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Low complexity realizations of Least Mean Squared (LMS) error, Generalized Sidelobe Cancellers (GSCs) applied to adap-
tive beamforming are considered. The GSC method provides a simple way for implementing adaptive Linear Constraint
Minimum Variance (LCMV) beamformers. Low complexity realizations of adaptive GSCs are of great importance for the
design of high sampling rate, and/or small size and low power adaptive beamforming systems. The LMS algorithm and its
Transform Domain (TD-LMS) counterpart are considered for the adaptive processing task involved in the design of opti-
mum GSC systems. Since all input signals are represented by complex variables, complex valued arithmetic is utilized for
the realization of GSC algorithms, either on general purpose computers, or on dedicated VLSI ASICs. Using algorithmic
strength reduction (SR) techniques, two novel algorithms are developed for efficient realizations of both LMS GSCs and
TD-LMS GSC schemes. Both of the proposed algorithms are implemented using real valued arithmetic only, whilst re-
ducing the number of multipliers by 25% and 20%, respectively. When VLSI implementation aspects are considered, both
the proposed algorithms result in reduced power dissipation and silicon area realizations. The performance of the proposed
realizations of the LMS based GSC methods is illustrated in the context of typical beamforming applications.
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1. Introduction

Adaptive beamforming is a powerful technique of enhanc-
ing a signal of interest while suppressing the interference
signal and noise at the output of an array of sensors. An ar-
ray of sensors consists of a set of sensor elements that are
spatially arranged at known locations (Compton, 1988;
Drabowitchet al., 1998; Haykin, 1996; Hudson, 1991;
Johnson and Dudgeon, 1993; Monzingo and Miller, 1980;
Mucci, 1984; Pillai, 1989; Widrow and Stearns, 1985).
By tuning the amplitude and phase of the wavefronts at
each sensor element, it is possible to electronically steer
the beam to a desired direction and to place nulls in other
directions (Krim and Viberg, 1996; van Veen and Buck-
ley, 1988). In other words, an adaptive array continu-
ously modifies its beampattern in a desired way by means
of an adaptive optimization algorithm. The array beam-
pattern is optimized so that maximum gains are offered
in specific directions corresponding to the desired signal,
while maximum attenuation is placed in specific direc-
tions that correspond to the undesired interference signal
or jammer. Adaptive beamforming has been sucessfully
utilized in a wide range of applications. Typical exam-
ples include antennas (Chryssomallis 2000; Godara, 1997;
Kohno, 1998; Rappaport, 1998), radar (Nitzberg, 1999),

radio astronomy (Liet al., 2002), speech processing, (Liet
al., 2002), wireless communication (Litva and Lo, 1996;
Winters, 1998), biomedical signal processing (Bailleret
al., 2001), nondestructive testing of materials (Ghorayeb
et al., 1994), etc.

A broadband adaptive beamformer consists of a
multi-input single output linear combiner and an adaptive
algorithm that adjusts the weights in some optimal way
(Buckley 1986; 1987; Frost, 1972; van Veen and Buckley,
1988). Broadband beamforming is employed when the
nature of the signals of interest is wideband. The Linearly
Constrained Minimum Variance (LCMV) beamformer is
designed by minimizing the array output power subject to
a set of linear constraints. An efficient adaptive imple-
mentation of the LCMV method was proposed by Grif-
fiths and Jim, and it is known as the Generalized Side-
lobe Canceller (GSC), where the constrained optimization
problem is transformed to an unconstrained one (Griffiths
and Jim, 1982). The GSC method has been considered
for the implementation of adaptive beamforming in var-
ious applications. Typical examples include: speech ac-
quisition and enhancement in noisy and reverberating en-
vironments (Hoshuyamaet al., 1999; Gannotet al., 2001),
interference cancellation in radio astronomy, where ar-
ray radio telescopes are used for deep space observations
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(Le et al., 2002; Leshemet al., 2000), combating mul-
tiple access interference and multipath fading in CDMA
telecommunications systems, multiuser detection, adap-
tive interference cancellation and channel equalization, in
training or in blind mode (Honig and Tsatsanis, 2000; Lee
and Tsai, 2001; Xu and Tsatsanis, 1999; Yu and Ueng,
2000), the design of adaptive antennas in mobile commu-
nications systems, for spatial filtering for interference re-
duction (Boukalov and Haggman, 2000; Godara, 1997;
Paulraj and Papadias, 1997; Rapaport, 1998), adaptive
operation of electronically phased radars (Farina, 1992;
Nitzberg, 1999), sidelobe and/or hot clutter cancelling in
radar systems (Hendon and Reed, 1990; Kogonet al.,
1996; Scott and Mulgrew, 1995).

In the original GSC method proposed by Griffiths
and Jim (1982), the optimum array parameters are adap-
tively estimated based on the available data set and us-
ing an LMS adaptive filter, resulting in an LMS GSC
adaptive scheme. LMS like algorithms are popular due
to low computational complexity and simplicity in the
hardware realization of the underlying algorithmic struc-
ture (Haykin, 1996; Glentiset al., 1999; Kalouptsidis and
Theodoridis, 1993). However, the convergence rate of an
LMS based GSC method heavily depends on the eigen-
value spread of the correlation matrix of the input data.
In an attempt to improve the convergence rate of the origi-
nal LMS GSC scheme, Discrete Unitary Transforms, such
as the Discrete Fourier Transform, have been utilized in
order to decorrelate the input data (An and Champagne,
1994; Chen and Fang, 1992; Chu and Fang, 1999; Her-
bordt and Kellermann, 2001; Goldsteinet al., 1994; Joho
and Moschytz, 1997; Moonet al., 2001; Yu and Leou,
2000). The Transformed Domain LMS GSC algorithms
may have increased convergence rates for some classes of
input signals, yet the computational complexity remains
similar to that of the original LMS based scheme.

In this paper, two novel and efficient algorithms im-
plementing the LMS GSC and the Transform Domain
LMS GSC adaptive schemes are presented. Direct appli-
cation of thefastcomplex valued multiplication method to
the original LMS GSC and the TD-LMS GSC algorithms
can reduce the number of real multiplications at the ex-
pense of an increased number of adders (Lamagna, 1982;
Winograd, 1980). To overcome this difficulty, complex
signals are treated as pairs of real signals, and operations
are re-organized based on the real arithmetic only. The
algorithmic strength reduction technique (Chandrakasan
and Brodersen, 1995; Parhi, 1999; Shanbhag, 1998), is
subsequently applied to the LMS GSC, as well as to the
TD-LMS GSC adaptive algorithm, which results in sig-
nificant computational savings. Both algorithms proposed
in this paper utilize real arithmetic only for an efficient
realization of both the transversal filtering and parame-
ter updating parts. The computational complexity of the

proposed schemes, measured by the number of real mul-
tipliers, is reduced by 25% and 20% for the LMS GSC
and the TD-LMS GSC algorithms, with no or a marginal
increase in the number of real adders, respectively. Com-
putational savings, without sacrifying performance, are a
task of primary interest in the design of high speed adap-
tive array systems, where the processing power of several
GOPS (Giga operations per second) is needed (Ahlander
et al., 1996; Boukalov and Haggman, 2000; Martinez,
1999; Taveniku and Ahlander, 1997). On the other hand,
in slow sampling rate adaptive beamforming systems, e.g.,
in speech processing and hearing aids applications, where
special VLSI ASICs are required for small size and low
power implementation, the reduction in the computational
complexity is of paramount interest, since it is directly re-
lated to the size and power consumption of the final design
(Parhi, 1999).

The performance of the proposed realizations of the
LMS based GSC methods is illustrated in the context of
beamforming applications.

2. Generalized Sidelobe Canceller

Let us consider a linear array of sensors, which consists
of K equally spaced sensor elements. LetP − 1 be the
number of delay elements associated with each elemen-
tary array input. The input signal induced at each array
element is denoted byvi(n), i = 1, 2, . . . ,K. The struc-
ture of the Generalized Sidelobe Canceller is depicted in
Fig. 1. Here ṽi(n), i = 1, 2, . . . ,K, are the signals ob-
tained by passing the array output through delay elements,
needed to steer the array in the desired look direction,φ,
i.e., ṽi(n) = vi(n − τi). These input signals are trans-
formed by a vectorb and a matrixB into a main chan-
nel signal,x0(n), and K − 1 auxiliary channel signals,
xi(n), i = 1, . . . ,K − 1, as

x0(n) = bHṽ(n), (1)

Fig. 1. The GSC adaptive beamformer. Small rectangu-
lar boxes represent unit delays.
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[x1(n) x2(n) . . . xK−1(n)]T = Bṽ(n), (2)

where ṽ(n) = [ṽ1(n) . . . ṽK(n)]T . (As for the super-
scripts throughout this paper, ‘*’ means the complex con-
jugate, ‘T ’ denotes the vector transpose, and ‘H ’ stands
for the Hermitian operator (conjugate and transpose).)
Constantb andB are designed such that the target signal
is prevented from passing through to the auxiliary chan-
nels, while it is allowed to pass unimpeded to the main
channel. A possible choice is to set all elements ofb
as equal to 1, while settingB to have elements from the
Walsh-order Walsh function (Griffiths and Jim, 1982).

The desired response signal,z(n), is obtained by
passing the primary signalx0(n) through a fixed target
signal filter that is used to control the frequency response
of the beamformer in the look direction. The auxiliary sig-
nals are fed to a set of tapped delay lines, each withP −1
unit delay elements. The output signaly(n) is obtained
by the linear regression

y(n) = WHX(n), (3)

where W is a vector that carries the coefficients of the
multichannel linear combiner, andX(n) is a vector that
carries the auxiliary input data. More specifically,

X(n) = [xT

1 (n) xT

2 (n) . . .xT
K−1(n)]T , (4)

wherexi(n) is given by

xi(n) =
[
xi(n) xi(n− 1) . . . xi(n− P + 1)

]T
. (5)

W is organized in a similar way. VectorsX(n) and W
have dimensions(K − 1)P × 1.

The weight vectorW is estimated on the basis of
the incoming data statistics, minimizing the MSE of the
error signal between the conventional beamformer output,
z(n), and the output of the sidelobe canceller,y(n), i.e.,

W : min
W
EEE

(
|e(n)|2

)
, e(n) = z(n)− y(n). (6)

Thus, the optimum MSE solution is obtained by solving a
system of linear equations of the form

RW = r. (7)

HereR = EEE [X(n)XH(n)] is the covariance matrix of
the auxiliary input signals andr = EEE [X(n)z∗(n)] is the
cross correlation vector between the auxiliary input sig-
nals and the conventional beamformer output. The rela-
tionship between the LCMV and GSC solutions for the
adaptive beamforming problem is well established, and it
is discussed in detail in (Griffiths and Jim, 1982; Haykin,
1996; van Veen and Buckley, 1988).

In practice, the covariance matrixR and the cross
correlation vectorr are not known in advance, and have

to be estimated for a given number of samples. The direct
computation of the sample based estimates ofR and r,
followed by a linear system solver, could be utilized for
the estimation of the optimum parameters, resulting in a
batch processing method. However, this is a major draw-
back in many real time applications since large amounts
of data have to be collected and stored in advance. An al-
ternative way to alleviate this difficulty is the use of recur-
sive stochastic approximation schemes which update the
estimator of the optimum parameters whenever new data
are available. This approach leads toadaptive process-
ing schemes for the estimation of the system parameters
sought (Haykin, 1996; Glentiset al., 1999; Kalouptsidis
and Theodoridis, 1993).

2.1. Adaptive LMS GSC Algorithms

Two different approaches leading to two widely used algo-
rithmic families have been adopted for the adaptive esti-
mation of optimum MSE parameters on the basis of the
available data set (Widrow and Stearns, 1985; Haykin,
1996). The first one is based on the stochastic approxima-
tion of the steepest descent method and is known as the
Least Mean Squared (LMS) family. The latter is based
on the stochastic approximation of the Gauss-Newton
method and is known as the Recursive Least Squares
(RLS) family. The simplest form of the LMS algorithm
offers adaptive filtering with a cost of twice the number
of the unknown system parameters. However, the conver-
gence rate of the algorithm heavily depends on the eigen-
value spread of the correlation matrix of the input data. On
the other hand, although the RLS algorithm does not suf-
fer from such a drawback, it has a complexity that is pro-
portional to the squared number of the unknown system
parameters. Classic or fast, RLS and QR-RLS type adap-
tive algorithms were proposed for adaptive beamforming
(Farinaet al., 1996; Farina and Timmoneri, 1999; Huard
and Yen, 1994; Kimet al., 1992; Leeet al., 1987; Li
and Gaillard, 1988; Timmoneriet al., 1994; Yuen, 1991).
However the computational complexity of these methods
is eitherO(K2P 2) flops orO(K2P ) flops per processed
sample, depending on the method applied. Since adaptive
beamforming has to be performed in real time, low cost
algorithms should be employed. The LMS based schemes
offer adaptive processing at a lower cost, and thus they are
more attractive for real time implementation of the adap-
tive beamforming processing task.

The LMS algorithm applied to the GSC case is sum-
marized as follows (Griffiths and Jim, 1982):

y(n) = WH(n− 1)X(n), (8)

e(n) = z(n)− y(n), (9)

W(n) = W(n− 1) + µX(n)e∗(n). (10)
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The parameterµ is a positive constant that controls the
convergence speed of the algorithm. The LMS GSC adap-
tive algorithm, reorganized in a channel-wise format, is
presented in Table 1.

Table 1. Computation flow chart of the LMS GSC algorithm.

LMS GSC algorithm

Eqn. Function CMUL CADD

FOR i = 1 TO K − 1

xi(n) = [xi(n) xi(n − 1)

. . . xi(n − P )]T

1 yi(n) = wH
i (n − 1)xi(n) P P − 1

END i

2 y(n) =
K−1∑
i=1

yi(n) 0 K − 2

3 e(n) = d(n) − y(n) 0 1

FOR i = 1 TO K − 1

4 wi(n) = wi(n − 1)

+µxi(n)e∗(n) P P

END i

TOTAL COST 2(K − 1)P 2(K − 1)P

In an attempt to improve the convergence properties
of the adaptive LMS GSC, efficient schemes have been de-
veloped that utilize appropriate preconditioning to accel-
erate the convergence speed of the original LMS scheme
(An and Champagne, 1994; Chen and Fang, 1992; Chuet
al., 1999; Herbordt and Kellermann, 2001; Goldsteinet
al., 1994; Joho and Moschytz, 1997; Moonet al., 2001;
Yu and Leou, 2000). Fast transforms, such as DFT or
DCT, have been employed in order to decorrelate the input
data, and, as a result, to obtain low cost performance in-
dices better that those of the conventional LMS. Although
preconditioning using a fixed transformation may not al-
ways result in dramatic improvements, the low computa-
tional complexity often makes this choice a possible alter-
native.

The Transform Domain GSC-LMS algorithm is de-
scribed by the following set of equations (Chen and Fang,
1992):

f(n) = SSSX(n), (11)

e(n) = z(n)−WWWH(n− 1)f(n), (12)

WWW(n) = WWW(n− 1) + µPPP−1f(n)e∗(n). (13)

The transformation matrixSSS has the form

SSS =


S 0 . . . 0
0 S . . . 0
...

...
...

0 0 . . . S

 ,

whereS is a unitary matrix of dimensionsP × P . Thus
the transformed domain data vectorf(n) is obtained by
a channel-wise transformation of the original data vector
X(n). Obviously,

f(n) = [fT

1 (n) . . . fT

K−1(n)]T , (14)

where

fi(n) = Sxi(n), i = 1, . . . ,K − 1. (15)

WWW(n) is the vector which contains the coefficients of the
transformed array and is organized as follows:

WWW(n) = [WT

1 (n) WT

2 (n) . . . WT

K−1(n)]T . (16)

The estimated transformed filter coefficients are related to
the original ones, asWWW = SSSHW . The parameterµ is
a positive constant that controls the convergence speed of
the algorithm.

PPP is the covariance matrix of the transformed data,
defined asPPP = EEE [XXX (n)XXXH(n)]. The role ofPPP−1 in the
recursive equation (13) is to reduce the eigenvalue spread
of the corresponding system matrix. The inversePPP−1 is
approximated by a diagonal matrix of the form

PPP−1 ≈


P−1

1 0 . . . 0
0 P−1

2 . . . 0
...

...
...

0 0 . . . P−1
K−1

 . (17)

Each submatrixPi has a diagonal structure with entries
being the powers of the individual input signals associated
with each frequency bin. It is defined as

Pi = diag [pi,1, pi,2, . . . pi,P ] , (18)

wherepi,k is the power of thei-th input signal at thek-th
frequency bin, i.e.,

pi,k = EEE
[
|fi,k(n)|2

]
. (19)

In practice,Pi is a time varying matrix whose elements
are calculated in terms of available data, e.g., using an
exponentially weighted power estimator implemented by
the difference equation

pi,k(n) = λpi,k(n− 1) + (1− λ)|fi,k(n)|2,

λ ∈ (0, 1).
(20)

When the Discrete Fourier Transform (DFT) is used as the
unitary transform, the input data are continuously trans-
formed into the frequency domain. The Sliding Window
Discrete Fourier Transform (SW-DFT) can be utilized to
perform this task (Narayanet al., 1983; Shynk, 1992).
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Table 2. Computation flow chart of the Transform Domain LMS GSC algorithm.

Transform Domain LMS GSC algorithm

Eqn. Function CMUL CADD RMUL RADD

FOR i = 1 TO K − 1

1 ui(n) = xi(n) − ρP xi(n − P ) 0 1 0 0

FOR m = 0 TO P − 1

2 fi,m+1(n) = ρe− 2πm
P fi,m+1(n − 1) + ui(n) 1 1 0 0

3 pi,m+1(n) = λpi,m+1(n − 1) + (1 − λ)|fi,m+1(n)|2 0 0 2 2

4 Fi,m+1(n) = µ
fi,m+1(n)

pi,m+1(n)
0 0 2 0

END m

fi(n) = [f1(n) . . . fP (n)]T

Fi(n) = [F1(n) . . . FP (n)]T

5 yi(n) = WH
i (n − 1)fi(n) P P − 1 0 0

END i

6 y(n) =
K−1∑
i=1

yi(n) 0 K − 2 0 0

7 e(n) = d(n) − y(n) 0 1 0 0

FOR i = 1 TO K − 1

8 Wi(n) = Wi(n − 1) + Fi(n)e∗(n) P P 0 0

END i 0 0 0 0

TOTAL COST 3(K − 1)P (K − 1)(3P + 1) 4(K − 1)P 2(K − 1)P

The SW-DFT estimates the DFT transform of a rectangu-
lar window of the signal, which is continuously updated
with new samples as the oldest ones are discarded. In this
case,fi(n) is the SW DFT of the input dataxi(n), and
each element ofWi(n) is associated with a specific fre-
quency band. The Sampling Frequency (FS) structure, a
method for implementing the SDFT based on a set of filter
banks, is very popular in adaptive filtering (Shynk, 1992)
due to the low computational complexity, the regularity
and modularity, i.e., the facts that are of great importance
when a high speed implementation on VLSI array proces-
sors is considered. The SW-DFT is implemented using
the system of first order recursive equations of the form

fi,m+1(n) = ρe− 2πm
P fi,m+1(n− 1) + xi(n)

− ρP xi(n− P ), m=0, . . . , P − 1.
(21)

Here ρ ∈ (0, 1) is a stabilization factor that is used to
compensate for the marginal stability of the original real-
ization.

The TD-LMS GSC adaptive algorithm is tabulated in
a channel-wise format, cf. Table 2.

3. Algorithmic Strength Reduction

Complex valued arithmetic is required for the implemen-
tation of both the LMS GSC and TD-LMS GSC algo-

rithms, since in most applications the input signals of both
algorithms are represented by complex variables. Com-
plex valued addition is realized by a set of two real valued
additions, i.e.,

(a + b) + (c + d) = (a + c) + (b + d). (22)

Complex valued multiplication can be realized by the
classicalmethods that require four real valued multipli-
cations and two real valued additions, i.e.,

(a + b)(c + d) = (ac− bd) + (ad + bc). (23)

Alternatively, the fast complex valued multiplication
method can be applied, where the inherent dependencies
of the partial products and sums, are utilized for the re-
duction of the number of real valued multipliers, at the
expense of some extra real valued adders (Parhi, 1999;
Shanbhag, 1998; Winograd, 1980). In this case, three real
valued multiplications and five real valued additions are
required. One possible implementation of afastcomplex
valued multiplication is described by the following equa-
tion (Shanbhag, 1998):

ac− bd = (a− b)d + a(c− d),

ad + bc = (a− b)d + b(c + d).
(24)

The advantages of thefast complex valued multiplication
approach are the following: (A) Although Eqn. (24) re-
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quires two extra operations, it does however utilize fewer
multiplications. Since multiplication is executed more
slowly than addition on most digital computers, it is ex-
pected that thefastcomplex valued multiplication method
is faster than the classical one. (B) As far as the de-
sign of dedicated VLSI ASIC processors is considered,
the reduction in the number of the required multiplica-
tions can (a) reduce the total silicon area, since multipli-
ers occupy much more space compared with adders, and
(b) reduce the power consumption of the ASIC, since the
power consumption of CMOS circuits depends on the ef-
fective switched capacitance of the underlying architec-
ture, which is mainly dependent on the number of logic
transitions per unit time.

The critical path of thefast complex valued multi-
plication method is slightly larger than that of theclas-
sical method. Indeed, the iteration period of Eqn. (23)
is Tclassical = tRMUL + tRADD, while Tfast = tRMUL +
2tRADD. (tRMUL and tRADD denote the times re-
quired for the execution of real valued multiplica-
tion and addition, respectively.) However, this is not
a major problem, and it can be resolved by proper
pipelining of the task, using look ahead transformations
(Shanbhag, 1998).

Efficient signal processing algorithms for digital and
adaptive filtering have been developed by taking into ac-
count the reduced complexityfast complex valued mul-
tiplication method, (Baghaie, 1999; Baghaie and Laakso,
1998; Perryet al., 1999; Shanbhag, 1998). In the con-
text of VLSI signal processing, transformations are mod-
ifications in the computational structure of a given algo-
rithm such that the input-output behavior is preserved.
The application of thefastcomplex valued multiplication
method belongs to a general class of algorithmic trans-
formations, and is known as thealgorithmic strength re-
duction transform. It has been successfully applied to the
design of low power, high speed adaptive filters and equal-
izers (Chandrakasan end Brodersen, 1995; Shanbhag,
1998).

The direct implementation of thefast complex val-
ued multiplication method in LMS GSC and TD-LMS
GSC schemes can reduce the number of real multiplica-
tions. However, although the number of real valued mul-
tipliers is reduced, there is a significant increase in the
number of real valued adders and in the total number of
the overall real valued operations. A further improvement
in the number of the required real valued adders can be
achieved by the re-organization of both algorithms, us-
ing a set of auxiliary signals and filter parameters that
are propagated through the algorithm and are updated
by the pertinent recursive equations in accordance with
the strength reduction real valued arithmetic imposed by
Eqn. (24).

3.1. SR LMS GSC Algorithm

The application of the algorithmic strength reduction
transform described by Eqn. (24) to the LMS GSC al-
gorithm results in an equivalent algorithmic description,
called the SR LMS GSC algorithm, where real valued
arithmetic is only required. The main feature of the SR
LMS GSC algorithm is the introduction of a set of auxil-
iary input signals that are utilized as inputs to the transver-
sal filters, and the use of a set of transformed filter coeffi-
cients that are updated instead of the original ones.

Let us consider the channel-wise formulation of the
LMS GSC adaptive algorithm outlined in Table 1. The
input signalxi(n) is expressed in terms of real and imag-
inary parts as

xi(n) = x<,i(n) + x=,i(n).

(Subscripts< and= denote the real and imaginary parts
of a complex variable, respectively.) Consequently, the
corresponding complex regressor vectorxi(n) is written
as

xi(n) = x<,i(n) + x=,i(n), (25)

where

x<,i(n) =
[
x<,i(n) x<,i(n − 1) . . . x<,i(n−P +1)

]T
, (26)

x=,i(n) =
[
x=,i(n) x=,i(n − 1) . . . x=,i(n−P +1)

]T
. (27)

In a similar way, the vector of complex filter coefficients
wi(n) is expressed as

wi(n) = w<,i(n) + w=,i(n). (28)

Consider Eqn. (1) of Table 1. It can be equivalently writ-
ten down as

yi(n) = wH

i (n− 1)xi(n) = xT

i (n)w∗
i (n− 1).

The application of the algorithmic strength reduction
transformation, cf. Eqn. (24), to the above equation results
in

yi(n) = y<,i(n) + y=,i(n), (29)

where
y<,i(n) = yi,1(n) + 0.5yi,3(n),

y=,i(n) = yi,2(n) + 0.5yi,3(n).
(30)

The intermediate variablesyi,1(n), yi,2(n) and yi,3(n)
are estimated as follows:

yi,1(n) = cT

i (n− 1)x<,i(n),

yi,2(n) = dT

i (n− 1)x=,i(n), (31)

yi,3(n) = −2wT

=,i(n− 1)x̂i(n)

= − (c(n− 1)− d(n− 1))T x̂i(n). (32)
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Vectorsci(n) and di(n) are transformed versions of the
original filter coefficient vectorwi(n). They are defined
as

ci(n) = w<,i(n) + w=,i(n),

di(n) = w<,i(n)−w=,i(n).
(33)

Here x̂i(n) is an auxiliary regressor defined as

x̂i(n) = x<,i(n)− x=,i(n). (34)

Notice that the original filterwi(n) can be recovered
from the transformed parameters as

w<,i(n) = 0.5 (ci(n) + di(n)) ,

w<,i(n) = 0.5 (ci(n)− di(n)) .
(35)

Finally, the estimation errore(n) takes the form

e(n) = e<(n) + e=(n), (36)

where

e<(n)=z<(n)−y<(n), e=(n)=z=(n)−y=(n). (37)

Thus we may adapt the transformed filtersci(n) and
di(n) instead ofwi(n). Using Eqn. (4) of Table 1, we get
the recursive equations of the form

ci(n) = ci(n−1)+µ (e<(n)x̃i(n)−e=(n)x̂i(n)) , (38)

di(n) =di(n−1)+µ (e<(n)x̂i(n)+e=(n)x̃i(n)) , (39)

where x̃i(n) = x<,i(n) + x=,i(n). Then the complex
vector

vi(n) = ci(n) + di(n) (40)

is updated as

vi(n) = vi(n− 1) + µe(n) (x̃i(n) + x̂i(n)) . (41)

Finally, the application of the algorithmic strength reduc-
tion transform, Eqn. (24), to the above equation results in

ci(n) = ci(n− 1) + µ (gi,1(n) + gi,3(n)) , (42)

di(n) = di(n− 1) + µ (gi,2(n) + gi,3(n)) , (43)

where

gi,1(n) = 2e<(n)x<,i(n),

gi,2(n) = 2e=(n)x<,i(n), (44)

gi,3(n) = ê(n)x̂i(n),

ê(n) = e<(n)− e=(n). (45)

The SR LMS GSC adaptive algorithm is outlined in Ta-
ble 3.

3.2. SR TD-LMS GSC Algorithm

Consider the application of the algorithmic strength re-
duction transform to the TD-LMS GSC adaptive algo-
rithm. First, the computations involved in the Sliding
Window DFT part should be accordingly re-organized.
To this end,fi,m+1(n) is expressed in terms of real and
imaginary parts as

fi,m+1(n) = f<i,m+1(n) + f=i,m+1(n). (46)

Similarly, the twiddle factore− 2πm
P is written as

e− 2πm
P = cos

(
2πm

P

)
−  sin

(
2πm

P

)
. (47)

The application of the strength reduction transform im-
plied by Eqn. (24) could reduce the number of multiplica-
tions required by the recursive estimation offi,m+1(n).
Since the twiddle factor is constant, we may compute the
difference and the sum of its real and imaginary parts in
advance. Thus, we are looking for a strength reduction
transform where advantage of this fact is taken. Although
the strength reduction transform defined by Eqn. (24)
could by applied, there exists an alternative formulation
that requires a lower number of additions. Actually,
Eqn. (24) can be implemented in 16 different ways that re-
quire 3 multiplications and 5 additions (Perryet al., 1999;
Wenzler and Luder, 1995). The most suitable form in our
case is the following:

ac− bd = (a− b)d + (c− d)a,

ad + bc = (a + b)c− (c− d)a.
(48)

The application of the strength reduction transform,
Eqn. (48), to Eqn. (2) of Table 2 results in the following
component-wise set of recursions forfi,m+1(n):

f<i,m+1(n) = ρ

(
cos

(
2πm

P

)
+sin

(
2πm

P

))
f=i,m+1(n−1)

+ cos
(

2πm

P

) (
f<i,m+1(n− 1)

− f=i,m+1(n− 1)
)

+ u<,i(n), (49)

f=i,m+1(n) = ρ

(
cos

(
2πm

P

)
−sin

(
2πm

P

))
f=i,m+1(n−1)

− cos
(

2πm

P

) (
f<i,m+1(n− 1)

− f=i,m+1(n− 1)
)

+ u=,i(n). (50)

Since the first factor is common in both recursive equa-
tions described above,fi,m+1(n) can be efficiently esti-
mated at a lower cost when compared with the original
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Table 3. Computation flow chart of the proposed SR LMS GSC algorithm.

The SR LMS GSC algorithm

Eqn. Function RMUL RADD

FOR i = 1 TO K − 1

1 x̂i(n) = x<,i(n) − x=,i(n) 0 1

x<,i(n) = [x<,i(n) x<,i(n − 1) . . . x<,i(n − P + 1)]T

x=,i(n) = [x=,i(n) x=,i(n − 1) . . . x=,i(n − P + 1)]T

x̂i(n) = [x̂i(n) x̂i(n − 1) . . . x̂i(n − P + 1)]T

2 yi,1(n) = cT
i (n − 1)x<,i(n) P P − 1

3 yi,2(n) = dT
i (n − 1)x=,i(n) P P − 1

4 yi,3(n) = − (ci(n − 1) + di(n − 1))T x̂i(n) P 2P − 1

5 y<,i(n) = yi,1(n) + 0.5yi,3(n), y=,i(n) = yi,2(n) + yi,3(n) 2 2

END i

7 y<(n) =
K−1∑
i=1

y<,i(n), y=(n) =
∑K−1

i=1 y=,i(n) 0 2(K − 2)

8 e<(n) = d<(n) − y<(n), e=(n) = d=(n) − y=(n) 0 2

9 ê(n) = e<(n) − e=(n) 0 1

FOR i = 1 TO K − 1

10 gi,1(n) = 2µe<(n)x<,i(n) P 0

11 gi,2(n) = 2µe=(n)x<,i(n) P 0

12 gi,3(n) = µê(n)x̂i(n) P 0

13 ci(n) = ci(n − 1) + (gi,1(n) + gi,3(n)) 0 2P

14 di(n) = di(n − 1) + (gi,2(n) + gi,3(n)) 0 2P

END i

TOTAL COST 6(K − 1)P 8(K − 1)P + 2K − 1

implementation imposed by Eqn. (21). Thus, an auxiliary
signal is introduced, as defined by

f̂i,m+1(n) = f<i,m+1(n)− f=i,m+1(n). (51)

The complex regressor vectorfi(n) is expressed in terms
of its real and imaginary parts as

fi(n) = f<,i(n) + f=,i(n), (52)

where

f<,i(n) =
[
f<1,i(n) f<2,i(n) . . . f<P,i(n)

]T

,

f=,i(n) =
[
f=1,i(n) f=2,i(n) . . . f=P,i(n)

]T

.
(53)

Similarly, the vector of transformed complex coefficients
Wi(n) is written as

Wi(n) = W<,i(n) + W=,i(n). (54)

Equation (5) of Table 2 is equivalently written as

yi(n) = fT

i (n)W∗
i (n− 1).

The subsequent application of the strength reduction
transform, Eqn. (24), results in

yi(n) = y<,i(n) + y=,i(n), (55)

where
y<,i(n) = Yi,1(n) + 0.5Yi,3(n),

y=,i(n) = Yi,2(n) + 0.5Yi,3(n)
(56)

and

Yi,1(n) = CT

i (n− 1)f<,i(n),

Yi,2(n) = DT

i (n− 1)f=,i(n),
(57)

Yi,3(n) = −2WT

=,i(n− 1)f̂i(n)

= − (Ci(n− 1) + Di(n− 1))T
.

(58)

The auxiliary parametersCi(n) and Di(n) are defined
as

Ci(n) = W<,i(n) + W=,i(n),

Di(n) = W<,i(n)−W=,i(n).
(59)
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The regressor vector̂fi(n) introduced in Eqn. (59) is
defined as

f̂i(n) = f<,i(n)− f=,i(n). (60)

Obviously, the original parameters can be recovered as

W<,i(n) = 0.5 (Ci(n)+Di(n)) ,

W<,i(n) = 0.5 (Ci(n)−Di(n)) .
(61)

Finally, the estimation errore(n) is computed as

e(n) = e<(n) + e=(n), (62)

e<(n) = z<(n)−y<(n), e=(n)=z=(n)−y=(n). (63)

Thus, we may adapt parametersCi(n) and Di(n)
instead of usingWi(n). Applying the above analysis, we
get

Ci(n) =Ci(n− 1)

+ µP−1
i

(
e<(n)f̃i(n)− e=(n)f̂i(n)

)
,

(64)

Di(n) =Di(n− 1)

+ µP−1
i

(
e<(n)f̂i(n) + e=(n)f̃i(n)

)
,

(65)

where f̃i(n) = f<,i(n) + f=,i(n). Grouping together the
above recursions, a single complex valued recursion is ob-
tained:

Vi(n)=Vi(n− 1)+µe(n)P−1
i

(
f̃i(n)+f̂i(n)

)
, (66)

whereVi(n) = Ci(n)+ Di(n). Finally, the application
of the algorithmic strength reduction transform, Eqn. (24),
results in

Ci(n) =Ci(n− 1)+µP−1
i (Gi,1(n)+Gi,3(n)) , (67)

Di(n) =Di(n− 1)+µP−1
i (Gi,2(n)+Gi,3(n)) , (68)

where

Gi,1(n) = 2e<(n)f<,i(n),

Gi,2(n) = 2e=(n)f<,i(n)
(69)

Gi,3(n) = ê(n)f̂i(n),

ê(n) = e<(n)− e=(n).
(70)

The SR TD-LMS GSC adaptive algorithm is outlined in
Table 4.

The GSC adaptive beamforming scheme discussed
so far assumes perfect knowledge of the steering vector
parameters. However, the performance of the GSC may
be substantially deteriorated if the steering vector specifi-
cation does not match the true signal environments (Cox

et al., 1987; Feldman and Griffiths, 1994). This type of
imperfection occurs either as a result ofcalibration er-
rors, or due topointing errors, or a combination of both
of them. A remedy to the aforementioned problem is
the utilization of adaptation methods that improve the ro-
bustness to perturbations in the covariance matrix and/or
the steering vector. Several robust algorithmic schemes
were proposed that improve the robustness of the GSC
adaptive beamformer, applying techniques such as reg-
ularization (Coxet al., 1987; Gershman, 1999), itera-
tive projection (Feldman and Griffiths, 1994), quadratic
constraints optimization (Tianet al., 2001), H∞ min-
imum estimation criterion (Chang and Chiang, 2002),
joint adaptive estimation-calibration methods (Fudge and
Linebarger, 1994; Hoshuyamaet al., 1999; Gannotet al.,
2001; Yeet al., 1997), etc. Since robust adaptive GSC
algorithms have a structure similar to that of the standard
LMS schemes of Tables 1 and 2, the application of the pro-
posed strength reduction technique to robust GSC meth-
ods is feasible, which results in a reduction in the arith-
metic complexity of the original schemes.

3.3. Complexity Assessment

The computational complexity of the LMS GSC algorithm
of Table 2 is given by

Cclassical
LMS =2(K−1)P CMUL+2(K−1)P CADD, (71)

where CMUL and CADD denote the complex valued mul-
tiplication and the complex valued addition, respectively.
Multiplication by µ can be realized by a digit shift oper-
ator, sinceµ can be chosen to be a power of two.

The computational complexity of the TD-LMS GSC
scheme listed in Table 2 is

Cclassical
T D−LMS =3(K − 1)P CMUL

+ (K − 1)(3P + 1)CADD

+ 4(K − 1)P RMUL

+ 2(K − 1)P RADD,

(72)

where RMUL and RADD denote the real valued multipli-
cation and the real valued addition, respectively. Multipli-
cation by µ and λ is ignored, since they can be realized
by a digit shift operator (both ofµ and λ can be chosen
to be a power of two).

The direct implementation of the fast complex val-
ued multiplication method in the LMS GSC and TD-LMS
GSC schemes can reduce the number of real multiplica-
tions, at the expense of an increased number of adders,
cf. Eqn. (71) that describes the complexity of the origi-
nal LMS GSC adaptive algorithm. The equivalent algo-
rithm complexity in terms of real valued computations is
estimated using the fact that the classical complex valued
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Table 4. Computation flow chart of the proposed SR TD LMS GSC algorithm.

SR TD LMS GSC algorithm

Function RMUL RADD

FOR i = 1 TO K − 1

K̂m = ρ
(
cos( 2πm

P
) − sin( 2πm

P
)
)
, K̃m = ρ

(
cos( 2πm

P
) + sin( 2πm

P
)
)

1 u<,i(n) = x<,i(n) − ρP x<,i(n − P ) 0 1

2 u=,i(n) = x=,i(n) − ρP x=,i(n − P ) 0 1

FOR m = 0 TO P − 1

3 f̂i,m+1(n) = f<i,m+1(n) − f=i,m+1(n) 0 1

4 fi,m+1,1(n) = K̃m+1f̂i,m+1(n − 1) + u<,i(n) 1 1

5 fi,m+1,2(n) = ρ cos( 2πm
P

)f̂i,m+1(n − 1) + u=,i(n) 1 1

6 fi,m+1,3(n) = K̂mf=i,m+1(n − 1) 1 0

7 f<i,m+1(n) = fi,m+1,1(n) + fi,m+1,3(n) 0 1

8 f=i,m+1(n) = fi,m+1,2(n) − fi,m+1,3(n) 0 1

9 pi,m+1(n) = λpi,m+1(n − 1) + (1 − λ)
(
(f<i,m+1(n))2 + (f=i,m+1(n))2

)
2 2

10 F<i,m+1(n) =
f<i,m+1(n)

pi,m+1(n)
, F=i,m+1(n) =

f=i,m+1(n)

pi,m+1(n)
2 0

11 F̂<i,m+1(n) = F<i,m+1(n) − F=i,m+1(n) 0 1

END m

f<,i(n) = [f<i,1(n) f<i,2(n) . . . f<i,P (n)]T

f=,i(n) = [f=i,1(n) f=i,2(n) . . . f=i,P (n)]T

f̂i(n) = [f̂i,1(n) f̂i,2(n) . . . f̂i,P (n)]T

F<,i(n) = [F<i,1(n) F<i,2(n) . . . F<i,P (n)]T

F=,i(n) = [F=i,1(n) F=i,2(n) . . . F=i,P (n)]T

F̂i(n) = [F̂i,1(n) F̂i,2(n) . . . F̂i,P (n)]T

12 Yi,1(n) = CT
i (n − 1)f<,i(n) P P − 1

13 Yi,2(n) = DT
i (n − 1)f=,i(n) P P − 1

14 Yi,3(n) = − (Ci(n − 1) + Di(n − 1))T f̂i(n) P 2P − 1

15 y<,i(n) = Yi,1(n) + Yi,3(n), y=,i(n) = Yi,2(n) + Yi,3(n) 0 2

END i

16 y<(n) =
K−1∑
i=1

y<,i(n), y=(n) =
K−1∑
i=1

y=,i(n) 0 2(K − 2)

17 e<(n) = d<(n) − y<(n), e=(n) = d=(n) − y=(n) 0 2

18 ê(n) = e<(n) − e=(n) 0 1

FOR i = 1 TO K − 1

19 Gi,1(n) = 2e<(n)F<,i(n), Gi,2(n) = 2e=(n)F<,i(n) 2P 0

20 Gi,3(n) = ê(n)F̂i(n) P 0

21 Ci(n) = Ci(n − 1) + µ (Gi,1(n) + Gi,3(n)) 0 2P

22 Di(n) = Di(n − 1) + µ (Gi,2(n) + Gi,3(n)) 0 2P

END i

TOTAL COST 13P (K − 1) 16P (K − 1) + 3(K − 1) + 1
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multiplication method requires 4 RMULs and 2 RADDs,
while the complex valued addition can be performed by 2
RADDs. Thus, we get

Cclassical
LMS = 8(K − 1)P RMUL + 8(K − 1)P RADD.

(73)
On the other hand, if the direct fast complex valued mul-
tiplication is applied (3 RMULs and 5 RADDs), we get

CdirectSR
LMS =6(K − 1)P RMUL

+ 14(K − 1)P RADD.
(74)

Comparing Eqns. (73) and (74), we conclude that the di-
rect application of the fast complex valued multiplication
reduces the number of real valued multiplications by 25%,
at the expense of 50% of extra real valued adders.

The computational complexity of the proposed SR
LMS GSC adaptive algorithm of Table 3 is

CproposedSR
LMS =6(K − 1)P RMUL

+(8(K−1)P +2K−1) RADD.
(75)

Comparing Eqns. (75) and (72) giving the equivalent real
valued arithmetic complexity of the LMS GSC algorithm,
it is established that the proposed SR LMS GSC adaptive
algorithm requires 25% fewer real valued multiplications.
Moreover, the number of real valued additions remains ap-
proximately the same as the original scheme (this follows
from the fact that(2K − 1) � 8(K − 1)P ).

In a similar way, the TD-LMS GSC algorithm has
an equivalent real valued arithmetic complexity using
the classical or direct fast complex valued multiplication
methods respectively given by

Cclassical
T D−LMS =16(K − 1)P RMUL

+ (14P + 2)(K − 1) RADD
(76)

and

CdirectSR
T D−LMS =13(K − 1)P RMUL

+ (23P + 2)(K − 1)RADD.
(77)

In this case, the direct use of the fast complex valued mul-
tiplication method results in a 20% reduction in the num-
ber of real valued multipliers, at the expense of about 80%
of extra real valued additions.

The computational complexity of the proposed SR
TD-LMS GSC adaptive algorithm of Table 4 is given by

CproposedSR
T D−LMS =13(K − 1)P RMUL

+ (16(K−1)P +3K+1) RADD.
(78)

Comparing Eqns. (78) and (72) of the LMS GSC algo-
rithm, it is clear that the proposed SR TD-LMS GSC adap-
tive algorithm requires fewer 20% real valued multiplica-
tions at the expense of 20% of extra real valued additions.

A comparison of the relative computational require-
ments among all LMS GSC type algorithms discussed
above is provided below:

Realization of the LMS GSC

Algorithm Relative Relative

RMUL RADD

Classic 100% 100%

Direct SR 75% 120%

Proposed SR 75% 100%

Realization of the TD-LMS GSC

Algorithm Relative Relative

RMUL RADD

Classic 100% 100%

Direct SR 80% 180%

Proposed SR 80% 120%

3.4. Pipelined Implementation Aspects

In many beamforming applications, very high sample
rates and/or multi-input linear combiners of large size are
required. Electronically phased-array radars and digital
beamforming in wireless communications are typical ex-
amples where very high sampling rates are applied. The
computational burden of the adaptation mechanism of the
GSC beamformer becomes extremely high; the process-
ing power of several GOPS (Giga operations per second)
is needed (Ahlanderet al., 1996; Boukalov and Haggman,
2000; Martinez, 1999; Taveniku and Ahlander, 1997).
This means that for a real-time implementation, pipelined
and/or parallel computational architectures should be de-
veloped. Moreover, pipelining and parallelism in the com-
putation mechanism can be used to design low power im-
plementations, which are necessary for power constrained
applications (Parhi, 1999).

The inner product computations involved in the er-
ror feedback loop of both SR LMS GSC and SR TD-
LMS GSC algorithms, i.e., Eqns. (2)–(4) and (12)–(14)
of Tables 3 and 4, respectively, prohibit the full pipelining
and/or parallelism of the pertinent algorithms. A remedy
to this bottleneck is the introduction of an adaptation delay
(Long et al., 1989; 1992) resulting in delayed LMS GSC
schemes. The development of pipelined adaptive LMS
and TD-LMS GSC schemes is accomplished by introduc-
ing a certain amount of delay in the adaptation mecha-
nism. Thus, the filter updating equations, i.e., Eqns. (13)
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and (14) of Table 3, and Eqns. (21) and (22) of Table 4,
are replaced by the delayed updating versions as

ci(n) = ci(n− 1)

+ µ (gi,1(n−∆1) + gi,3(n−∆1)) ,
(79)

di(n) =di(n− 1)

+ µ (gi,2(n−∆1) + gi,3(n−∆1))
(80)

and

Ci(n) =Ci(n− 1)

+ µ
(
Gi,1(n−∆2) + Gi,3(n∆2)

)
,

(81)

Di(n) =Di(n− 1)

+ µ
(
Gi,2(n−∆2) + Gi,3(n−∆2)

)
,

(82)

respectively. A proper retiming of the delays introduced in
the error feedback loop allows for the development of high
throughput pipelineable and/or parallel schemes for the
implementation of both of the proposed LMS GSC algo-
rithms on ASIC VLSI systolic or wavefront array proces-
sors. The exact size of the adaptation delays∆1 and ∆2

depends on the pipelined architecture adopted. Roughly
speaking,∆1 and ∆2 are O(log2(P ) + log2(K)) when
binary tree adders are utilized for the estimation of addi-
tions involved in Eqns. (2)–(4) and (7) and Eqns. (12)–
(14) and (16) of Tables 3 and 4, respecively.

3.5. Power Dissipation and the Silicon Area

The strength reduction transformation applied to the LMS
GSC and TD-LMS GSC algorithms results in a lower
power dissipation and silicon area characteristics of the
fabricated ASIC VLSI or the FPGA implementation of the
pertinent adaptive beamforming algorithm for real time
applications. The dynamic power dissipationPD in the
CMOS technology depends mainly on the following three
factors: (a) the average capacitance being switched,CL,
(b) the frequency of operation,f , and (c) the supply volt-
age,Vdd, ( Chandrakasan and Brodersen, 1995; Shanbag,
1998). Indeed, the following equation holds:

PD = CLfV 2
dd. (83)

The application of the strength reduction transform at ei-
ther the algorithmic or the architectural level results in a
low power dissipation by reduction of arithmetic opera-
tions, which corresponds to the reduction of the average
capacitance being switched,CL.

We will now derive a fairly accurate estimate of
the power savings achieved by the proposed strength re-
duced LMS GSC and TD-LMS CSC algorithms. Let

us assume that the effective capacitance,CL, and the
occupied area on silicon,A, of a two-operand multi-
plier are proportional to that of a two-operand adder,
i.e., CRMUL

L ∝ KP CRADD

L and ARMUL ∝ KAARADD

(Shanbhag, 1998). Then the power saving factor,PE,
due to the application of the strength reduction transform
can be expressed as

PE(KP ) = 1− P classical
D (KP )
PSR

D (KP )
, (84)

The power savings achieved by the proposed SR LMS
GSC algorithm are estimated by taking into account
Eqns. (73) and (75) as

PEproposedSR
LMS =

KP

4(KP + 1)
. (85)

When the fast complex multiplication is directly applied
to the original LMS GSC algorithm, the PE is estimated
using Eqns. (73) and (74) as follows:

PEdirectSR
LMS =

KP − 3
4(KP + 1)

. (86)

Using similar arguments as above, the area savings
achieved by both schemes are estimated as

AEproposedSR
LMS =

KA

4(KA + 1)
,

AEdirectSR
LMS =

KA − 3
4(KA + 1)

.

(87)

From (85)–(87) it is clear that both schemes result in
power and area savings that approach the25% limit as
KP and KA become large. If we assume array based
multiplier structures, then bothKP and KA are approx-
imately equal to the number of bitsnb that are used
for the digital number representation. The power savings
achieved by both schemes are illustrated in Fig. 3.

Clearly, the proposed SR-LMS GSC scheme out-
performs the classical fast multiplication LMS GSC im-
plementation, since it approaches the theoretical limit of
25% savings much faster than the classical scheme, even
for small values ofKP and KA.

The power and area saving achieved by the proposed
strength reducing transform domain LMS GSC are esti-
mated in a similar way, using Eqns. (76)–(78). Thus we
get

PEproposedSR
T D−LMS =

3KP − 2
16KP + 14

,

AEproposedSR
T D−LMS =

3KA − 2
16KA + 14

,

(88)

PEdirectSR
T D−LMS =

3KP − 9
16KP + 14

,

AEdirectSR
T D−LMS =

3KA − 9
16KA + 14

.

(89)
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Fig. 2. Power and area savings achieved by the proposed
SR LMS GSC and the SR TD LMS GSC algo-
rithms.
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Fig. 3. Experiment 1. Learning curves (MSE): (a) the SR
LMS GSC, and (b) the SR TD LMS GSC.

Clearly, both algorithms result in power and area savings
that approach the18.75% limit as KC and KA become
large. The power savings achieved by both the schemes
are illustrated in Fig. 3. The proposed SR-TD LMS GSC
algorithm outperforms the classical fast TD LMS GSC
counterpart, since it approaches the theoretical limit of
18.75% savings much faster than the classical scheme,
even for small values ofKP and KA (notice that for
the direct SR TD LMS GSC scheme savings appear when
KP > 4).

4. Simulation

The performance of the proposed SR LMS GSC and SR
TD-LMS GSC algorithms is illustrated by two typical

adaptive beamforming examples. The simulation sce-
nario for the first experiment is adopted from (An and
Champagne, 1994). A stationary narrowband target sig-
nal, sT (n), is mitigated by three stationary narrowband
jammers sj1(n), sj2(n) and sj3(n), with different di-
rections of arrival. The background noise,η(n), is a zero
mean Gaussian white noise signal. Thus

v1(n) = sT (n) + sj1(n) + sj2(n) + sj3(n) + η(n).

Specific values of the simulation parameters are given be-
low:

Signal f θ SNR

Target sT (n) 0.1 0◦ 10 db

Jammer 1 sj1(n) 0.3 34◦ 20 db

Jammer 2 sj2(n) 0.4 −49◦ 40 db

Jammer 3 sj3(n) 0.25 −24◦ 30 db

The parametersf and θ denote the normalized fre-
quency and the incident angle (relative to the broadside) of
the plane wave signals, respectively. The adaptive beam-
former consists ofK = 17 linear array elements, equally
spaced at half of the wavelength distance at the maximum
frequency of interest,fmax, and it is steered in the direc-
tion of the target signal. Seven delay elements are associ-
ated with each array element, i.e.,P = 8.

The MSE between the actual target signal,sT (n),
and the output of the beamformere(n), i.e.,

Pe(n) = EEE(|sT (n)− e(n)|2)

for each case, was computed by averaging the squared
instantaneous estimation errors over an exponentially de-
caying window with the effective memory equal to 100
time instants. The learning curves of the SR LMS GSC
and SR TD-LMS GSC algorithms are depicted in Fig. 3.
The beampatterns of the proposed method (after conver-
gence) at different frequencies of interest are depicted in
Fig. 4.

The simulation scenario for the second experiment
is similar to that of (Weisset al., 1999). A stationary
wideband target signal,sT (n), is mitigated by a stationary
wideband jammer,sj1(n). The background noise,η(n),
is a zero mean Gaussian white noise signal. Thus

v1(n) = sT (n) + sj1(n) + η(n).

Specific values of the simulation parameters are given be-
low:

Signal f θ SNR

Target sT (n) [0,0.5] 0◦ 5 db

Jammer 1 sj1(n) [0.1,0.35] −20◦ 40 db
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Fig. 4. Experiment 1. Beampatterns of the SR LMS GSC (a) and the SR TD
LMS GSC (b) after convergence at different frequencies of interest.
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In this case, the adaptive beamformer consists of
K = 11 linear array elements, evenly spaced at half of
the wavelength distance at the maximum frequency of in-
terest,fmax, and it is steered in the direction of the target
signal. One hundred delay elements are associated with
each array elements, i.e.,P = 100. The learning curves
of the SR LMS GSC and SR TD-LMS GSC algorithms
are depicted in Fig. 5. The beampatterns of the proposed
methods (after convergence) at different frequencies of in-
terest are depicted in Fig. 6.
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Fig. 5. Experiment 2. Learning curves (MSE): (a) the SR
LMS GSC, and (b) the SR TD LMS GSC.

From both experiments it is clear that the proposed
SR LMS GSC and SR TD LMS GSC algorithms pro-
vide efficient adaptive beamforming with reduced com-
putational complexity, and reduced power dissipation and
silicon area requirements.

5. Conclusions

In this paper, efficient realizations of least mean squared
error, generalized sidelobe canceller algorithms applied to
adaptive beamforming have been considered. Two effi-
cient algorithms for adaptive GSCs were developed for
implementing the LMS GSC and transform domain LMS
GSC schemes. In both cases, the strength reduction trans-
forms that reduce the number of operations were applied
without affecting the input-output behavior of the under-
line algorithms. Using the algorithmic strength reduc-
tion, low complexity LMS GSC and TD-LMS GSC al-
gorithms were developed that can be realized using real
valued arithmetic only, whilst reducing the number of real
valued multipliers by 25% and 20%, respectively, at a
zero or a marginal increase in the number or real valued
adders. The proposed schemes are suitable for VLSI im-
plementation as they assure a significant reduction in the
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Fig. 6. Experiment 2. Beampatterns of the SR LMS GSC
(a) and the SR TD LMS GSC (b) after conver-
gence.

power dissipation and the silicon area of the fabricated cir-
cuit. The performance of the proposed realizations of the
LMS based GSC methods was illustrated in the context of
beamforming applications.

References

Ahlander A., Taveniku M. and Svensson B. (1996):A multiple
SIMD approach to radar signal processing. — Proc. 10-th
IEEE Region. Conf., Perth, Australia, pp. 852–857.

An J. and Champagne B. (1994):GSC realization using the two-
dimensional transform-domain LMS algorithm. — IEE
Proc. Radar Sonar Navig., Vol. 141, No. 5, pp. 270–278.

Baghaie R. (1999):Applications of transformation techniques
in CDMA receivers. — Proc. 42-nd IEEE Midwest Symp.
Circuits and Systems’99, Conf., Las Cruces, Mexico,
pp. 905–908.



G.-O. Glentis564

Baghaie R. and Laakso T. (1998):Implementation of low-power
CDMA RAKE receivers using strength reduction transfor-
mation. — Proc. IEEE Nordic Signal Processing Symp.,
Aalborg, Denmark, pp. 169–172.

Baillet S., Moscher J. and Leahy R. (2001):Electromagnetic
brain mapping. — IEEE Signal Process. Mag., Vol. 18,
No. 2, pp. 14–30.

Boukalov A. and Haggman S. (2000):System aspects of smart-
antenna technology in cellular wireless communications—
An overview. — IEEE Trans. Micr. Theory Techn., Vol. 48,
No. 6, pp. 919–929.

Buckley K. (1986):Broadband beamforming and the general-
ized sidelobe canceller. — IEEE Trans. Acoust. Speech
Signal Process., Vol. 34, No. 5, pp. 1322–1323.

Buckley K. (1987):Spacial/spectral filtering with linearly con-
strained minimum variance beamformers. — IEEE Trans.
Acoust. Speech Signal Process., Vol. 35, No. 3, pp. 249–
266.

Chang A. and Chiang C. (2002):Adaptive H∞ robust beam-
forming for imperfect antenna array. — Signal Process.,
Vol. 82, No. 8, pp. 1183–1188.

Chandrakasan A. and Brodersen R. (1995):Minimizing power
consumption in digital CMOS circuits. — Proc. IEEE,
Vol. 83, No. 4, pp. 498–523, 12–31.

Chen Y.H. and Fang H.D. (1992):Frequency domain imple-
mentation of the Griffiths-Jim adaptive beamformer. — J.
Acoust. Soc. Am., Vol. 91, No. 6, pp. 3354–3366.

Chryssomallis M. (2000):Smart antennas. — IEEE Antenn.
Propag. Mag., Vol. 42, No. 3, pp. 129–136.

Chu Y. and Fang W. (1999):A novel wavelet-based general-
ized sidelobe canceller. — IEEE Antenn. Propag., Vol. 47,
No. 9, pp. 1485–1494.

Compton R. (1988):Adaptive Antennas: Concepts and Applica-
tions. — Englewood Cliffs, NJ: Prentice-Hall.

Cox H., Zeskind R. and Owen M. (1987):Robust adaptive
beamforming. — IEEE Trans. Acoust. Speech Sigal. Pro-
cess., Vol. 35, No. 9, pp. 1365–1376.

Drabowitch S., Papiernik A., Griffiths H., Encinas J. and Smith
B. (1998):Modern Antennas. — Chapman & Hall.

Farina R. (1992):Antenna-Based Signal Processing Techniques
for Radar Systems. — Norwood, MA: Artech House.

Farina A., Saverione A. and Timmoneri, L., (1996):MVDR vec-
torial lattice applied to space-time processing for AEW
radar with large instantaneous bandwidth. — IEE Proc.
Radar Sonar Navig., Vol. 143, No. 1, pp. 41–46.

Farina A. and Timmoneri L. (1999):Real-time STAP techniques.
— Electron. Comm. Eng. J., Vol. 11, No. 1, pp. 13–22.

Feldman D. and Griffiths L. (1994):A projection approach for
robust adaptive beamforming. — IEEE Trans. Signal Pro-
cess., Vol. 42, No. 4, pp. 867–876.

Frost O. (1972):An algorithm for linearly constrained adaptive
array processing. — Proc. IEEE, Vol. 60, No. 8, pp. 926–
935.

Fudge G. and Linebarger D. (1994):A calibrated generalized
sidelobe canceller for wideband beamforming. — IEEE
Trans. Signal Process., Vol. 42, No. 10, pp. 2871–2875.

Haykin S. (1996):Adaptive Filter Theory, 3rd Ed.— Englewood
Cliffs, NJ: Prentice Hall.

Hendon E. and Reed I. (1990):A new CFAR sidelobe canceller
algorithm for radar. — IEEE Trans. Aerospace Electr.
Syst., Vol. 26, No. 5, pp. 792–803.

Herbordt W. and Kellermann W. (2001):Efficient frequency do-
main realization of robust generalized sidelobe cancellers.
— IEEE Conf. Multimedia Signal Process., Cannes,
France, pp. 377–382.

Honig M. and Tsatsanis M. (2000):Multiuser CDMA receivers.
— IEEE Signal Process. Mag., Vol. 17, No. 3, pp. 49–61.

Hoshuyama O., Sugiyama A. and Hirano A. (1999):A robust
adaptive beamformer with a blocking matrix using coeffi-
cient constrained adaptive filters. — IEICE Trans. Funda-
ment., Vol. E82-A, No. 4, pp. 640–647.

Hudson J. (1991):Adaptive Array Principles. — London, UK:
IEE Press.

Huard K. and Yeh C. (1994): Gram-Schmidt forward-
backward Generalized Sidelobe Canceller. — IEEE Trans.
Aerospace Electron. Syst., Vol. 30, No. 1, pp. 151–160.

Gannot S., Burshtein D. and Weinstein E. (2001):Signal en-
chancement using beamforming and nonstationarity with
applications to speech. — IEEE Trans. Signal Process.,
Vol. 49, No. 8, pp. 1614–1626.

Gershman A. (1999):Robust adaptive beamforming in sensor
arrays. — AEU-Int. J. Electron. Comm., Vol. 53, No. 6,
pp. 305–314.

Ghorayeb S., Lord W. and Udpa S. (1994):Application of a
beamforming technique to ultrasound imaging in nonde-
structive test. — IEEE Trans. Ultasonics Ferroel. Freq.
Contr., Vol. 41, No. 2, pp. 199–208.

Glentis G., Berberidis K. and Theodoridis S. (1999):Efficient
least squares adaptive algorithms for FIR transversal fil-
tering: a unified view. — IEEE Signal Process. Mag.,
Vol. 16, No. 4, pp. 13–42.

Godara L. (1997):Applications of antenna arrays to mobile
communications, Part II: Beamforming and direction-of-
arrival considerations. — Proc. IEEE, Vol. 85, No. 8,
pp. 1195–1245.



Implementation of adaptive generalized sidelobe cancellers using efficient complex valued arithmetic 565

Goldstein J., Williams D., Merserau R. and Holder E. (1994):
Inter-space and intra-space transformation for sensor ar-
ray processing. — Proc. Asilomar Conf.Signals, Systems,
Computers, Pacific Grove, CA, pp. 638–642.

Griffiths L.J. and Jim C.W. (1982):An alternative approach
to linearly constrained adaptive beamforming. — IEEE
Trans. Antennas Propag., Vol. 30, No. 1, pp. 27–34.

Johnson D. and Dudgeon D. (1993):Array Signal Processing:
Concepts and Techniques. — Prentice-Hall.

Joho M. and Moschytz G. (1997):Adaptive beamforming with
partitioned frequency-domain filters. — Proc. IEEE Work-
shop Applications of Signal Processing to Audio and
Acoustics, NY, USA.

Kalouptsidis N. and Theodoridis S. (Eds.) (1993):Adaptive Sys-
tem Identification and Signal Processing Algorithms. —
Prentice Hall.

Kim K., Park Y., Cha I. and Youn D. (1992):Adaptive multi-
channel lattice-escalator filter structure: An application
to generalized sidelobe canceller. — IEEE Trans. Signal
Process., Vol. 40, No. 7, pp. 1816–1819.

Kohno R. (1998):Spacial and temporal communication theory
using adaptive antenna array. — IEEE Personal Comm.,
Vol. 5, No. 1, pp. 28–36.

Kogon S., Williams D. and Holder E. (1996):Beamspace tech-
niques for hot clutter cancellation. — IEEE Int. Conf.
Acoust. Speech Signal Process, Vol. 2, Atlanta, USA,
pp. 1177–1180.

Krim H. and Viberg M. (1996):Two decades or array signal
processing research: the parametric approach. — IEEE
Signal Process. Mag., Vol. 13, No. 4, pp. 67–94.

Lamagna A. (1982):Fast computer algebra. — IEEE Comp.,
Vol. 15, No. 9, pp. 43–56.

Lee B., Chang B., Cha I., Kim W. and Youn D. (1987):Realiza-
tion of a generalized sidelobe canceller. — IEEE Trans.
Circ. Syst., Vol. 34, No. 7, pp. 759–764.

Lee T. and Tsai T. (2001):A beamspace-time interference can-
celing CDMA receiver for sectored communications in
multipath environment. — IEEE J. Select. Areas Comm.,
Vol. 19, No. 7, pp. 1374–1384.

Leshem A., van der Veen A. and Boonstra A. (2000):Multichan-
nel interference mitigation techniques in radio astronomy.
— Astrophys. J. Suppl., Vol. 131, pp. 355–374.

Li L., Jeffs B., Poulsen A. and Warnick K. (2002):Analysis of
adaptive array algorithm performance for satellite inter-
ference cancellation in radio astronomy. — Proc. XXVII
URSI General Assembly, Maastricht, The Netherlands.

Li X. and Gaillard P. (1988):Broadband generalized sidelobe
canceller using multichannel least squares lattice struc-
ture. — Proc. IEEE Conf.Acoust. Speach Signal Process,
pp. 1248–1251.

Litva J. and Lo T. (1996):Digital Beamforming in Wireless
Communications. — Norwood, MA: Artech House.

Long G., Ling F. and Proakis J. (1989):The LMS algorithm with
delayed coefficients adaptation. — IEEE Trans. Acoust.
Speech Sign. Process., Vol. 37, No. 9, pp. 1397–1405.

Long G., Ling F. and Proakis J. (1992):Corrections to ‘The
LMS algorithm with delayed coefficients adaptation’. —
IEEE Trans. Acoust. Speech Sign. Process., Vol. 40, No. 1,
pp. 230–232.

Martinez D. (1999):Application of parallel processors to real-
time sensor array processing. — Proc. 13th Int.Parallel
Processing Symp. and 10th Symp.Parallel and Distrib.
Process., San Juan, Puerto Rico, pp. 463–469.

Moon S., Han D. and Cho M., (2001):Frequency domain par-
tially adaptive array algorithm conbined with CFAR tech-
nique. — Signal Process., Vol. 81, No. 9, pp. 1927–1934.

Monzingo R. and Miller T. (1980):Introduction to Adaptive Aar-
rays. — New York: Wiley.

Mucci R. (1984): A comparison of efficient beamforming al-
gorithms, IEEE Trans. Acoust. Speech Signal Process.,
Vol. 32, No. 3, pp. 548–558.

Narayan S., Peterson A.M. and Narasimba M.J. (1983):Trans-
form domain LMS algorithm. — IEEE Trans. Acoust.
Speech Signal Process., Vol. 31, No. 3, pp. 609–615.

Nitzberg R. (1999):Radar Signal Processing and Adaptive Sys-
tems. — Norwood, MA: Artech House.

Parhi K. (1999):VLSI Digital Signal Processing Systems, De-
sign and Implementation. — New York: Wiley.

Paulraj A. and Papadias C. (1997):Space-time processing for
wireless communications. — IEEE Signal Process. Mag.,
Vol. 14, No. 5, pp. 49–83.

Perry R., Bull D. and Nix A. (1999):Efficient adaptive complex
filtering algorithm with application to channel equaliza-
tion. — IEE Proc.-Vis. Image Signal Process., Vol. 146,
No. 2, pp. 57–64.

Pillai S. (1989): Array Signal Processing. — New York:
Springer.

Rappaport T. (1998):Smart Antennas: Adaptive Arrays, Algo-
rithms, and Wireless Position Location. — IEEE Press.

Scott I. and Mulgrew B. (1995):Sparse LCMV beamforming
design for suppression of ground clutter in airborn radar.
— IEEE Trans. Signal Process., Vol. 43, No. 12, pp. 2843–
2852.

Shanbhag N. (1998):Algorithmic transformation techniques for
low-power wireless VLSI systems design. — Int. J. Wire-
less Inf. Netw., Vol. 5, No. 2, pp. 147–171.

Shynk J. (1992):Frequency-domain and multirate adaptive fil-
tering. — IEEE Signal Process. Mag., Vol. 9, No. 1,
pp. 14–39.



G.-O. Glentis566

Taveniku M. and Ahlander A. (1997):Instruction statistics in
array signal processing. — Res. Rep., Halmstad Univ.

Tian Z., Bell K. and van Trees H. (2001):A recursive least
squares implementation of the LCMP beamformer un-
der quadratic constraint. — IEEE Trans. Signal Process.,
Vol. 49, No. 6, pp. 1510–1522.

Timmoneri L., Proudler I., Farina A. and McWhirter J. (1994):
QRD-based MVDR algorithm for adaptive multipulse ar-
ray signal processing. — IEE Proc.-Radar, Sonar Navigat.,
Vol. 141, No. 2, pp. 93–102.

van Veen B. and Buckley K. (1988):Beamforming: A versatile
approach to spatial filtering. — IEEE ASSP Mag., Vol. 5,
No. 4, pp. 4–24.

Weiss S., Stewart R., Schaber M., Proudler I. and Hoffman M.
(1999):An efficient scheme for broadband adaptive beam-
forming. — Proc. 33rd Asilomar Conf.Signals, Sysems,
Computers, Monterey, CA, USA, Vol. I, pp. 495–500.

Wenzler A. and Luder E. (1995):New structures for compex
multipliers and their noise analysis. — Proc. IEEE IS-
CAS, Seattle, USA, pp. 1431–1435.

Widrow B. and Stearns S. (1985):Adaptive Signal Processing.
— Englewood Cliffs, NJ: Prentice Hall.

Winograd S. (1980):Arithmetic Complexity of Computations. —
Philadelphia: SIAM.

Winters J. (1998):Smart antennas for wireless systems. — IEEE
Person. Comm., Vol. 5, No. 1, pp. 23–27.

Xu Z. and Tsatsanis M. (1999):Adaptive minimum variance
methods for direct blind multichannel equalization. —
Signal Process., Vol. 73, pp. 125–138.

Ye W., Bar-Nes W. and Haimovich A. (1997):A self-correcting
loop for joint estimation-calibration in adaptive radar. —
IEEE Nat. Radar Conf., Syracuse, NY, pp. 320–324.

Yu J. and Leou M. (2000):Transformation-based adaptive array
beamforming. — Sign. Process., Vol. 80, No. 2, pp. 231–
241.

Yu S. and Ueng F. (2000):Blind adaptive beamforming based
on generalized sidelobe canceller. — Signal Process.,
Vol. 80, No. 12, pp. 2497–2506.

Yuen S. (1991):Exact Least-Squares adaptive beamforming us-
ing orthogonalization network. — IEEE Trans. Aerospace
Electr. Sys., Vol. 27, No. 2, pp. 311–330.

Received: 4 April 2002
Revised: 12 March 2003


