the
system (1) isn-step reachable andn-step observable.

Proof. Using (13) and (14), we can write

[Ēz−Ā]−1 = [P (Ez−A)Q]−1 =Q−1[Ez −A]−1P−1

=
∞∑

i=−µ

Q−1ΦiP
−1z−(i+1)

=
∞∑

i=−µ

Φ̄iz
−(i+1), (24)
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where

Φ̄i = Q−1ΦiP
−1, i = −µ,−µ + 1, . . . . (25)

From (18), (25) andB̄ = PB, we have

Rn = [Φn−1B, . . . , Φ0B,Φ−1B, . . . , Φ−µB]

= Q
[
Φ̄n−1B̄, . . . , Φ̄0B̄, Φ̄−1B̄, . . . , Φ̄−µB̄

]
= QR̄n, (26)

where

R̄n =
[
Φ̄n−1B̄, . . . , Φ̄0B̄, Φ̄−1B̄, . . . , Φ̄−µB̄

]
. (27)

If the system (1) isn-step reachable, then (17) holds and
from (26) we obtain

Q = R̂nR̃−1
n , (28)

where R̂n and R̃n are square matrices consisting ofn
linearly independent corresponding columns of the matri-
cesRn and R̄n, respectively.

Similarly, from (21), (25) andC̄ = CQ, we have

On :=



CΦ−µ
...

CΦ−1

CΦ0
...

CΦn−1


=



C̄Φ̄−µ
...

C̄Φ̄−1

C̄Φ̄0
...

C̄Φ̄n−1


P = ŌnP, (29)

where

Ōn :=



C̄Φ̄−µ
...

C̄Φ̄−1

C̄Φ̄0
...

C̄Φ̄n−1


. (30)

If the system (1) isn-step observable, then (20) holds and
from (29) we obtain

P = Õ−1
n Ôn, (31)

where Ôn and Õn are square matrices consisting ofn
linearly independent corresponding rows of the matrices
On and Ōn, respectively.

If the system (1) isn-step reachable andn-step ob-
servable, then the matrices̄E, Ā, B̄, C̄ in the canonical

form (5) can be found using the following procedure:

Procedure 1.

Step 1. Knowing E, A, B, C, find the transfer ma-
trix (4).

Step 2. Using the procedure presented in Section 3,
find the realisation of the transfer matrix in the
canonical form (5).

Step 3. Using (14) and (24), find the fundamental ma-
trices Φi and Φ̄i for i = −µ, . . . ,−1, 0, . . . ,
n− 1.

Step 4. Using (18), (27) and (21), (30), findRn, R̄n,
On and Ōn.

Step 5. Using (28) and (31) find the desired matricesQ
and P .

5. Canonical Forms of the Matrices of the
Singular 2D Roesser Model

Consider the singular 2D Roesser model

E

[
xh

i+1,j

xv
i,j+1

]
= A

[
xh

ij

xv
ij

]
+ Buij , (32a)

yij = C

[
xh

ij

xv
ij

]
(32b)

for i, j ∈ Z+, where xh
ij ∈ Rn1 and xv

ij ∈ Rn2 are
respectively the horizontal and vertical state vectors at the
point (i, j), uij ∈ Rm is the input vector,yij ∈ Rp is
the output vector and

E =
[

E1 E2

]
, E1 =

[
E11

E21

]
,

E2 =

[
E12

E22

]
, A =

[
A11 A12

A21 A22

]
,

B =

[
B1

B2

]
, C =

[
C1 C2

]
,

Ekl ∈ Rnk×nl , Akl ∈ Rnk×nl , Bk ∈ Rnk×m,

Ck ∈ Rp×nk , k, l = 1, 2.

(33)

It is assumed thatdet E = 0 and

det

[
E11z1 −A11, E12z2 −A12

E21z1 −A21, E22z2 −A22

]
6= 0 (34)

for somez1, z2 ∈ C× C.
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The transfer matrix of the system (32) is given by

T (z1, z2) = C

[
E11z1 −A11, E12z2 −A12

E21z1 −A21, E22z2 −A22

]−1

B

=

m1∑
i=0

m2∑
j=0

bijz
m1−i
1 zm2−j

2

n1∑
i=0

n2∑
j=0

−aijz
n1−i
1 zn2−j

2

(35)

with m1 ≥ n1, m2 ≥ n2.

Definition 4. The matrices (33) are said to havecanonical
form if Ē12 = 0, Ē21 = 0,

Ē11 =

[
Im1 0
0 0

]
∈ R(m1+1)×(m1+1)

+ , Ē22 = I2m2 ,

Ā11 =

[
0 Im1

0 0

]
∈ R(m1+1)×(m1+1)

+ ,

Ā12 =

 0 0 · · · 0
0 0 · · · 0
1 0 · · · 0

 ∈ R(m1+1)×2m2
+ ,

Ā21 =



0 0 · · · 0 0
0 0 · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0

an10 an1−1,0 · · · a00 0
an11 an1−1,1 · · · a01 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1n2 an1−1,n2 · · · a0n2 0
bm1,1 bm1−1,1 · · · b11 b01

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bm1,m2−1 bm1−1,m2−1 · · · b1,m2−1 b0,m2−1

bm1m2 bm1−1,m2 · · · b1m2 b0m2


∈ R2m2×(m1+1)

+ ,

Ā22 =



0 Im2−1

......
0 0

0 0
......

0 0
. . . . . . . . .
0 0

......
0 Im2−1

0 0
......

0 0


∈ R2m2×2m2

+ ,

B̄1 =


0
...

0
1

 ∈ Rm1+1, B̄2 =


0
...

0

 ∈ R2m2 ,

C̄1 =
[

bm10 bm1−1,0 · · · b00

]
∈ R1×(m1+1),

C̄2 =
[
0 · · · 0 1︸ ︷︷ ︸

m2+1

0 · · · 0
]
∈ R1×2m2 . (36)

Definition 5. The matrices (36) satisfying (35) for a given
T (z1, z2) are called arealisation in canonical form of
T (z1, z2).

6. Determination of 2D Realisations
in Canonical Forms

Given the improper 2D transfer function

T (z1, z2) =

m1∑
i=0

m2∑
j=0

bijz
m1−i
1 zm2−j

2

n1∑
i=0

n2∑
j=0

−aijz
n1−i
1 zn2−j

2

(37)

of the single-input single-output 2D Roesser model (32)
with m1 ≥ n1 and m2 ≥ n2, find a realisation in the
canonical form (36) of (37). The transfer function (37)
can be written as

T (z1, z2) =

m1∑
i=0

m2∑
j=0

bijz
−i
1 z−j

2

n1∑
i=0

n2∑
j=0

−aijz
n1−m1−i
1 zn2−m2−j

2

=

m1∑
i=0

biz
−i
1

n1∑
i=0

−aiz
n1−m1−i
1

(38)

for m1 ≥ n1 and m2 ≥ n2, where

bi :=
m2∑
j=0

bijz
−j
2 , ai :=

n2∑
j=0

aijz
−n2−m2−j
2 . (39)

Taking into account the fact that

T (z1, z2) =
Y (z1, z2)
U (z1, z2)

,

where Y (z1, z2) = Y and U (z1, z2) = U are respec-
tively the 2Dz-transforms ofy(i, j) and u(i, j) (Kaczo-
rek, 1985) , and defining

Ē =
U

n1∑
i=0

−aiz
n1−m1−i
1

, (40)

from (38) we obtain

Y =
m1∑
i=0

biz
−i
1 Ē. (41)
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From (40) we have

U +
n1∑
i=0

aiĒzn1−m1−i
1 = 0. (42)

From (41) and (42), the block diagram shown in Fig. 2
follows for m1 = n1 + 1.
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Fig. 2. Block diagram for the transfer function (38).

Note that in addition tom1 horizontal delay ele-
ments (Fig. 2) we needm2 vertical delay elements to
implement the feedback gainsai, i = 0, 1, . . . , n1 and
m other vertical delay elements to implement the read-
out gainsbi, i = 0, 1, . . . ,m1. Therefore, the complete
block diagram shown in Fig. 2 requiresm1 + 2m2 delay
elements (Fig. 3).

As the horizontal state variablesxh
1 (i, j), . . . ,

xh
m1

(i, j) we choose the output of the horizontal
delay elements, and as the vertical state variables
xv

1(i, j), . . . , x
v
2m2

(i, j) we choose the outputs of the ver-
tical delay elements.

Using Fig. 3, we can write the following equations:

xh
1 (i + 1, j) = xh

2 (i, j),

xh
2 (i + 1, j) = xh

3 (i, j),

...

xh
m1

(i + 1, j) = xh
m1+1(i, j),

0 = xv
1(i, j) + u(i, j),

xv
1(i, j + 1) = xv

2(i, j),

xv
2(i, j + 1) = xv

3(i, j),

...

xv
m2−n2−1(i, j + 1) = xv

m2−n2
(i, j),

xv
m2−n2

(i, j + 1) = an10x
h
1 (i, j) + an1−1,0x

h
2 (i, j)

+ · · ·+ a00x
h
m1

(i, j)
+ xv

m2−n2+1(i, j),

xv
m2−n2+1(i, j + 1) = an1,1x

h
1 (i, j) + an1−1,1x

h
2 (i, j)

+ · · ·+ a01x
h
m1

(i, j)
+ xv

m2−n2+2(i, j),

...
xv

m2
(i, j + 1) = an1,n2x

h
1 (i, j) + an1−1,n2x

h
2 (i, j)

+ · · ·+ a0n2x
h
m1

(i, j),

xv
m2+1(i, j + 1) = bm1,1x

h
1 (i, j) + bm1−1,1x

h
2 (i, j)

+· · ·+ b21x
h
m1−1(i, j)+b11x

h
m1

(i, j)

+ b01x
h
m1+1(i, j) + xv

m2+2(i, j),
... (43)

xv
2m2−1(i, j + 1) = bm1,m2−1x

h
1 (i, j)

+ bm1−1,m2−1x
h
2 (i, j)

+ · · ·+ b2,m2−1x
h
m1−1(i, j)

+ b1,m2−1x
h
m1

(i, j)

+ b0,m2−1x
h
m1+1(i, j)

+ xv
2m2

(i, j),

xv
2m2

(i, j + 1) = bm1m2x
h
1 (i, j)+bm1−1,m2x

h
2 (i, j)

+ · · ·+ b2m2x
h
m1−1(i, j)

+b1m2x
h
m1

(i, j)+b0m2x
h
m1+1(i, j).

Defining

xh(i, j) =
[
xh

1 (i, j) xh
2 (i, j) · · · xh

m1+1(i, j)
]T

,

xv(i, j) =
[
xv

1(i, j) xv
2(i, j) · · · xv

2m2
(i, j)

]T
,

from (43) we obtain (32) with matricesE, A, B, and C
of the form (36).
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Fig. 3. Complete block diagram for the transfer function (38).



Canonical forms of singular 1D and 2D linear systems 69

7. Transformation of the Matrices of the
Singular Roesser Model to Their
Canonical Forms

For the given matrices (33) establish conditions on which
they can be transformed to their canonical forms (36), and
find nonsingular matrices

P =

[
P1 0
0 P2

]
, Q =

[
Q1 0
0 Q2

]
, (44)

Pk, Qk ∈ Rnn×nk for k = 1, 2, such that the matrices

Ē =

[
Ē11 0
0 Ē22

]
= P

[
E11 E12

E21 E22

]
Q

=

[
P1E11Q1 P1E12Q2

P2E21Q1 P2E22Q2

]

Ā =

[
Ā11 Ā12

Ā21 Ā22

]
= P

[
A11 A12

A21 A22

]
Q (45)

=

[
P1A11Q1 P1A12Q2

P2A21Q1 P2A22Q2

]

B̄ =

[
B̄1

B̄2

]
= P

[
B1

B2

]
=

[
P1B1

P2B2

]
,

C̄ =
[

C̄1 C̄2

]
=

[
C1 C2

]
Q=

[
C1Q1 C2Q2

]
have the canonical forms (36).

Theorem 4.The matrices (33) can be transformed by the
nonsingular matrices (44) to their canonical forms (36)
only if

1. E12 = 0, E21 = 0, rank E11 = m1,
rank E22 = 2m2.

2. rank A11 = m1, rank A12 = 1,
rank A22 = 2 (m2 − 1), B2 = 0.

Proof. From (45) we have

Ēkl = PkEklQl, (46a)

Ākl = PkAklQl, (46b)

B̄k = PkBk, C̄k = CkQk (46c)

for k, l = 1, 2. From (46a) it follows thatĒ12 =
P1E12Q2 = 0, Ē21 = P2E21Q1 = 0 and E12 = 0,
E21 = 0 since detPk 6= 0 and detQk 6= 0 for k = 1, 2.

Using (46a) and (36), we obtainrank E11 =
rank P1E11Q1 = rank Ē11 = m1, rank E22 =
rank P2E22Q2 = rank Ē22 = 2m2. In a similar manner,
using (46b), (46c) and (36), we can prove the necessity of
the conditions of Part 2.

If (34) holds, then[
E11z1 −A11 E12z2 −A12

E21z1 −A21 E22z2 −A22

]−1

=
∞∑

i=−µ1

∞∑
j=−µ2

Tijz
−(i+1)
1 z

−(j+1)
2 , (47)

where the pair(µ1, µ2) is the nilpotence index and the
Tij ’s are the transition matrices defined by[

E1 0
]
Ti,j−1 +

[
0 E2

]
Ti−1,j −ATi−1,j−1

=

{
In for i = j = 0,

0 for i 6= 0 and/or j 6= 0,
(48)

and Tij = 0 for i < −µ1 and/or j < −µ2.

Let[
Ē11z1 − Ā11 −Ā12

−Ā21 Ē22z2 − Ā22

]−1

=
∞∑

i=−µ1

∞∑
j=−µ2

T̄ijz
−(i+1)
1 z

−(j+1)
2 . (49)

Then from (46), (47) and (49) we have

Tij = QT̄ijP for i, j ∈ Z+. (50)

The solutionxij of (32a) with the boundary conditions

xh
0j , x

v
i0 for 0 ≤ j ≤ n2 + µ2 − 1

and 0 ≤ i ≤ n1 + µ1 − 1 (51)

is given by

xij =

[
xh

ij

xv
ij

]
=

i+µ1−1∑
k=0

j+µ2−1∑
l=0

Ti−k−1,j−l−1Bukl

+
j+µ2−1∑

l=0

Ti,j−l−1E1x
h
0l

+
i+µ1−1∑

k=0

Ti−k−1,jE2x
v
k0. (52)

Theorem 5. Let the matrices (33) satisfy the assumption
(34) and the conditions of Theorem 4. Then there exist
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nonsingular matrices in (44) such that the matrices (46)
have the canonical forms (36) if

rank Rn1n2 = n (53)

and

rank On1n2 = n, (54)

where

Rn1n2 :=
[
Tn1−1,n2−1B, . . . ,

T00B, T−1,0B, T0,−1B, . . . ,

T−µ1,−µ2B
]

(55)

and

On1n2 :=



CT−µ1,−µ2
...

CT00

CT−1,0

CT0,−1
...

CTn1−1,n2−1


. (56)

Proof. From (46), (50) and (55) we have

Rn1n2 :=
[
Tn1−1,n2−1B, . . . ,

T00B, T−1,0B, T0,−1B, . . . , T−µ1,−µ2B
]

= Q
[
T̄n1−1,n2−1B̄, . . . ,

T̄00B̄, T̄−1,0B̄, T̄0,−1B̄, . . . , T̄−µ1,−µ2B̄
]

= QR̄n1n2 , (57)

where

R̄n1n2 :=
[
T̄n1−1,n2−1B̄, . . . ,

T̄00B̄, T̄−1,0B̄, T̄0,−1B̄, . . . ,

T̄−µ1,−µ2B̄
]
. (58)

If the condition (53) is satisfied, then from (57) we obtain

Q = RnR̄−1
n , (59)

where Rn and R̄n are square matrices consisting ofn
linearly independent corresponding columns of the matri-
cesRn1n2 and R̄n1n2 , respectively.

Similarly, from (46), (50) and (56) we have

On1n2 =



CT−µ1,−µ2
...

CT00

CT−1,0

CT0,−1
...

CTn1−1,n2−1


=



C̄T̄−µ1,−µ2
...

C̄T̄00

C̄T̄−1,0

C̄T̄0,−1
...

C̄T̄n1−1,n2−1


P

= Ōn1n2P, (60)

where

Ōn1n2 =



C̄T̄−µ1,−µ2
...

C̄T̄00

C̄T̄−1,0

C̄T̄0,−1
...

C̄T̄n1−1,n2−1


. (61)

If the condition (54) is satisfied, then from (60) we obtain

P = Ō−1
n On, (62)

where On and Ōn are square matrices consisting ofn
linearly independent corresponding rows of the matrices
On1n2 and Ōn1n2 , respectively.

MatricesQ and P can be found using the following
procedure:

Procedure 2.

Step 1. Knowing E, A, B and C, find the transfer ma-
trix (35).

Step 2. Using the procedure presented in Section 6,
find the realization of the transfer matrix in the
canonical form (36) .

Step 3. Using (47) and (49), determine the fundamental
matricesTij and T̄ij for i = −µ1, . . . , n1 + 1
and j = −µ2, . . . , n2 + 1.

Step 4. Using (55), (58) and (56), (61), findRn, R̄n,
On and Ōn.

Step 5. Using (59) and (62), find the desired matricesQ
and P .
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8. Concluding Remarks

In the first part of the paper the new canonical forms (5)
for multi-input multi-output linear time-invariant systems
were introduced. A method of determining realisations of
a given 1D transfer function in canonical forms was pro-
posed. Sufficient conditions for the existence of canonical
forms for singular linear systems were established (Theo-
rem 3). A procedure for computing a pair of nonsingular
matricesP,Q transforming the matrices of singular sys-
tems to their canonical forms (5) was presented. The con-
siderations for discrete-time linear systems are also valid
for continuous-time linear systems. In the second part,
new canonical forms of the matrices of the singular 2D
Roesser model were introduced. A method of determin-
ing realisations of a given 2D transfer function in canon-
ical forms was proposed. Necessary and sufficient condi-
tions for the existence of a pair of nonsingular block diag-
onal matrices transforming the matrices of the singular 2D
Roesser model to their canonical forms were established.
A procedure for computing the pair of nonsingular matri-
ces was presented. The considerations presented for the
single-input single-output singular 2D Roesser model can
be easily extended to the multi-input multi-output singu-
lar 2D Roesser model. An extension for the singular 2D
Fornasini-Marchesini-type models (1976; 1978; Kaczo-
rek, 1992) is also possible.
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