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The aim of this investigation is to construct an adaptive observer and an adaptive compensator for a class of infinite-
dimensional plants having a known exogenous input and a structured perturbation with an unknown constant parameter,
such as the case of static output feedback with an unknown gain. The adaptive observer uses the nominal dynamics of the
unperturbed plant and an adaptation law based on the Lyapunov redesign method. We obtain conditions on the system to
ensure uniform boundedness of the estimator dynamics and the parameter estimates, and the convergence of the estimator
error. For the case of a known periodic exogenous input we design an adaptive compensator which forces the system to
converge to a unique periodic solution. We illustrate our approach with a delay example and a diffusion example for which
we obtain convincing numerical results.
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1. Introduction

In this paper we construct adaptive observers for the
infinite-dimensional linear system with structured pertur-
bations on a complex Hilbert spaceX

d
dt

x(t) = (A0 + BΓC) x(t) + Bu(t) + f(t),

x(0) = x0 ∈ X,

y(t) = Cx(t),

(1)

where A0 is an infinitesimal generator of an exponen-
tially stable C0 semigroupT (t), t ≥ 0 on X (Pazy,
1983). The signalsu(t) and y(t) are the vector-valued
inputs and outputs, respectively, andf(t) is an X-valued
known exogenous input. The operatorsB ∈ L(Rm, X)
and C ∈ L(X, Rm) are known, but the gain matrix
Γ ∈ Rm×m is unknown. The structured perturbation term
BΓC may represent a passive feedback loop. The gainΓ
may depend on other factors such as temperature and age,
and consequently it needs to be estimated in real time.

The proposed observer is of the form

d
dt

x̂(t) = A0x̂(t) + BΓ̂(t)y(t) + Bu(t) + f(t),

x̂(0) = x̂0,

d
dt

Γ̂(t) = G
(
y(t)− Cx̂(t)

)
yT (t),

Γ̂(0) = Γ̂0,

(2)

where G = GT > 0 is a pre-selected adaptation ma-
trix gain. The objective of the paper is to analyze the sta-
bility and convergence properties of the proposed adap-
tive observer. Simplified versions of this adaptive ob-
server scheme for special classes of systems were stud-
ied in earlier papers (Curtainet al., 1997; Demetriou and
Ito, 1996; Demetriouet al., 1998). Our main result (The-
orem 2) uses a Lyapunov equation of the form

A∗Qx + QAx = −L∗Lx, x ∈ D(A0),

B∗Q = C,
(3)
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with A0 + µI replacing A, where µ is a certain pos-
itive constant,Q ∈ L(X) and L is a bounded opera-
tor on D(A0). That is, if there exist a pair of operators
(Q,L) satisfying (3), then the gain estimatêΓ(t) and
the observer errore(t) = x(t) − x̂(t) are bounded and
eµt‖Q 1

2 e(t)‖X → 0 as t → ∞ provided thatu, y ∈
L∞`oc(0,∞; Rm). Moreover, under a persistence of exci-
tation condition the parameter convergenceΓ̂(t) → Γ as
t →∞ is proved.

The earlier results on the existence of solutions to
Lur’e equations in the literature are too restrictive for
our application. Balakrishnan (1995) assumes thatA is
a Riesz spectral operator and the scalar inputs and out-
puts are very smooth; both Curtain (1996a; 1996b) and
Pandolfi (1997) require the exact controllability, which is
never satisfied by our class of systems. In the recent re-
sults by Curtain (2001) and Pandolfi (1998), the latter as-
sumption is removed. The results in (Curtain, 2001) pro-
vide the type of the positive-real lemma suited to our ap-
plications.

A key assumption to ensure the existence ofµ, L, Q
satisfying (3) is that there exists a positive numberµ so
that (A0 + µI,B,C) satisfies a positive-real condition
(Curtain, 2001) as follows withA = A0 + µI.

Definition 1. Let A be an infinitesimal generator of an
exponentially stable semigroup onX. If the transfer func-
tion G(s) = C(s I − A)−1B : C+

0 → L(C m), where
C+

0 = {s ∈ C : Re s > 0} satisfies

(i) G(s) = G(s̄), (4)

(ii) G(s) is holomorphic onC+
0 , (5)

(iii) G(s) + G(s)∗ ≥ 0 for all s = ı ω, ω ∈ R, (6)

then G is positive real.

Although there are many results on the positive-
real lemma in the infinite-dimensional literature (e.g., see
(Staffans, 1995; 1997; 1998; 1999; Weiss, 1994; 1997;
Weiss and Weiss, 1997), most are in terms of a certain
Riccati equation. For our main result we need the singular
equation (Lur’e) (3), for which no corresponding Riccati
equation exists.

In Section 2, we state and discuss three distinct ver-
sions of a positive-real lemma that are in essence exis-
tence theorems for a Lur’e equation like (3). Moreover,
we collect various sets of verifiable sufficient conditions.
We discuss three examples which satisfy at least one ver-
sion of the positive-real lemma. In Section 3 we prove the
main theorem based on a Lyapunov method and a solution
to the Lur’e equation, and state the persistence of the exci-
tation condition we use for the gain estimate convergence.

In Section 4, we propose an adaptive compensator design
using a separation scheme with an LQR design on the re-
sulting adaptive observer. To illustrate the above results
we present some numerical results on our three examples
in Section 5.

2. Positive-Real Lemmas

The adaptive observer scheme is only applicable to
positive-real systems and the key is a positive real lemma.
As is well known, it is possible to have different versions
corresponding to spectral factors of different dimensions.
We have found three useful versions. The first version is
particularly useful for dissipative systems with collocated
actuators and sensors, and it was utilized in (Demetriou
and Ito, 1996). These systems are always positive-real,
and the following lemma is trivial.

Lemma 1. Suppose thatA is the infinitesimal generator
of a contraction semigroup onX and B ∈ L(Rm, X).
Then Q = I is a solution to the constrained Lyapunov
equation forx ∈ D(A)

〈Ax, Qx〉+ 〈Qx,Ax〉 ≤ 0,

B∗Q = B∗.

In the adaptive observer application, one also needs
to suppose thatA generates an exponentially stableC0-
semigroup. An example satisfying Lemma 1 is the fol-
lowing.

Example 1.Consider the diffusion equation

∂z

∂t
=

∂2z

∂ξ2
+ b(ξ)u(t), z(0, t) = 0 = z(1, t),

z(ξ, 0) = z0(ξ),

y(t) =
∫ 1

0

b(ξ)z(ξ, t) dξ,

where b ∈ L2(0, 1) = X.

We let

D(A)=


h∈L2(0, 1) :h,

dh

dξ
are absolutely continuous,

d2h

dξ2
∈ L2(0, 1) and h(0) = 0 = h(1)


and define

Ah =
d2h

dξ2
for h ∈ D(A).

Then A has compact resolvent, eigenvaluesλn =
−n2π2, n ∈ N and eigenvectorsφn =

√
2 sin(nπξ),
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n ∈ N, which form an orthonormal basis forL2(0, 1). A
is exponentially stable, self-adjoint and forx ∈ D(A)

〈x, Ax〉 ≤ −‖x‖2,

and it generates a contraction semigroup.

Finally, note thaty(t) = 〈b, z(·, t)〉 = Cz(·, t) and
B = C∗. �

To treat systems for which the actuators and sensors
were not collocated, the following version was proven in
(Curtainet al., 1997).

Lemma 2. Suppose thatA is self-adjoint, has compact
resolvent, it generates an exponentially stable semigroup,
its eigenvalues{λn, n ∈ N} are simple and its eigen-
vectors{φn, n ∈ N} form an orthonormal basis forX.
Suppose thatb, c ∈ X satisfy

〈c, φn〉〈b, φn〉 > 0, n ∈ N,

sup
n∈N

∣∣∣∣ 〈c, φn〉
〈b, φn〉

∣∣∣∣ < ∞.

Then there exist operators0 ≤ Q = Q∗ ∈ L(X), L ∈
L(D(A), X) and µ > 0 such that forx, y ∈ D(A)

〈(A + µI)x,Qy〉+ 〈Qx, (A + µI)y〉 = −〈Lx,Ly〉,

〈x, c〉 = 〈x, Qb〉.
(7)

Proof. Show by direct substitution that the following op-
erators satisfy the constrained Lyapunov equation:

Qx =
∞∑

n=1

〈c, φn〉
〈b, φn〉

〈x, φn〉φn,

Lx =
∞∑

n=1

(
−2(µ + λn)〈c, φn〉

〈b, φn〉

) 1
2

〈x, φn〉φn.

(8)

This lemma applies to Example 1, where we can take
µ = π2 − ε for any ε > 0.

The following example from (Curtainet al., 1997)
does not satisfy the conditions of Lemma 1, but Lemma 2
does apply.

Example 2.Consider the diffusion equation

∂z

∂t
=

∂2z

∂ξ2
− α

∂z

∂ξ
+ b(ξ)u(t) + f, α > 0,

z(0, t) = 0, z(1, t) = 0, z(ξ, 0) = z0(ξ),

with the output given by

y(t) =
∫ 1

0

e−αξz(ξ, t) dξ,

where

b(ξ) =

{
1 on [0, 1/2),

0 elsewhere.

Take X = L2(0, 1) to be the Hilbert space with the
weighted inner product

〈f, g〉 =
∫ 1

0

e−αξf(ξ)g(ξ) dξ.

Then, defining

D(A0) =


h : h,

dh

dξ
are absolutely continuous

and
d2h

dξ2
∈ X, h(0) = 0 = h(1)


and

A0h =
d2h

dξ2
− α

dh

dξ
for h ∈ D(A0),

it is straightforward to show thatA0 is self-adjoint with
eigenvaluesλn = −α2

4 − n2π2 and normalized eigen-
vectors φn(ξ) =

√
2eαξ/2 sin(nπξ), n ∈ N. The set

{φn, n ∈ N} forms an orthonormal basis forX. Let

cn := 〈c, φn〉 =
4nπ

√
2
(
1− e−

α
2 (−1)n

)
4n2π2 + α2

, n ∈ N,

bn := 〈b, φn〉

=
4nπ

√
2
(
1 + e−

α
4 cos(nπ

2 )− α
2nπ e−

α
4 sin(nπ

2 )
)

4n2π2 + α2
.

So bncn > 0 for all n and for certain constantsm
and M

m ≤ sup
n≥1

∣∣∣cn

bn

∣∣∣ ≤ M.

So the assumptions of Lemma 2 are satisfied,Q
given by (8) satisfies the constrained Lyapunov equa-
tion (7) and it is boundedly invertible;L is unbounded.

�

Note that in both Lemmas 1 and 2 theL term will
be unbounded in general, even thoughB and C are
bounded, and thatL maps into the state-spaceX. This
is in contrast to the usual finite-dimensional version for
which L maps into the output spaceRm. The latter ver-
sion is much harder to prove for infinite-dimensional sys-
tems, and earlier versions in (Balakrishnan, 1995; Curtain,
1996a; 1996b; Pandolfi, 1997) assumed very strong condi-
tions on the system, such as exact controllability. Here we
extract some useful results from (Curtain, 2001), where
only mild conditions are assumed on the system operators
(A,B,C).
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First we need some extra notation:

H∞(Z) =

 f : C+
0 → Z and f is holomorphic and

‖f‖∞ = sup
ω∈R

‖f(ı ω)‖X < ∞


H2(Z)

=


f : C+

0 → Z and f is holomorphic and

‖f‖22 = sup
x>0

∫ ∞

−∞
‖f(x + ı ω)‖2X dω < ∞


L2
(
(−ı∞, ı∞); Z

)

=


f : (−ı∞, ı∞) → Z andf is measurable and

‖f‖2 =
(∫ ∞

−∞
‖f(ı ω)‖2X dω

) 1
2

< ∞

.

Let Z be a complex Hilbert space. H∞(Z) is a
Banach space under the sup norm, andH2(Z) and
L2((−ı∞, ı∞); Z) are Hilbert spaces under their‖ · ‖2
norms. Furthermore,f ∈ H2(Z) uniquely defines a
function f̃ ∈ L2((−ı∞, ı∞); Z) and f̃ is isomor-
phic to f with ‖f‖2 = ‖f̃‖2. f and f̃ are usu-
ally identified with each other and with this identifica-
tion H2(Z) is a subspace ofL2 ((−ı∞, ı∞); Z). We
denote byPH2 the orthogonal projection ofH2(Z) onto
L2((−ı∞, ı∞); Z).

The results depend on thePopov functionΠ defined
by

Π(ı ω) = G(ı ω) + G(ı ω)∗. (9)

Theorem 1. Suppose thatA is the infinitesimal gen-
erator of an exponentially stableC0-semigroup onX,
B ∈ L(U,X) and C ∈ L(X, U), where U is a sepa-
rable Hilbert space. Assume that

(i) there exists an outer function1 Ξ ∈ H∞(L(U)) such
that

Π(ı ω) = Ξ(ı ω)∗Ξ(ı ω) for almost all ω ∈ R, (10)

(ii) (A,B) is approximately controllable,

(iii) there exists aCΞ ∈ L(D(A), U) such that for all
z ∈ D(A) and someγ > 0∫ ∞

0

∥∥CΞT (t)z
∥∥dt ≤ γ‖z‖2 (11)

and
Ξ(s) = CΞ(sI −A)−1B, (12)

for all s in some right half-plane.

1 Ξ ∈ H∞(L(U)) is outer if its range as a multiplication operator
on H2(U) is dense inH2(U).

Then there exists aQ = Q∗ ∈ L(X) which satisfies, for
all x ∈ D(A), the following Lur’e equations:

A∗Qx + QAx = −C∗ΞCΞx (13)

B∗Qx = Cx. (14)

Proof. This follows from Theorem 3.2 in (Curtain, 2001).
The existence of the mapΨΞ ∈ L(X, L2(0,∞;U)) re-
ferred to in (i) of Theorem 3.2 is shown in Theorem 5.1 of
(Curtain, 2001), where we note that for our Popov func-
tion formula (5.1) simplifies to the expression (12). We
also use the fact thatB is bounded, which also ensures
that the spectral factor will be regular as required in (iii)
of Theorem 3.2. In fact,ΨΞ is defined forx ∈ D(A) by

(ΨΞx) (t) = CΞT (t)x.

The infinite-time admissibility assumption (11) ensures
that ΨΞ extends to a bounded map fromX to
L2(0,∞;U). Moreover,Q = Ψ∗ΞΨΞ.

Sufficient conditions for (10) to hold are

Π(ı ω) ≥ 0 and

Π(ı ω) is invertible for almost allω ∈ R,
(15)

and ∫ ∞

−∞

log+
∥∥Π−1(ı ω)

∥∥
L(U)

1 + ω2
dω < ∞, (16)

where log+ α = max(log α, 0).
(11) and (12) are often difficult to verify, so the fol-

lowing result from Proposition 5.5 of (Curtain, 2001) will
be useful.

Lemma 3. Suppose thatA,B,C are as in Theorem 1
and

(i) conditions (15) and (16) hold,

(ii) A has eigenvalues{λn |n ∈ N} and the corre-
sponding eigenvectors,φn, are such that the span
of {φn, n ∈ N} is dense inX,

(iii) Ξ(−λn) is invertible inL(U) for all n ∈ N,

(iv) CΞ satisfies (11), whereCΞ is given by

CΞφn =
(
Ξ(−λn)∗

)−1
Cφn. (17)

Then, there exists aQ = Q∗ ∈ L(X) satisfying (13)
and (14).

We note that some easily verifiable conditions for
CΞ to satisfy (11) are given in (Hansen and Weiss, 1997)
and cited in Lemma 5.6 in (Curtain, 2001).



Adaptive compensators for perturbed positive real infinite-dimensional systems 445

Lemma 4. (Curtain, 2001, Lem. 5.6)Suppose thatA, the
generator ofT (t), is a diagonal matrix onX = `2 with
eigenvalue eigenvector pairs{λn, φn |n ∈ N} satisfying
the following conditions:

(i) Re λn < 0 for n ∈ N,

(ii) either T (t) is analytic or there exist numbersα ≥ 0
and 0 < a ≤ b such that

a| Im λn|α ≤ −Re λn ≤ b| Im λn|α. (18)

ThenT (t) is exponentially stable andC ∈ L(D(A), `2)
satisfies (11) if and only if there existsm ≥ 0 such that∥∥∥ ∑

−λn∈R(h,ω)

(Cφn)(Cφn)∗
∥∥∥L(`2)

≤ Mh,

where R(h, ω) = {z ∈ C | 0 < Re z ≤ h, ω − h ≤
Im z < ω + h}.

Finally, in Lemma 5.7 of (Curtain, 2001), various
bounds on the spectral factorΞ(s) are derived which help
to verify that Ξ(−λn) is invertible for the case of single-
input single-output systems. Several examples of SISO
parabolic systems are analyzed in Section 6 of that paper,
including some with boundary control and point sensing.
Applying the approach of Section 6 to our Examples 1
and 2 we see that the transfer functions both have the form

g(s) =
∑

n

〈c, φn〉〈b, φn〉
s + λn

,

where bn = 〈b, φn〉 and cn = 〈c, φn〉 are both of order
1/n for large n and λn ∼ −n2 in both examples. Con-
sequently, the analysis and the conclusions are the same as
in Example 6.1 of (Curtain, 2001):Π(ı ω) ∼ m/|ω|3/2

for somem > 0 and sufficiently largeω, and Π has an
outer spectral factorΞ as in (10) which satisfies∣∣Ξ(n2)

∣∣ ≥ γ1

n3/2

for some γ1 > 0 and sufficiently largen. So CΞ is
well defined by (17) and it satisfies (11). It is interesting
to note thatCΞ is unbounded,|CΞφn| ∼

√
n. Here we

have satisfied all the conditions of Lemma 3 and there ex-
ist Q and CΞ ∈ L(D(A), C) satisfying the constrained
Lyapunov equations (13) and (14).

As has already been noted, Lemmas 1 and 2 only ap-
ply to special classes of SISO systems. Lemma 3 applies
to a much wider class of partial differential equations, but
it is not applicable to delay systems. In the following ex-
ample we show how Theorem 1 can be applied to a delay
system.

Example 3.Consider the delay system

ẋ(t) = −ax(t)− bx(t− 1) + u(t), a, b > 0, (19)

y(t) = x(t) (20)

with the transfer function

g(s) =
1

s + a + be−s
∈ H∞.

Now

Π(ı ω) = g(ı ω) + g(ı ω)∗

=
2(a + b cos(ω))

(a + b cos(ω))2 + (ω − b sin(ω))2}

≥ 0 if a ≥ |b| .

In this case, it is easy to find the spectral factorΞ ∈ H∞

given by

Ξ(s) =
α + βe−s

s + a + be−s
, α2 + β2 = 2a, αβ = b. (21)

The delay system (19), (20) can be formulated on the
state-spaceX = C ⊕ L2(−1, 0) with generating opera-
tors defined by

Bu =

(
u

0

)
, C

(
r

f(·)

)
= r, (22)

D(A)=



(
r

f(·)

)
∈ X | f is absolutely continuous,

df

dθ
(·) ∈ L2(−1, 0) and f(0) = r


,

A

(
r

f(·)

)
=

 −ar − bf(−1)
df

dθ

 (23)

(see Curtain and Zwart, 1995, Ch. 2.4). Clearly,B and
C are bounded operators and we recall from (Infante and
Walker, 1977) thatA generates an exponentially stable
semigroup ifa− |b| ≥ µ > 0 for some positive constant
µ. (A,B) is approximately controllable (see Curtain and
Zwart, 1995, Thm. 4.2.10).

The candidate forCΞ is

(CΞx) (t) = αx(t) + βx(t− 1). (24)

CΞ is not bounded, but it does satisfy (11) (see (Salamon,
1984), and note thatT (t) is exponentially stable). We
verify that (12) holds:

Ξ(s) = CΞ(sI −A)−1B.

The resolvent is now given by (Curtain and Zwart, 1995,
Lem. 2.4.5)

(sI −A)−1

(
r

f(·)

)
=

(
q(0)

q(·)

)
, (25)
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where

q(θ) = esθq(0)−
∫ θ

0

es(θ−µ)f(µ) dµ

q(0) =
1

∆(s)

(
r − b

∫ 0

−1

e−s(µ+1)f(µ) dµ

)
,

∆(s) = s + a + be−s.

So

CΞ(sI −A)−1

(
r

f(·)

)
= CΞ

(
q(0)
q(·)

)

=
(
αq(0) + βq(−1)

)
=

α + βe−s

∆(s)
r

+
(

1− b(α + βe−s)
∆(s)

)
e−s

∫ 0

−1

e−sθf(θ) dθ,

and

CΞ(sI −A)−1B =
α + βe−s

s + a + be−s
= Ξ(s),

as required. In fact, it is readily verified that the solution
to the Lur’e equation (13), (14) is

Q =

(
I 0

0 β2I

)
.

For the general retarded system with vector-valued inputs
and outputs, see Section 7 in (Curtain, 2001).

3. An Adaptive Observer: Main Results

The proposed state estimator is

˙̂x(t) = A0x̂(t) + Bu(t) + BΓ̂(t)y(t) + f(t),

x̂(0) = x̂0, (26)

where x̂(t) is the state estimate at timet and Γ̂(t) is
the adaptive estimate of the unknown gain. In order to ex-
tract the adaptation rule for̂Γ(t), we use the Lyapunov re-
design method (Khalil, 1992; Narendra and Annaswamy,
1989), which has proved successful for finite-dimensional
systems. In this section, we show that the same adaptive
observer that was proposed in (Curtainet al., 1997) for
scalar (SISO) systems can be extended to the larger class
of multivariable (MIMO) systems considered in this pa-
per.

Let X−1 be the completion ofX under the norm
‖φ‖−1 = ‖A−1

0 φ‖X . Then X−1 is a Hilbert space and

D(A∗0) ⊂ X ⊂ X−1.

Theorem 2. Consider the structurally perturbed sys-
tem (1), whereA0 is the generator of an exponentially
stable C0 semigroup onX, B ∈ L(Rm, X), C ∈
L(X, Rm), f(t) is a known exogenous signal which is
locally Bochner integrable, andΓ is an unknown ma-
trix feedback gain. If there exist a positive constantµ,
Q ∈ L(X) and L ∈ L(D(A), X) or L(D(A), Rm) sat-
isfying the constrained Lyapunov equation forx ∈ D(A)

(A0 + µI)∗Qx + Q (A0 + µI) x = −L∗Lx, (27)

B∗Qx = Cx, (28)

then the state estimator defined by (26) and the adaptation
rule with adaptation matrix gainG = GT > 0 given by

˙̂Γ(t) = GCe(t)yT (t),

Γ̂(0) = Γ̂0

(29)

have the following properties:

(i) If u, y ∈ L∞`oc(0,∞; Rm), then the quantitieŝΓ(t)
and Q

1
2 e(t) are bounded in norm fort ≥ 0 and

e
µ
2 t‖Q 1

2 e(t)‖X → 0 as t →∞.

(ii) Moreover, if y ∈ L2(0,∞; Rm), then ‖e(t)‖X → 0
as t →∞.

(iii) If we assume thaty ∈ L∞(0,∞, Rm), then the esti-
mation error e(t) = x(t)− x̂(t) is bounded in norm
for t ≥ 0. Moreover, ifQ is coercive, and the plant
is persistently exciting, i.e., there existT0, δ0 and
ε0 such that for each admissible gainq ∈ Rm×m

with (Euclidean) norm equal to1 and each suffi-
ciently large t > 0, there exitst̄ ∈ [t, t + T0] such
that ∥∥∥∫ t̄+δ0

t̄

B q y(τ) dτ
∥∥∥
−1

≥ ε0,

then the parameter convergence

Γ̂(t) → Γ as t →∞

holds.

Proof. (i) Consider the dynamics of the state error

ė(t) = A0e(t) + BΓy(t)−BΓ̂(t)y(t)

= A0e(t) + BΓ̃(t)y(t), (30)

e(0) = x0 − x̂0 = e0. (31)

The dynamics for the parameter errorΓ̃(t) = Γ − Γ̂(t)
become

˙̃Γ(t) = −GCe(t)yT (t),

Γ̃(0) = Γ− Γ̂0 = Γ̃0.
(32)
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First we need to examine the well-posedness of the
coupled system (30), (32), which is, in fact, a linear time-
dependent system

d
dt

[
e(t)

Γ̃(t)

]
=

[
A0 B[ · ]y(t)

−GC[ · ]yT (t) 0

][
e(t)

Γ̃(t)

]
.

(33)

The perturbation termD(t) : X⊕Rm×m → X⊕Rm×m

is given by

D(t) =

[
0 B[ · ]y(t)

−GC[ · ]yT (t) 0

]
. (34)

So, if y ∈ L∞`oc(0, t1; Rm), (33) has a unique solution
given by [

e(t)

Γ̃(t)

]
= U(t, 0)

[
e0

Γ̃0

]
, (35)

where U(t, s) is a mild evolution operator (Curtain and
Pritchard, 1978) defined for0 ≤ s ≤ t ≤ t1. In fact, y(t)
defined by (1) will always be inC(0, t1; R m) for u, f ∈
Lp(0, t1; Rm), p = 1, 2 or∞. In general,e(t) will not
be in D(A0), even if e0 ∈ D(A0). Sufficient conditions
for e(t) ∈ D(A0) are that y(·) ∈ C1(0, t1; Rm) and
e0 ∈ D(A0), which are very strong. However, we assume
this initially to facilitate the Lyapunov argument. We ex-
amine the asymptotic properties of (35) using the follow-
ing Lyapunov functional for( e

Γ̃ )

V (e, Γ̃) = 〈e,Qe〉+ Tr
{

Γ̃T G−1Γ̃
}

, (36)

whereQ is the solution to (27). Sincee(t) ∈ D(A0), we
may differentiateV along solutions of (33) for0 ≤ t ≤
t1 to obtain

V̇ (e, Γ̃) = 〈A0e + BΓ̃y, Qe〉+ 〈Qe, A0e + BΓ̃y〉

+ 2Tr

{
˙̃Γ
T

G−1Γ̃
}

= −‖Le‖2 − 2µ〈e,Qe〉 − 2(Ce)T Γ̃y

+ 2Tr
{

y(Ce)T Γ̃
}

using (27), (28) and (32)

= −‖Le‖2 − 2µ〈e,Qe〉 using bT a = Tr(abT ).

(37)

We now integrate (37) fromt = 0 to t = t1 to obtain

〈e(t1), Qe(t1)〉+ Tr
{

Γ̃T (t1)G−1Γ̃(t1)
}

+
∫ t1

0

‖Le(t)‖2 dt + 2µ

∫ t1

0

〈Qe(t), e(t)〉dt

= 〈e0, Qe0〉+ Tr
{

Γ̃T
0 G−1Γ̃0

}
. (38)

Notice that although we have assumed thate0 ∈
D(A0) and y ∈ C1(0, t1; Rm) to derive (38), all
terms make perfectly good sense fore0 ∈ X and
y ∈ C(0, t1; Rm). Moreover, (35) and the facts that
sup0≤s≤t≤t1 ‖U(t, s)‖ < ∞ and thatD(A0) is dense
in X show that (38) can be extended to alle0 ∈ X. We
now extend (38) to ally ∈ L∞`oc(0, t; Rm) by appealing to
Lemma A1 in Appendix, which shows that if we approxi-
matey by a sequenceyn ∈ C1(0, t1; Rm) satisfying∫ t1

0

∥∥y(s)− yn(s)
∥∥2 ds → 0 as n →∞,

then there holds

sup
0≤s≤t≤t1

∥∥U(t, s)− Un(t, s)
∥∥→ 0 as n →∞. (39)

So the respective solutions to (33) satisfy

sup
0≤s≤t≤t1

(∥∥e(t)− en(t)
∥∥

X
+
∥∥Γ̃(t)− Γ̃n(t)

∥∥)→ 0

as n →∞ (40)

and this suffices to show that (38) holds for anyy ∈
L∞`oc(0, t1; Rm) and e0 ∈ X. This implies that Γ̃ ∈
L∞(0,∞; Rm×m) and Q

1
2 e ∈ L∞(0,∞;X).

Next, we defineq(t) := ‖Q 1
2 e(t)‖2 and deduce the

following from (38):

q(t1)+2µ

∫ t1

0

q(s) ds ≤ q(0)+Tr
{

Γ̃T
0 G−1Γ̃0

}
= V (0).

(41)

Equation (41) and the Bellman-Gronwall Lemma imply
that q(t1) ≤ e−2µt1V (0) or, equivalently,∥∥Q 1

2 e(t1)
∥∥2 ≤ e−2µt1V (0). (42)

Now t1 can be chosen arbitrarily large and so
‖e

µ
2 tQ

1
2 e(t)‖ → 0 as t →∞.

(ii) If y ∈ L2(0,∞; Rm), then it follows from (i) that
the forcing termBΓ̃(t)y(t) in (30) is in L2(0,∞;X).
Note that for allτ ∈ [0, t]

e(t) = T (t−τ)
[
T (τ)x(0)+

∫ τ

0

T (τ − s)BΓ̃(s)y(s) ds
]

+
∫ t

τ

T (t− s)BΓ̃(s)y(s) ds.

SinceT (t) is exponentially stable andB has finite rank,
this implies that‖e(t)‖X → 0 as t → ∞. This follows
from the asymptotic property of the convolution of two
L2(0,∞) functions (see Titchmarsh, 1962).

(iii) Since Γ̃(t) and y(t) are uniformly bounded in
norm for t ≥ 0 and A0 generates an exponentially stable
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semigroup, (30) shows thate(t) is uniformly bounded in
norm for t ≥ 0.

The parameter convergence is proven by applying the
results in Section 3 of (Baumeisteret al., 1997). Our per-
sistent excitation condition coincides with the one in Def-
inition 3.3 of (Baumeisteret al., 1997). The results in
(Baumeisteret al., 1997) are based on the fact that

∥∥e(t̄ + δ0)
∥∥
−1

≥
∥∥∥∫ t̄+δ0

t̄

BΓ̃(τ)y(τ) dτ
∥∥∥
−1
−
∥∥e(t̄)∥∥−1

−
∥∥∥∫ t̄+δ0

t̄

A0e(τ) dτ
∥∥∥
−1

and that for0 ≤ t1 ≤ τ∣∣Γ̃(t1) − Γ̃(τ)
∣∣

=
∣∣∣ ∫ τ

t1

GCe(t)yT (t) dt
∣∣∣

≤ |G| ‖C‖ |y|∞ |τ − t1|
1
2

√∫ τ

t1

‖e(t)‖2X dt.

Our assertion then simply follows from the corresponding
results to Lemmas 3.5–3.6 and Theorem 3.4 in (Baumeis-
teret al., 1997).

Remark 1. The assumptiony ∈ L2(0,∞) in (ii) can be
verified whenA0 +BΓC generates an exponentially sta-
ble C0 semigroup onX and u, f ∈ L2(0,∞). The
assumptiony ∈ L∞(0,∞) in (iii) can be verified when
A0 + BΓC generates an exponentially stableC0 semi-
group onX and u, f ∈ L∞(0,∞).

4. Adaptive Compensators

In this section, we propose an adaptive compensator for
the perturbed plant (1) wheref(t) is a known exogenous
signal. We obtain results forf(t) a periodic signal and
for f ∈ L2(0,∞;X). First we apply output injection to
obtain a modified control problem:

u(t) = u2 − Γ̂(t)y(t). (43)

This has the advantage of producing the new estimator dy-
namics

˙̂x(t) = A0x̂(t) + Bu2(t) + f(t),

x̂(0) = x̂0

(44)

and the same error dynamics (33) for( e(t)

Γ̂(t)
) as before.

So it remains to design a controlleru2(t) for the sys-
tem (44).

We use the LQR control design from (Prato and
Ichikawa, 1988). Suppose that(A0, B, C2) is exponen-
tially stabilizable and detectable and0 < R = RT ∈
L(Cm). We seek to minimize the average cost

J(u) = lim
T→∞

1
T

∫ T

0

(
‖C2x̂(t)‖2 + ‖R− 1

2 u(t)‖2
)

dt

(45)
over all controls satisfyinglimT→∞

1
T

∫ T

0
‖u(t)‖2 dt <

∞ and for which the corresponding closed loop trajec-
tory is bounded ont ≥ 0. They showed that iff(t) is
periodic, the minimizing control law is given by

u2(t) = −R−1B∗
(
Px̂(t) + r(t)

)
, (46)

where P = P ∗ ∈ L(X) is the solution to the Riccati
equation forx ∈ D(A0)

A∗0Px + PA0x− PBR−1B∗Px + C∗2C2x = 0 (47)

and r(t) is the solution to

ṙ(t) =
(
A∗0 − PBR−1B∗

)
r(t)− Pf(t),

r(t) → 0 as t →∞. (48)

Equation (48) has the solution

r(t) =
∫ ∞

t

T ∗P (s− t)Pf(s) ds, (49)

where TP (t) is the exponentially stableC0-semigroup
generated byA−BR−1B∗P .

The closed loop trajectory converges exponentially
fast to the periodic solution

p(t) =
∫ t

−∞
TP (t− s)

(
f(s)−BR−1B∗r(s)

)
ds, (50)

i.e.,
lim

t→∞
eνt‖x̂(t, t0)− p(t)‖X = 0, (51)

whereν is the decay rate ofTP (t).
In the case of a constant exogenous signal, i.e.,

f(t) = f0, we get

p(t) = −
(
A0−BR−1B∗P

)−1

A∗0

(
A0−BR−1B∗P

)
f0.

We note that for the case whenf ∈ L2(0,∞;X), the
feedback control law

u2(t) = −R−1B∗Px̂(t)

ensures that‖x(t)‖ → 0 as t → ∞ as argued in Theo-
rem 3.1, (ii), see also Lemma 12 in (Oostveen and Curtain,
1998).
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We propose the following adaptive compensator for
the case of a known periodic exogenous input:

˙̂x(t) =
(
A0 −BR−1B∗P

)
x̂(t)−BR−1B∗r(t) + f(t),

x̂(0) = x̂0,

ṙ(t) =
(
A∗0 − PBR−1B∗

)
r(t)− Pf(t),

r(t) → 0 as t →∞,

u(t) = −R−1B∗ (Px̂(t) + r(t))− Γ̂(t)y(t),

˙̂Γ(t) = GCe(t)yT (t), Γ̂(0) = Γ̂0

for our structurally perturbed plant (1).

In Section 3 we showed that

e
µ
2 t
∥∥Q 1

2 (x(t)− x̂(t))
∥∥

X
→ 0 as t →∞,

independently of the choice of the control. So combining
this with the results in this section, we conclude that for
the case of a known periodic inputf(t)

eβt
∥∥Q 1

2 (p(t)− x̂(t))
∥∥

X
→ 0 as t →∞,

whereβ = min(ν, µ/2) and p(t) is given by (50).

5. Examples and Numerical Results

We present some numerical results for the three examples
considered in Section 2. For each of these examples, there
exists a solutionQ ∈ L(X) satisfying (27) for a certain
µ > 0, and in all three casesQ is invertible. Conse-
quently, we can conclude that for the adaptive observer
and adaptation rule (2)

eµt
∥∥ (x(t)− x̂(t))

∥∥
X
→ 0

and with the adaptive compensator of Section 4∥∥eβt (x(t)− p(t))
∥∥

X
→ 0.

All the computations described below were carried
out on a Digital Personal Workstation433 au-Series in the
Mechanical Engineering Department at Worcester Poly-
technic Institute. A finite element Galerkin approximation
scheme based on spline elements was used for the spatial
discretization of the two PDEs similar to the one devel-
oped in (Baumeisteret al., 1997). The resulting finite
dimensional ODE systems were integrated in time using
a Fehlberg fourth-fifth Runge-Kutta method. The delay
system in Example 3 was discretized using the method
presented in the paper by Ito and Kappel (1991). The
resulting evolution (finite dimensional) system was sim-
ilarly integrated using the Runge-Kutta coderkf45.f .

Example 4. As was already mentioned in Section 2, we
can choose in this caseµ = π2 − ε in (7), and define the
operatorsQ andL via (8). Alternatively, when Lemma 1
is used, we haveQ = I andL = 0 with the sameµ. The
input operatorb(x) was chosen as

b(ξ) =

{
1 on [0, 1/2),

0 elsewhere.

The unknown gain was chosen asΓ = 1, and as initial
conditions we chosez(ξ, 0) = sin(πξ) and ẑ(ξ, 0) =
cos(2πξ) − 1. The exogenous input wasf(ξ, t) =
50χ[0,1](ξ) sin(2πt). The initial guess for̂Γ(0) = 0 with
an adaptive gain ofG = 20. Figure 1(a) depicts the time
evolution of the output state errorCe(t) =

∫ 1

0
(z(ξ, t) −

ẑ(ξ, t)) dξ. The convergence to zero is achieved within
0.5 seconds. The parameter estimateΓ̂(t) (dashed) and
the actual value ofΓ = 1 are depicted in Fig. 1(b). Pa-
rameter convergence is achieved in4 seconds. �

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1
Evolution of output error, Ce(t)

0 1 2 3 4 5 6
0

0.5

1

1.5

Time (sec)

andΓ Γ(t)^

Fig. 1. Evolution of (a) output error and (b) parameter estimate
Γ̂(t) (dashed) – actual parameterΓ (solid).

Example 5. Equations (7) and (8) can be satisfied with
µ = α2

4 π2 − ε, where the parameterα = 0.2. Initial
conditions were set asz(ξ, 0) = sin(πξ) and ẑ(ξ, 0) =
−0.25 sin(πξ). A constant in space and time exogenous
function is implemented asf(ξ, t) = 50χ[0,1](ξ) and

Γ̂(0) = 0 with G = 2. With these values of initial condi-
tions, it is observed in Fig. 2(a) that the output state error
converges to zero in3.5 seconds. Furthermore, the pa-
rameterΓ̂(t) converges to the actual valueΓ = 1 in 4
seconds as shown in Fig. 2(b).

Example 6. The plant parameters were chosen asa = 3,
b = 1. In this case the solution to the constrained Lya-
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Fig. 2. Evolution of (a) output error and (b) parameter estimate
Γ̂(t) (dashed) – actual parameterΓ (solid).
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Evolution of x(t) and x(t)
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−10
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20
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Fig. 3. Evolution of (a) plant statex(t) (solid) and state es-
timate x̂(t) (dashed); (b) parameter estimatêΓ(t)
(dashed) – actual parameterΓ (solid).

punov equations (13), (14) is

Q =

[
I 0
0 (3±

√
8)I

]
,

which is boundedly invertible.

The actual value of the parameter wasΓ = 0.4 with
the initial condition for its estimate chosen asΓ̂(0) = 0.2.
The initial state was set atx(t − 1) = sin(4t − 1) −
sin(−1) and the state estimate aŝx(t−1) = 0.5 sin(4t−
1); thus x(0) = sin(3) + sin(1) and x̂(0) = 0.5 sin(3).
Here we hadf(t) = 0 for the exogenous signal and chose
an adaptive gain ofG = 500. It is observed from Fig. 3(a)
that the state estimate converges to the plant state in about

2 seconds. Parameter convergence is also achieved in
about 5 seconds. For numerical results for a multivari-
able example the reader is directed to (Demetriouet al.,
1998).
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Appendix

Lemma A1. Suppose thatA generates aC0-semigroup
on the Hilbert spaceX and consider the mild evolution
operator U(t, s) generated byA +

∑k
i=1 Diyi(t), Di ∈

L(X) and yi ∈ L∞(0, t1). Let Un(t, s) be the evolution
operator generated byA +

∑k
i Diy

n
i (t), where for each

i yn
i (t) is a sequence of functions inC1(0, t1) satisfying∫ t1

0

∥∥yn
i (t)− yi(t)

∥∥2 dt → 0 as n →∞.

There holds

sup
0≤s≤t≤t1

∥∥U(t, s)− Un(t, s)
∥∥
L(X)

→∞ as n →∞.

Proof. We only give a detailed proof fork = 1, since
the arguments extend readily to any finitek. We recall
from (Curtain and Zwart, 1995) the defining equations for
U(t, s) and Un(t, s):

U(t, s)x = T (t− s)

+
∫ t

s

T (t− α)Dy(α)U(α, s)xdα (A1)

and

Un(t, s)x = T (t− s)

+
∫ t

s

T (t− α)Dyn(α)Un(α, s)xdα, (A2)

and the estimate

‖U(α, s)‖ ≤ Me(α−s)(ω+µ), (A3)

where
‖T (t)‖ ≤ Meωt, t ≥ 0, (A4)

and
µ = M‖D‖‖y‖L∞(0,t1) > 0.

Consider the following estimates obtained using (A1)
and (A2):∥∥U(t, s)− Un(t, s)

∥∥
≤
∫ t

s

∥∥T (t− α)D
∥∥|y(α)− yn(α)|

∥∥U(α, s)
∥∥dα

+
∫ t

s

∥∥T (t− α)D
∥∥‖yn‖L∞

∥∥U(α, s)− Un(α, s)
∥∥dα

≤ ‖D‖
∫ t

s

Meω(t−α)Me(ω+µ)(α−s)|y(α)− yn(α)|dα

+‖D‖ ‖yn‖L∞

∫ t

s

Meω(t−α)
∥∥U(α, s)−Un(α, s)

∥∥dα.
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Defining fn(t, s) = e−ω(t−s)
∥∥U(t, s) − Un(t, s)

∥∥, we
obtain

fn(t, s) ≤ M2‖D‖
∫ t

s

eµαe−µs|y(α)− yn(α)|dα

+ ‖D‖ ‖yn‖L∞

∫ t

s

fn(α, s) dα

≤ M2‖D‖
(∫ t

s

|y(α)− yn(α)|2 dα

) 1
2

×
(∫ t

s

e2µ(α−s) dα

) 1
2

+ ‖D‖ ‖yn‖L∞

∫ t

s

fn(α, s) dα

= C1

∣∣∣e2µ(t−s) − 1
∣∣∣ 12 (∫ t1

s

|y(α)− yn(α)|2 dα

)1
2

+ C2

∫ t

s

fn(α, s) dα,

whereC1 and C2 only depend ont1.

Thus

fn(t, s) ≤ 2C1e
µ(t−s)‖y−yn‖L2(0,t1)+C2

∫ t

s

fn(α, s) ds

and differentiating this inequality with respect tot for
fixed s yields

dfn

dt
(t, s) ≤ 2C1µeµ(t−s)‖y − yn‖L2(0,t1) + C2fn(t, s)

and

d
dt

(
e−C2tfn(t, s)

)
≤ 2C1µeµ(t−s)e−C2t‖y−yn‖L2(0,t1).

We integrate fromt to s noting that fn(s, s) = 0 to
obtain

e−C2tfn(t, s)

≤ 2C1µe−µs

∫ t

s

e(µ−C2)β dβ ‖y − yn‖L2(0,t1)

=
2C1µ

µ−C2
e−µs

(
e(µ−C2)t−e(µ−C2)s

)
‖y−yn‖L2(0,t1)

and

fn(t, s) ≤ 2C1µ

µ− C2

(
eµ(t−s) − eC2(t−s)

)
‖y−yn‖L2(0,t1)

and∥∥U(t, s)− Un(t, s)
∥∥

≤ 2C1µ

µ− C2

[
e(ω+µ)(t−s)−e(ω+C2)(t−s)

]
‖y−yn‖L2(0,t1),

which proves our claim.

Received: 5 September 2002
Revised: 30 June 2003


