
Int. J. Appl. Math. Comput. Sci., 2003, Vol. 13, No. 4, 527–536

TIMED PETRI-NET BASED FORMULATION AND AN ALGORITHM
FOR THE OPTIMAL SCHEDULING OF BATCH PLANTS

TIANLONG GU∗, PARISA A. BAHRI∗∗, GUOYONG CAI∗

∗ School of Computer Science
Guilin University of Electronic Technology

Guilin 541004, China
e-mail: {cctlgu, ccgycai}@gliet.edu.cn

∗∗ School of Engineering, Murdoch University
Murdoch, WA 6150, Australia

e-mail: parisa@eng.murdoch.edu.au

The effective scheduling of operations in batch plants has a great potential for high economic returns, in which the formu-
lation and an optimal solution algorithm are the main issues of study. Petri nets have proven to be a promising technique
for solving many difficult problems associated with the modelling, formal analysis, design and coordination control of
discrete-event systems. One of the major advantages of using a Petri-net model is that the same model can be used for the
analysis of behavioural properties and performance evaluation, as well as for the systematic construction of discrete-event
simulators and controllers. This paper aims at presenting a Petri-net based approach to the scheduling of operations in batch
plants. Firstly, the short term of the ‘scheduling of batch plants’ is formulated by means of a timed Petri net which can
accommodate various intermediate storage policies, such as unlimited intermediate storage (UIS), no intermediate storage
(NIS), finite intermediate storage (FIS), and mixed intermediate storage (MIS). Secondly, a heuristic search algorithm for
the optimal scheduling of batch plants is given, which is based on generating and checking the markings in the reachability
tree of the Petri-net model. Finally, the novel formulation and algorithm are tested with several simulation case studies.

Keywords: timed Petri nets, scheduling, batch plants, discrete event, algorithm, heuristic

1. Introduction

The problem of production scheduling constitutes an im-
portant topic in industrial plant operations, especially
when multipurpose/multiproduct batch plants are involved
(Rippin, 1993). The effective scheduling of operations in
batch plants has a great potential for high economic re-
turns, in which the formulation and the optimal solution
algorithm are the main issues of study. Traditionally, the
optimal scheduling of batch plants has been formulated as
Mixed Integer Linear or Nonlinear Programming (MILP
or MINLP) problems (Kondili et al., 1996; Papageorgaki
and Reklaitis, 1990). The methodologies allow the incor-
poration of almost any constraint in the problem formu-
lation, but the solution algorithms suffer from high com-
binatorial complexity. The inclusion of nonlinearities and
integer variables creates a particularly difficult problem.
To improve the computational efficiency, heuristic search
algorithms are often adopted (Błażewicz et al., 1996),
which tend towards finding good solutions. A major prob-
lem with these algorithms is that they usually end up in
local optima. As a remedy, stochastic global optimisation

techniques (simulated annealing and genetic algorithms)
were proposed (Graells et al., 1996; Kobayashi et al.,
1995). These algorithms turn out to be efficient in the op-
timal problems that are dominated by a combinatorial ele-
ment. Furthermore, they are not as much affected by non-
linearities and complex objective functions as mathemati-
cal programming algorithms. However, it is quite difficult
to include complex constraints into their internal represen-
tation to ensure the feasibility of the generated schedules.
More recently, to easily formulate the scheduling prob-
lem, a combinatorial technique using the graph represen-
tation was proposed (Adams et al., 1988; Carlier and Pin-
son, 1988). This technique was then extended to the short
term scheduling of multipurpose batch plants (Sanmarti,
1998). However, the main problem with this method is
that it can only handle unlimited or non-intermediate stor-
age cases.

Petri nets constitute a promising technique to solve
many difficult problems associated with the modelling,
formal analysis, and design of discrete-event systems
(Murata, 1989). One of the major advantages of using a

T. Gu et al.528

Petri net model is that the same model can be used for the
analysis of behavioural properties and performance eval-
uation, as well as for systematic construction of discrete-
event simulators and controllers. Petri nets have been used
extensively in discrete manufacturing systems (Zhou and
Kurapati, 1999; YoungWoo et al., 2001a), through repre-
senting simple production lines with buffers, flexible man-
ufacturing systems, intelligent machines and robotics, to
implementing supervisory control of their logical behav-
iours. The timed Petri-net-based optimal scheduling of
discrete manufacturing systems was also reported (Young-
Woo et al., 2001b; Moro et al., 2002; Lee and Dicesare,
1994). Petri-net based techniques for batch chemical in-
dustries were started by Yamalidou and Kantor (1991) and
Hanisch (1992), where Petri nets were used for the logic
modelling and coordination control of discrete batch op-
erations. Gonnet and Chiotti presented a Petri-net super-
visory control technique for multipurpose plants (Gonnet
and Chiotti, 1997). Gu and Bahri (2002) reviewed Petri-
net techniques in chemical batch plants. However, the
Petri-net based optimal scheduling of batch plants has not
been given much attention (Gu and Bahri, 1999).

The aim of this paper is to present a timed Petri-net-
based novel approach to the optimal scheduling of batch
plants. In Section 2, some background on timed Petri nets
is given. Section 3 is devoted to the formulation of the
short-term scheduling of batch plants. In order to obtain
an optimal schedule, a heuristic search algorithm is pre-
sented in Section 4. The applicability of the proposed ap-
proach is illustrated through some simulation case studies
in Section 5.

2. Background for Timed Petri Nets

A Petri net is a directed, weighted, bipartite graph con-
sisting of two kinds of nodes called places and transi-
tions. Graphically, the places are represented by circles
and the transitions by bars. An arc connects either a place
to a transition, or a transition to a place. Formally, an
ordinary Petri net is represented as PN = (P, T, R),
where P = {p1, p2, . . . , pn} is a finite set of places;
T = {t1, t2, . . . , tm} is a finite set of transitions; R ⊆
(P × T) ∪ (T × P) is a binary relation corresponding to
the set of directed arcs from P to T or from T to P
(Murata, 1989). Here, P and T are disjoint sets, i.e.,
P ∩ T = Φ. The set of the places (or transitions) con-
nected to a transition t (or the place p) is called the set of
input places (or transitions) of t (or p), denoted by I t(t)
(or Ip(p)), i.e.,

It(t) = {p′ | (∀ p′ ∈ P) (p′, t) ∈ R}, ∀ t ∈ T,

Ip(p)= {t′ | (∀ t′ ∈ T) (t′, p) ∈ R}, ∀ p ∈ P.

The set of the places (transitions) connected to a transi-
tion t (or a place p) is called the set of output places (or
transitions) of t (or p), denoted by O t(t) (or Op(p)),
i.e.,

Ot(t) = {p′ | (∀ p′ ∈ P) (t, p′) ∈ R}, ∀ t ∈ T,

Op(p) = {t′ | (∀ t′ ∈ T) (p, t′) ∈ R}, ∀ p ∈ P.

Furthermore, I t : T → 2P (or Ip : P → 2T)
is defined as a transition (or place) input function, and
Ot : T → 2P (or Op : P → 2T) as a transition (or
place) output function. Then an ordinary Petri net can
also be formally represented by PN = (P, T, I t, Ot) or
PN = (P, T, Ip, Op).

In addition to the elements described above, a
marked Petri net contains tokens. Tokens remain in
places, travel along arcs, and their flow through the net
is regulated by transition. Tokens are graphically repre-
sented by dots. The marking of a place p in ordinary
Petri nets is a mapping of the place to a non-negative in-
teger representing the number of tokens residing in this
place, denoted by m(p). The markings of all the places
in an ordinary Petri net constitute the marking vector
m : P → N+ (the non-negative integer set), where the
i-th component m(pi) represents the number of the to-
kens in the i-th place pi. The initial marking is denoted
by m0. Formally, a marked Petri net is represented as
PN = (P, T, R, m0), or PN = (P, T, I t, Ot, m0), or
PN = (P, T, Ip, Op, m0).

In a marked Petri net, the places are static and the
transitions are dynamic. The latter can be triggered in
terms of the enabled conditions and firing rules:

Enabled conditions: For some t ∈ T and marking mk,
if any p ∈ I t(t) satisfies mk(p) ≥ 1, then t is
called the enabled transition under this marking;

Firing rules: The occurrence of a transition t under the
marking mk results in a new marking mk+1:

mk+1(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mk(p), ∀p ∈ (
It(t) ∩ Ot(t)

)
,

mk(p) − 1, ∀p ∈ (
It(t) − Ot(t)

)
,

mk(p) + 1, ∀p ∈ (
Ot(t) − It(t)

)
.

Obviously, the firing of transition results in a changeable
distribution of tokens in places, or changeable markings.
Alternative occurrences of transitions produce a firing se-
quence σ = m0ti0m1ti1m2ti2 . . . tikmk+1, where the
occurrence of transitions ti0, ti1, ti2 and tik has a par-
tial relation ti0 < ti1 < ti2 < tik.

Ordinary Petri nets constitute a powerful tool for
modelling and analysing the logical behaviour of com-
plex discrete event systems. However, in many cases time

Timed Petri-net based formulation and an algorithm for the optimal scheduling of batch plants 529

plays an important role in system evolution and cannot be
ignored. Time constants have been included into a Petri
net by associating them either with transitions (called a
timed transition Petri net, TTPN), or with places (called
a timed place Petri net, TPPN). In a TTPN, there are two
modes of firing. In one case, tokens are removed from
the input places when a transition becomes enabled. The
transition fires after some period of time (time delay), de-
positing tokens in the output places. In the other mode,
tokens remain in the input places of an enabled transition.
After a time delay, the transition fires by removing tokens
from the input places, and deposits tokens in the output
places. In a TPPN, a token deposited in places becomes
available only after some period of time (a time delay).
Only the available tokens can enable transitions. A TPPN
can be formally represented as the six-tuple:

PN = (P, T, It, Ot, m0, γ),

or
PN = (P, T, Ip, Op, m0, γ),

where P, T, I t, Ot, Ip, Op and m0 have the same mean-
ings as those in ordinary Petri nets, γ : P → R

+ (the set
of nonnegative real numbers) is the time delay function of
places.

3. Formulating the Scheduling Problems
of Batch Plants

In a batch plant, there are n (n > 1) products to be
produced in m (m > 1) processing units. For each
product, the sequence of visiting the processing units is
pre-specified, referred to as the product (or job) rout-
ing or processing recipes. Normally, the processing time
τij for product (or job) i (i = 1, 2, . . . , n) in unit j
(j = 1, 2, . . . , m) is usually given.

In a TPPN, places can be used to model activities or
resources, and time constants associated with places rep-
resent the processing duration of activities. A token resid-
ing in places means either the availability of a resource,
or an intermediate product being processed. Transitions
can be used to model the discrete events of the involved
activities, such as opening a valve, starting an operation,
finishing a reaction, etc.

Let Oij represent the operation (or the processing
activity) of product i at unit j. This operation O ij can be
represented by two transitions tsij and tfij for the start-
ing and terminating of this operation, respectively, and
one place pij with time duration τij for the processing
activity (see Fig. 1(a)). For product i, assuming that O ij

is the upward activity of operation Oik , these two connec-
tive activities (operations) are related by the intermediate
place pIij , which is introduced to represent the readiness

of the intermediate product for the next processing activity
(see Fig. 1(b)). All the activities of the same product can
be linked by additional intermediate places (see Fig. 1(c)).

 tsij pij(τij) tfij tsij pij (τij) tfij pIij (0) tsik pik (τik) tfik
 • •

 psi (0) tsi1 pi1(τi1) tfi1 pIi1 (0) tsi2 pi2 (τi2) tfi2 pfi (0)
 •

 ps1 (0) ts11 p11(3) tf11 pI11 (0) ts12 p12 (4) tf12 pf1 (0)
 •

 ps2 (0) ts21 p21(4) tf21 pI21 (0) ts22 p22 (5) tf22 pf2 (0)
 •

 p1 (0) • • p2 (0)
 ps3 (0) ts31 p31(3) tf31 pI31 (0) ts32 p32 (7) tf32 pf3 (0)
 •

(a) processing activity Oij (b) processing activity Oij and processing
 activity Oik

(c) TPPN sub-model for product i

(d) TPPN model for a simple batch
plant

Fig. 1. Modelling a simple batch plant via TPPNs.

In a batch plant, there exist activities of processing
different products in the same unit. This kind of resource
sharing can be modelled by introducing a resource place
pj (j = 1, 2, . . . , m) for each processing unit. Assuming
that operations Oij (j = 1, 2, . . . , m) share the same unit
j, place pj is both the input of the starting events and the
output of the terminating events for all these activities.

Now all the operations in a batch plant can be easily
formulated by the following procedures:

S1: For product i, each processing activity is represented
by two transitions tsij , tfij , and one place pij .

S2: For product i, introduce the i-th initial marked place
psi representing the beginning of the job (e.g., the
raw materials are ready), and the i-th final place pfi,
representing the end of the i-th job.

S3: For the processing activity Oij , introduce the inter-
mediate place pIij , representing the readiness of the
intermediate product for the next processing activity,
Oi(j+1).

S4: For the processing unit j, introduce the resource
place pj representing the unit’s availability.

S5: In terms of job routing or product recipe, all the activ-
ities involved in product i are linked, and modelled
as a TPPN sub-model.

S6: All the activities that share the same resource places
pj (j = 1, 2, . . . , m) are interconnected, and a com-
plete TPPN model for the scheduling of batch plants
is created.

T. Gu et al.530

Figure 1(d) shows the TPPN for a simple multiprod-
uct batch plant consisting of three products (p1 to p3)
and two processing units (u1 to u2), where the process-
ing times are given in Table 1.

Table 1. Processing times (h) of products.

Units Products

p1 p2 p3

u1 3.0 4.0 3.0

u2 4.0 5.0 7.0

So far, the intermediate storage policies have not
been included into the modelling procedures. In fact, they
can handle only an unlimited intermediate storage policy
(UIS) (i.e., buffers with infinite sizes). For the UIS pol-
icy, every intermediate product of the i-th job after unit
j does not need to occupy unit j until the next unit (unit
j + 1) is ready to process the i-th job. If the next unit
(unit j + 1) is busy, the intermediate product of the i-th
job can be transferred from unit j to any available storage
at any time. Essentially, the UIS does not impose any con-
straints on the operations in a batch plant. However, there
also exist other complicated intermediate storage policies,
such as no intermediate storage (NIS), finite intermedi-
ate storage (FIS), zero wait (ZW), and mixed intermediate
storage (MIS) (Ku et al., 1987; Ku and Karimi, 1990). In
the following, we shall discuss how to deal with these in-
termediate storage policies.

Finite Intermediate Storage (FIS) Policy. Under the
FIS policy, finite storage tanks (i.e., buffers with finite
sizes) are available between batch units. If there is at least
one intermediate storage tank available between units j
and j + 1, the intermediate product of the i-th job fin-
ished at unit j does not need to occupy this unit until the
next unit (unit j + 1) is ready to implement product i.
If there are bj intermediate storage tanks between unit j
and unit j+1, an intermediate storage place psj(j+1) can
be introduced, which contains initially sj tokens. The in-
termediate storage place psj(j+1) will function as both
the input of the finishing events of upward activities and
the output of starting events of downward activities. In
order to formulate the FIS policy, Steps 4 and 6 in the pre-
vious procedures should be modified:

S4’: For the processing unit j, introduce a processing unit
resource place pj (j = 1, 2, . . . , m), and an interme-
diate storage resource place psj(j+1) (j < m) ini-
tially marked by sj tokens, where bj is the number
of intermediate storage tanks between units j and
j + 1.

S6’: All the activities that share the same resource places
pj (j = 1, 2, . . . , m) (processing unit) are intercon-
nected, and so are all the activities that share the same

sharing resource places psj(j+1) (j < m) (inter-
mediate storage tank), which results in a complete
TPPN for the scheduling of batch plants.

No Intermediate Storage (NIS) Policy. Under the NIS
policy, there exists no intermediate storage in the batch
plant. Then the intermediate product of the i-th job fin-
ished at unit j has to be held in unit j until the next
unit (unit j + 1) is ready to implement the i-th job. This
imposes additional restrictions on the operation, which
can be represented by introducing a virtual resource place
pdj(j+1) between units j and j +1. This virtual resource
place pdj(j+1) is initially marked by one token, and serves
as both the input of the finishing events of upward activ-
ities and the output of the finishing events of downward
activities. In order to formulate the NIS policy, Steps 4
and 6 in the previous procedures should also be modified:

S4: For the processing unit j, introduce a processing unit
resource place pj (j = 1, 2, . . . , m), and an inter-
mediate storage imaginary resource place pdj(j+1)

(j < m), initially marked by one token.

S6: All the activities that share the same resource places
pj (j = 1, 2, . . . , m) (processing unit) are intercon-
nected, and so are all the activities that share the same
virtual resource places pdj(j+1), which results in a
complete TPPN for the scheduling of batch plants.

Mixed Intermediate Storage (MIS) Policy. Under the
MIS policy, each of UIS, FIS and NIS may be used be-
tween units j and j + 1. This only brings some differ-
ence of either intermediate storage resource places or vir-
tual resource places. Thus, the modelling procedures can
be modified as follows:

S4: For the processing unit j, introduce an processing
unit resource place pj (j = 1, 2, . . . , m), an inter-
mediate storage resource place psj(j+1) (j < m),
marked initially by bj tokens, if there are bj inter-
mediate storage tanks between units j and j + 1,
and a virtual intermediate storage resource place
pdj(j+1) (j < m), initially marked by one token if
there is no intermediate storage between units j and
j + 1.

S6: All the activities that share the same resource places
pj (j = 1, 2, . . . , m) (processing unit) are intercon-
nected, and so do all the activities that share the same
virtual resource places pdj(j+1) and the intermediate
storage resource places psj(j+1). Then a complete
TPPN for the scheduling of batch plants is created.

4. Heuristic Algorithm

In the TPPN formulation of a batch plant, all the possi-
ble operations of different sequences can be completely

Timed Petri-net based formulation and an algorithm for the optimal scheduling of batch plants 531

tracked by their reachability tree. Theoretically, an opti-
mal schedule of the batch plant can be obtained by gen-
erating the reachability tree, and finding an optimal path
from the initial to the final marking. The path is a firing
sequence of the transitions of the TPPN model. However,
even for a simple Petri net, the reachability tree may be too
large to generate in its entirety. Instead of generating the
entire reachablity tree, a heuristic algorithm is developed
to generate only a necessary portion of the reachability
tree for the optimal searches.

The heuristic algorithm that finds an optimal path is
constructed based on the well-known graph search algo-
rithm A∗ (Nilsson, 1980). Given a TPPN model, the
algorithm expands the reachability tree from the initial
marking until the generated portion of the reachability
tree touches the final marking. Once the final marking is
found, the optimal path is constructed by tracing the point-
ers that denote the parenthood of the markings, from the
final to the initial marking. Then the transition sequence
of the path provides the order of the activities or opera-
tions, i.e., the schedule. In the algorithm, expanding and
checking are two important aspects:

(1) Expanding: For the current node or marking m k,
find all possible enabled transitions and compute their new
marking mk+1 in terms of the enabled conditions and
firing rules. These new markings {mk+1} are the de-
scendant or new nodes expanded from the current node
mk, and stored in the OPEN list. Here, {mk+1} is
used to represent the set of all possible new markings,
and the list OPEN maintains all the markings generated
but not explored yet. The current node mk is put in
the list CLOSED, which maintains all the markings gen-
erated and explored so far. In this expanding process,
some important information is recorded, such as the time
during which the new marking is produced, denoted by
g(mk+1), the time during each processing unit has been
utilised, denoted by UTj(mk+1) (j = 1, 2, . . . , m), the
time during each product has been processed, denoted by
PTi(mk+1) (i = 1, 2, . . . , n), and the return pointer of
{mk+1} as the current node mk.

(2) Checking: When the expanding reaches the final
marking, we say that a feasible schedule is obtained, and
then determine whether or not the current upper bound
of the objective function should be updated. If the cur-
rent node mk is not a final marking, determine whether a
branch should be expanded (forward search) or discarded
(backward search). The checking is based on the esti-
mated cost f(mk) and the upper bound UB. The upper
bound (UB) of the cost can be initialised as a large num-
ber M so as to ensure that a reasonably optimal makespan
is not left out.

Under the assumption that the optimal scheduling is to
satisfy the minimal makespan, the estimated cost can be

calculated as follows:

f(mk) = h(mk) + g(mk),

h(mk) = max
(

max
j

{∑
i

(τij) − UTj(mk)
}
,

max
i

{∑
j

(τij) − PTi(mk)
})

,

where (
∑

i(τij) − UTj(mk)) is the total remaining du-
ration of the products which are assumed to be processed
consecutively in unit j, and (

∑
j(τij)−PTi(mk)) is the

total remaining duration of the batch units which are as-
sumed to be utilised consecutively for product i; f(mk)
is an estimate of the cost, i.e., the makespan from the ini-
tial to the final marking along an optimal path which goes
through the current marking mk; g(mk) is the current
lowest cost obtained from the initial to the current mark-
ing mk; h(mk) is the heuristic function, or an estimate of
the cost from the current marking mk to the final mark-
ing along an optimal path which goes through the current
marking mk. The estimated cost f(mk) always gives the
lowest bound of the makespan since any idle times that
may occur afterwards are not included in h(mk), i.e., it
satisfies the following condition:

0 ≤ h(mk) ≤ h∗(mk).

Therefore the scheduling algorithm is admissible (Nils-
son, 1980), i.e., it always finds an optimal path or an opti-
mal schedule.

The heuristic algorithm for the short-term scheduling
of batch plants is implemented in the following steps:

s1: Initialize the upper bound (UB) of the makespan as
a large number M , and e(m0), UTj(m0) (j =
1, 2, . . . , m) and PTi(m0) (i = 1, 2, . . . , n) equal
to 0. Store the initial marking m0 in the OPEN list.

s2: If OPEN is empty, the search is complete, and the
firing sequence and the time constants of the optimal
schedule are found, then Stop.

s3: Retrieve marking mk from OPEN, and set mk as
the current node (marking).

s4: If mk is not the final marking, go to s6.

s5: If g(mk) < UB, update UB = g(mk). Go to s2.

s6: For the current marking mk, compute its estimated
cost f(mk) = h(mk) + g(mk).

s7: If f(mk) ≥ UB, go to s2.

s8: For the current marking mk, find all the possible
enabled transitions, and compute the new marking
{mk+1}. Put {mk+1} into the OPEN list and mk

into the CLOSED list.

T. Gu et al.532

s9: Reset the return pointer of mk+1. Update g(mk+1),
UTj(mk+1) (j = 1, 2, . . . , m) and PTi(mk+1)
(i = 1, 2, . . . , n). Go to s2.

The simple batch plant in Fig. 1 is revisited
to illustrate the heuristic algorithm. In the
TPPN model, the initial marking is m0 =
(1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0) and the final marking
is set as mf = (0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0).
The search path of a partial reachability tree is shown in
Fig. 2, and the corresponding decision information and
enabled transitions are presented in Table 2 and 3. When
the search path reaches the marking m19, the upper
bound of the makespan is updated, and UB is reset as 19.
Under the marking m21, we have h(m21) = 19 ≥ UB,
hence we search backward (B). Since there is no entry in
OPEN, the search is finished successfully, and the optimal
schedules are obtained (cf. Fig. 3).

 tf11
 m1 m21
 ts11
 ts21 tf21
 m0 m2 m20

 m3 ts11 m5

 ts21
 m4 m6 m8

 ts32 ts11
 m7
 tf11 m12
 ts21 tf21 ts11
 m9 m10 m11 m14

 m13

 ts22 tf11 tf22 ts12 tf12
 m15 m16 m17 m18 m19

tf11
tf32

tf31
ts31

Fig. 2. Optimal searches of the reachability tree.

 Product 3 Product 2 Product 1
 unit 1
 0 3 7 10

 Product 3 Product 2 Product 1
 unit 2
 0 3 10 15 19

Fig. 3. Gantt chart for optimal schedules.

5. Case Studies

The heuristic algorithm was implemented in Matlab on a
PC/Pentium 4, and several case studies were simulated to
test it. The results show that the algorithm works well.

Case Study 1. The formulation and the algorithm are
tested by considering a multiproduct batch plant consist-
ing of four products (p1 to p4) and three processing units
(u1 to u3). The processing times of each product in each
unit are given in Table 4. Different types of intermedi-
ate storage policies, such as UIS, NIS, FIS (two buffers
between the units 1 and 2, and one buffer between the
units 2 and 3) and MIS (two 2 buffers between the units

1 and 2, and no buffer between the units 2 and 3) are as-
sumed. The TPPN models for each intermediate storage
policy are shown in Fig. 4. By the heuristic algorithm, op-
timal schedules are solved, and the results are presented
in Tab. 5 and Fig. 5.

Case Study 2. A multi-purpose batch plant with three
products (p1 to p3) and three processing units (u1 to
u3) is considered as the second case study, whose prod-
uct recipes are given in Table 6. In this batch plant, the
MIS (Mixed Intermediate Storage) policy with b1 = 1,
b2 = 0 and b3 = ∞ is adopted. The TPPN model is
shown in Fig. 6. The simulation results from the heuristic
algorithm are presented in Fig. 7.

6. Conclusions

A Timed-Placed Petri-Net (TPPN) formulation for the
scheduling of batch plants has been proposed. It was
shown that the changes in the markings in a TPPN model
completely describe the evolution of different operations,
even in the presence of complicated intermediate storage
policies. An optimal schedule can be obtained by search-
ing the reachability tree of the TPPN model. The heuristic
algorithm proposed is admissible, and can always find the
optimal schedule. The scheduling of several simple batch
plants was simulated to show the applicability of the pro-
posed techniques.

The great benefit of the Petri-net based approach is
to graphically and concisely represent activities, resources
and constraints of a batch plant in a single coherent for-
mulation, which is very helpful for the designers to better
understand and formulate the scheduling problems. There
also exist two main aspects of the formulation and algo-
rithms for this novel approach. Improving the computa-
tional efficiency of the algorithm for optimal scheduling
and giving performance comparisons of TPPN based al-
gorithms with traditional MILP and CLP are under way.
Moreover, it is understood from this research that the
Petri-net based approach has a great potential for solv-
ing a variety of complicated scheduling problems in batch
plants. In this regard, further research is also being un-
dertaken to accommodate complicated constraints such as
a variable batch size, a variable cycle time and mixed
batch/continuous plants, and to implement the integrated
design of the supervisory control and scheduling of batch
plants.

Acknowledgments

The authors are very grateful to the anonymous reviewers
for their helpful comments. This work was supported by
the National Natural Science Foundation of China (grant
no. 60243002).

Timed Petri-net based formulation and an algorithm for the optimal scheduling of batch plants 533

Table 2. Marking vectors and enabled transitions.

Transition Marking mk(p)

enabled e(mk) ps1 ps2 ps3 p1 p2 pf1 pf2 pf3 p11 pI11 p12 p21 pI21 p22 p31 pI31 p32 mk

/ / 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 m0

ts11 0.0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 m1

ts21 0.0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 m2

ts31 0.0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 m3

tf31 3.0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 m4

ts11 3.0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 m5

ts21 3.0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 m6

ts32 3.0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 m7

ts11 3.0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 m8

ts21 3.0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 m9

tf21 7.0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 m10

ts11 7.0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 m11

tf11 10.0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 m12

tf32 10.0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 m13

tf11 10.0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 m14

ts22 10.0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 m15

tf11 10.0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 m16

tf22 15.0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 m17

ts12 15.0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 m18

tf12 19.0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 m19

tf21 4.0 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 m20

tf11 3.0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 m21

Table 3. Estimated makespan and decisions.

mk m0 m3 m4 m7 m9 m10 m11 m13 m15 m16 m17 m18 m19 m14 m12 m8 m6 m5 m2 m20 m1 m21

e(mk) 0 0 3 3 3 7 7 10 10 10 15 15 19 10 10 3 3 3 0 4 0 3

g(mk) 16 16 16 16 16 12 12 9 9 9 4 4 0 9 9 16 16 16 16 16 16 16

h(mk) 16 16 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 16 20 16 19

UB M M M M M M M M M M M M M 19 19 19 19 19 19 19 19 19

B/F F F F F F F F F F F F F B B B B B B F B F /

Table 4. Processing times (h) of products.

Units Products

p1 p2 p3 p4

u1 3.5 4.0 3.5 12.0

u2 4.3 5.5 7.5 3.5

u3 8.7 3.5 6.0 8.0

T. Gu et al.534

ps1 (0) ts11 p11 (3.5) tf11 pI11 (0) ts12 p12 (4.3) tf12 pI12 (0) ts13 p13 (8.7) tf13 pf1 (0)
 •

 ps2 (0) ts21 p21 (4.0) tf21 pI21 (0) ts22 p22 (5.5) tf22 pI22 (0) ts23 p23 (3.5) tf23 pf2 (0)
 •

 p1(0) • p2 (0) • p3 (0) •

 ps3 (0) ts31 p31(3.5) tf31 pI31 (0) ts32 p32 (7.5) tf32 pI32 (0) ts33 p33 (6.0) tf33 pf3 (0)
 •

 •

 ps4 (0) ts41 p41 (12.0) tf41 pI41 (0) ts42 p42 (3.5) tf42 pI42 (0) ts43 p43 (8.0) tf43 pf4 (0)

(a) TPPN model under the UIS policy

 ps1 (0) ts11 p11 (3.5) tf11 pI11 (0) ts12 p12 (4.3) tf12 pI12 (0) ts13 p13 (8.7) tf13 pf1 (0)
 •

 ps2 (0) ts21 p21 (4.0) tf21 pI21 (0) ts22 p22 (5.5) tf22 pI22 (0) ts23 p23 (3.5) tf23 pf2 (0)
 •

 p1(0) • ps12 (0) • • p2 (0) • ps23 (0) • p3 (0) •

 ps3 (0) ts31 p31(3.5) tf31 pI31 (0) ts32 p32 (7.5) tf32 pI32 (0) ts33 p33 (6.0) tf33 pf3 (0)
 •

 •

 ps4 (0) ts41 p41 (12.0) tf41 pI41 (0) ts42 p42 (3.5) tf42 pI42 (0) ts43 p43 (8.0) tf43 pf4 (0)

(b) TPPN model under the FIS policy

 ps1 (0) ts11 p11 (3.5) tf11 pI11 (0) ts12 p12 (4.3) tf12 pI12 (0) ts13 p13 (8.7) tf13 pf1 (0)
 •

 ps2 (0) ts21 p21 (4.0) tf21 pI21 (0) ts22 p22 (5.5) tf22 pI22 (0) ts23 p23 (3.5) tf23 pf2 (0)
 •

 p1(0) • pd12 (0) • p2 (0) • pd23 (0) • p3 (0) •

 ps3 (0) ts31 p31(3.5) tf31 pI31 (0) ts32 p32 (7.5) tf32 pI32 (0) ts33 p33 (6.0) tf33 pf3 (0)
 •

 •

 ps4 (0) ts41 p41 (12.0) tf41 pI41 (0) ts42 p42 (3.5) tf42 pI42 (0) ts43 p43 (8.0) tf43 pf4 (0)

(c) TPPN model under the NIS policy

 ps1 (0) ts11 p11 (3.5) tf11 pI11 (0) ts12 p12 (4.3) tf12 pI12 (0) ts13 p13 (8.7) tf13 pf1 (0)
 •

 ps2 (0) ts21 p21 (4.0) tf21 pI21 (0) ts22 p22 (5.5) tf22 pI22 (0) ts23 p23 (3.5) tf23 pf2 (0)
 •

 p1(0) • ps12 (0) • • p2 (0) • pd23 (0) • p3 (0) •

 ps3 (0) ts31 p31(3.5) tf31 pI31 (0) ts32 p32 (7.5) tf32 pI32 (0) ts33 p33 (6.0) tf33 pf3 (0)
 •

 •

 ps4 (0) ts41 p41 (12.0) tf41 pI41 (0) ts42 p42 (3.5) tf42 pI42 (0) ts43 p43 (8.0) tf43 pf4 (0)

(d) TPPN model under the MIS policy

Fig. 4. Modelling Case Study 1 via TPPNs.

Timed Petri-net based formulation and an algorithm for the optimal scheduling of batch plants 535

Table 5. Simulation results of Case Study 1.

Storage policies Optimal schedule Makespan

UIS product 1 → product 3 → product 4 → product 2 34.0

FIS product 1 → product 3 → product 4 → product 2 34.0

NIS product 1 → product 3 → product 4 → product 2 34.8

MIS product 1 → product 3 → product 4 → product 2 34.0

 p1 p3 p4 p2
unit 1:

 0.0 3.5 7.0 19.0 23.0
 p1 p3 p4 p2

unit 2:
 0.0 7.8 15.3 22.5 28.5

 p1 p3 p4 p2
unit 3:

 0.0 165 30.5 34.0

 (a) UIS policy

 p1 p3 p4 p2

unit 1:
 0.0 3.5 7.0 19.0 23.0

p1 p3 p4 p2

unit 2:
 0.0 7.8 15.3 22.5 28.5

 p1 p3 p4 p2
unit 3:

 0.0 165 30.5 34.0

 (b) FIS policy

 p1 p3 p4 p2

unit 1:
 0.0 3.5 7.0 19.8 23.8
 p1 p3 p4 p2

unit 2:
 0.0 7.8 15.3 23.3 29.3

 p1 p3 p4 p2
unit 3:

 0.0 165 22.5 31.3 34.8

 (c) NIS policy

 p1 p3 p4 p2

unit 1:
 0.0 3.5 7.0 19.0 23.0

p1 p3 p4 p2

unit 2:
 0.0 7.8 15.3 22.5 28.5

 p1 p3 p4 p2
unit 3:

 0.0 165 30.5 34.0

 (d) MIS policy

Fig. 5. Gantt chart of optimal schedules.

Tab. 6. Product recipes.

Product 1 Product 2 Product 3

Unit Time Unit Time Unit Time

U1 6 U2 9 U1 14

U3 9 U3 15 U2 16

 ps2 (0) ts22 p22(9) tf22 p223 (0) ts23 p23 (15) tf23 pf2 (0)
 •
 •
 p2 (0) • pI2 (0)
 ps3 (0) ts31 p31(14) tf31 p312 (0) ts32 p32 (16) tf32 pf3 (0)
 •

 p1(0) • pI1(0) • p3(0) •

 ps1 (0) ts11 p11(6) tf11 p113 (0) ts13 p13 (9) tf13 pf1 (0)
 •

Fig. 6. TPPNs model for Case Study 2.

 p3 p1
unit 1:
 0.0 14.0 20.0
 p2 p3
unit 2:
 0.0 9.0 30.0
 p2 p1
unit 3:
 0.0 24.0 33.0

Fig. 7. Gantt chart of optimal schedules for Case Study 2.

T. Gu et al.536

References

Adams J., Balas E. and Zawack D. (1988): The shifting bottle-
neck procedure for job shop scheduling. — Manag. Sci.,
Vol. 34, No. 3, pp. 391–410.

Błażewicz J., Ecker L., Schmidt G. and Węglarz J. (1996):
Scheduling Computer and Manufacturing Processes. —
Berlin: Springer.

Carlier J. and Pinson E. (1988): An algorithm for solving the job
shop problem. — Manag. Sci., Vol. 35, No. 2 , pp. 164–
176.

Gonnet S. and Chiotti O. (1997): Modelling of the supervisory
control system of a multipurpose batch plant. — Comp.
Chem. Eng., Vol. 21S, pp. S691–S696.

Graells M., Espuna A. and Puigjaner L. (1996): Sequencing
intermediate products: A practical solution for multi-
purpose production scheduling. — Comp. Chem. Eng.,
Vol. 20S, pp. S1137–S1142.

Gu T. and Bahri P.A. (1999): Timed Petri-net representation
for short term scheduling of multiproduct batch plants.
— Proc. Amer. Contr. Conf., San Diego, USA, pp. 4092–
4096.

Gu T. and Bahri P.A. (2002): A survey of Petri-net applications
in batch processes. — Comp. Ind., Vol. 47, No. 1, pp. 99–
111.

Hanisch H.M. (1992): Coordination control modelling in batch
production systems by means of Petri nets. — Comp.
Chem. Eng., Vol. 16, No. 1, pp. 1–10.

Jung T.H., Kim M. and Lee I. (1996): Optimal scheduling
of multi-product batch processes for various intermediate
storage policies. — Ind. Eng. Chem. Res., Vol. 35, No. 11,
pp. 4058–4066.

Kobayashi S., Ono I. and Yamamura M. (1995): An efficient
genetic algorithm for job shop scheduling problems. —
Proc. 6-th Int. Conf. Genetic Algorithms, Tokyo, Japan,
pp. 506–511.

Ku H.M., Rajagopalan D. and Karimi I.A. (1987): Scheduling
in batch processes. — Chem. Eng. Prog., Vol. 83, No. 8,
pp. 35–45.

Ku H.M. and Karimi I.A. (1990): Completion time algorithms
for serial multi-product batch processes with shared stor-
age. — Comp. Chem. Eng., Vol. 14, No. 1, pp. 49–56.

Lee D.Y. and Dicesare F. (1994): Scheduling flexible manufac-
turing systems using Petri nets and heuristic search. —
IEEE Trans. Robot. Automat., Vol. 10, No. 2, pp. 123–
132.

Moro A.R., Yu H. and Kelleher G. (2002): Hybrid heuristic
search for the scheduling of flexible manufacturing sys-
tems using Petri nets. — IEEE Trans. Robotics and Au-
tomation, Vol. 18, No. 2, pp. 240–245.

Murata T. (1989): Petri nets: Properties, analysis and applica-
tions. — Proc. IEEE, Vol. 77, No. 4, pp. 541–580.

Nilsson N. (1980): Principles of artificial intelligence. — Palo
Alto, CA: Tioga.

Papageorgaki S. and Reklaitis G.V. (1990): Optimal design of
multi-purpose batch plants, I: Problem formulation. —
Ind. Eng. Chem. Res., Vol. 29, No. 5, pp. 2054–2062.

Rippin D.W.T. (1993): Batch process systems engineering: A
retrospective and prospective review. — Comp. Chem.
Eng., Vol. 17S, pp. s1–s13.

Sanmarti E., Friedler F. and Puigjaner L. (1998): Combinator-
ial technique for short-term scheduling of multi-purpose
batch plants based on schedule-graph representation. —
Comp. Chem. Eng., Vol. 22S, pp. S847–S850.

Yamalidou E.C. and Kantor J.C. (1991): Modelling and optimal
control of discrete-event chemical processes using Petri
nets. — Comp. Chem. Eng., Vol. 15, No. 7, pp. 503–519.

YoungWoo K., Inaba A., Suzuki T. and Okuma S. (2001a):
FMS scheduling based on Petri net model. — Proc. IEEE
Int. Symp. Assembly and Task Planning, Fukuoka, Japan,
pp. 238–243.

YoungWoo K., Inaba A., Suzuki T. and Okuma S. (2001b): FMS
scheduling based on timed Petri net model and RTA∗ algo-
rithm. — Proc. IEEE Int. Symp. Assembly and Task Plan-
ning, pp. 848–853.

Zhou M.C. and Kurapati V. (1999): Modeling, Simulation, and
Control of Flexible Manufacturing Systems: A Petri Net
Approach. — New Jersey: World Scientific.

Received: 5 March 2003
Revised: 5 August 2003

