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The paper discusses the problem of recognizing the Boolean function linearity. A spectral method of the analysis of Boolean
functions using the Walsh transform is described. Linearity and nonlinearity play important roles in the design of digital
circuits. The analysis of the distribution of spectral coefficients allows us to determine various combinatorial properties of
Boolean functions, such as redundancy, monotonicity, self-duality, correcting capability, etc., which seems more difficult be
performed by means of other methods. In particular, the basic synthesis method described in the paper allows us to compute
the spectral coefficients in an iterative manner. The method can be easily used in investigations of large Boolean functions
(of many variables), which seems very attractive for modern digital technologies. Experimental results demonstrate the
efficiency of the approach.
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1. Introduction

Transformations between the Boolean and spectral do-
mains have been extensively studied by several au-
thors (Ahmed and Rao, 1975; Blahut, 1983; Harmuth,
1977; Hurstet al., 1985; Karpovsky, 1976; Porwik and
Falkowski, 1999). This research has been carried out be-
cause many problems of digital logic can be solved more
efficiently in the spectral domain than in the Boolean one.
Theoretically, the techniques based on the Walsh trans-
form provide some nice properties such as Boolean func-
tion classification, disjoint decomposition, multiplexer
and threshold logic synthesis, state assignment, testing
and evaluation of logic complexity (Hurstet al., 1985;
Falkowski and Kannurao, 2000; Porwik and Falkowski,
1999). In practice, spectral methods are not always at-
tractive because they involve the additional conversion
from the Boolean to the spectral domain and unfortunately
there are matrix-based methods which are inefficient for
large Boolean functions (Clarkeet al., 1993). In some
cases spectral methods can be effectively applied to solve
mathematical and practical problems (Blahut, 1983). One
of these problems is to check the linearity of Boolean
functions by means of the Walsh-Hadamard spectral tech-
nique. This paper presents the method which allows us to
investigate the linearity of Boolean functions directly on
the basis of the Walsh coefficients. The presented method
is characterized by low complexity and can be applied to
all n variables of Boolean functions. Linearity or nonlin-

earity measures are a very important feature of a Boolean
function. Nowadays, some investigations of the linear-
ity (nonlinearity) of functions are applied in many areas,
e.g. in cryptography, data encryption, ciphers, error con-
trol codes, projects of the so-calleds-boxes, evaluation of
the Reed-Muller form, etc.

2. Preliminaries

Let Vn be a vector space ofn tuples of elements from
GF (2). For this space there is a natural one-to-one cor-
respondence between any vectors inVn and integers in
[0, . . . , 2n−1]. This allows ordering the vectors according
to their corresponding integer values. Iff is a Boolean
function from Vn, then it can be expressed as a unique
polynomial in n co-ordinatesx1, x2, . . . , xn. For this
reason f will be identified as a unique multi-variable
polynomial f(x), wherex = (x1, x2, . . . , xn).

Definition 1. An n-variable Boolean function
f(x1, x2, . . . , xn) can be written as

2n−1∑
j=0

yjx
b1
1 xb2

2 · · ·xbn
n ,

whereb1, b2, . . . , bn ∈ {0, 1} and b1b2 . . . bn is an n-bit
binary number represented byj, xbi=0

i = xi, xbi=1
i =

xi for i = 1, 2, . . . , n. Then Y = [y0, y1, . . . , y2n−1],
yj ∈ {0, 1} is the truth vector off .
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Example 1. The truth vector of the three-variable
Boolean functionf(x1, x2, x3) = x1x2x3 + x1x2x3 +
x1x2x3+x1x2x3+x1x2x3 is [1, 0, 1, 0, 1, 1, 1, 0]. �

Definition 2. The linear combination of two Boolean
functions f , g : {0, 1}n → {0, 1} is defined as(f ⊕
g)(x) = f(x) ⊕ g(x), where⊕ denotes addition mod-
ulo 2.

Definition 3. The Hamming weightw(c) of a vectorc is
equal to the number of non-zero components in the vector.

Definition 4. The Hamming distanced(a, b) between
two binary sequencesa and b of length n is the num-
ber of the places in which they differ.

Example 2. Let f and g be two given functions onVn.
The Hamming distanced(f, g) between them is defined
as the Hamming weight off(x) ⊕ g(x) and d(f, g) =
w(f(x)⊕ g(x)). �

Definition 5. A map f : v → GF (2) is called thebent
function if for any affine function l : v → GF (2) we
havew(f ⊕ l) = (2n ± 2n/2)/2.

Lemma 1. Let [b0, b1, . . . , b2n−1], bi ∈ {0, 1} be the
truth vector of a bent function and[c0, c1, . . . , c2n−1],
ci ∈ {0, 1} be the truth vector of a linear function. Then
the vector [b0c0, b1c1, . . . , b2n−1c2n−1] also represents
the truth vector of a bent function.

The proof of a similar lemma can be found in (Adams
and Tavares, 1990).

Definition 6. Let Y = [y0, y1, . . . , y2n−1] be the truth
vector of a given Boolean functionf in the {0, 1} do-
main. We call[(−1)y0 , (−1)y1 , . . . , (−1)y2n−1 ] the truth
vector of a given functionf in the {1,−1} domain. In
other words, we obtain a mappingv : {0, 1} → {1,−1}.
Such a representation will be called the sequence of the
function f .

3. Spectral Analysis

Spectral data are used in many applications in digital logic
design. Some of them offer a possibility of function clas-
sification (Hurstet al., 1985; Porwik, 2002), fault synthe-
sis, signal processing (Porwik and Falkowski, 1999; Kar-
povsky, 1976; Sasao, 1993) and others. A Boolean func-
tion f(x1, x2, . . . , xn) can be transformed from the do-
main {0, 1} into the spectral domain by the linear trans-
formation H · Y = R, where H is a 2n × 2n orthog-
onal transform matrix,Y = [y0, y2, . . . , y2n−1]T is the
two-valued truth vector off(x1, x2, . . . , xn), and R =
[r0, r1, . . . , r2n−1]T is the vector of spectral coefficients.
One of several ways to interpret the meaning of each spec-
tral coefficient is to view it as a measure of correlation

between two functions (vectors) (Hurstet al., 1985; Por-
wik, 2000a; Porwik, 2002). Hence the first functionf
is a Boolean function represented by the two-valued truth
vector Y and the second function is one from the col-
lection of the constituent functions of the transformation
matrix H. The type of the information that is obtained
from spectral coefficients depends on the transformation
matrix. In this paper, the well-known Hadamard matri-
ces are used as transform matrices. In (Harmuth, 1977) it
was observed that for someN , where n = log2 N , the
Hadamard matrices include the discrete Walsh functions.

Definition 7. The Sylvester-Hadamard (the Walsh-
Hadamard) matrix of order2n is generated by the fol-
lowing recursive formulae:

H0 = [1], Hn =

[
1 1
1 −1

]
⊗Hn−1, n=1, 2, . . . (1)

where⊗ denotes the Kronecker product.

The square matrix (1) can be alternatively generated
on the basis of the formulae:

H0 = [1] , Hn =

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
. (2)

Additionally we haveHn = HT
n andHn ·HT

n = 2n ·In,
where In is the identity matrix of order2n. Because
H−1

n = 1
2n HT

n , the matrixHn is orthogonal. The spec-
tral coefficients calculated on the basis of the matrix (1)
are the so-called Walsh coefficients. This transformation
is known as the Walsh-Hadamard Transform (WHT).

Each row of the matrixHn created in this way
includes a discrete Walsh sequencewal(w, t) (in other
words, a discrete Walsh function). In this notation,w =
1, . . . , 2n identifies the index of the Walsh function, and
t = 1, . . . , 2n stands for a discrete point of the func-
tion determination interval. The relationship between the
Walsh coefficients and the variables of a Boolean function
f can be described as follows:

Definition 8. Any Boolean functionf(x1, x2, . . . , xn)
of n variables can be expressed by means of the Walsh-
Hadamard coefficients as an arithmetical polynomial:

f(x1, x2, . . . , xn) =
1
2n

[
r0 + r1 · (−1)xn

+ r2 · (−1)xn−1

+ r3 · (−1)xn⊕xn−1

+ · · ·+ r2n−1 ·(−1)xn⊕xn−1···⊕x1
]
,

where ⊕ stands for the modulo-2 addition, and
r0, r1, . . . , r2n−1 ∈ R are spectral coefficients.
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Each spectral coefficientri ∈ R is described by its
order. The order is equal to the number of variables de-
scribing the linear function, which corresponds to a row
in the matrix Hn for a given spectral coefficient. The
ri elements of the vectorR are ordered according to a
straight binary code of literals describing the minterms of
the original truth vectorY:

r0 C0
n = 1 – zeroth-order coefficient,

ri C1
n = n – first-order coefficients, i =

1, . . . , n,

rij C2
n – second-order coefficients,ij =

12, 13, 1n, . . . , (n− 1)n,

rijk C3
n – third-order coefficients,ijk =

123, 124, . . . , (n− 2)(n− 1)n,
...

...

r12...n Cn
n = 1 – the coefficient of ordern.

In this notationr1234 is a spectral coefficient which
has been calculated for a given Boolean function at point
x1 = x2 = x3 = x4 = 1.

Property 1. Let ϕ(x) be a Boolean function and let its
spectrum have the formR = [r0, r1, . . . , r2n−1]. Let
ϕ(x) = 1− ϕ(x) be the negation ofϕ(x) and let
its spectrum have the formR = [r0, r1, . . . , rl]. Then
r0 = 2n − r0 and ri = −ri for i = 1, 2, . . . , 2n − 1.

4. Spectral Description of the Linearity
of a Boolean Function

Definition 9. The Boolean functionfk(x1, x2, . . . , xn)
of n variables is called affine if it takes the form of a
polynomial fk(x) = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn ⊕ c,

whereaj , c ∈ GF (2) and k = c +
n∑

i=1

ai2i.

In particular, if c = 0 then f is called a linear func-
tion.

Some authors (Sasao , 1995) (very often in a broader
sense than here) have additionally classified these func-
tions with respect to thec coefficient. In this paper,
regardless of thec value, all Boolean functions will be
called linear. In linear Boolean functions each coefficient
ai corresponds to a unique orderingxi. Hence the or-
dering set of allai corresponds to a unique ordering of a
Boolean function.

Corollary 1. (Porwik, 2000b)By the definition of the
Walsh functions, for any affine Boolean functionfk we
have the following:
for c = 0:

Yk = fk(x) =
1
2
(
1− wal(k, t)

)
,

for c = 1:

Yk = fk(x) =
1
2
(
1− ((−1) · wal(k, t))

)
.

From Corollary 1 it follows that any linear Boolean
function can be generated immediately from Hadamard
matrices (Porwik, 2000a; Porwik, 2000b):

for c = 0 from Hn,

for c = 1 from Hn = −1 ·Hn.
(3)

The spaceVn generates22n

different Boolean func-
tions and it includes2n+1 affine functions (Porwik,
2000b). By means of the Walsh-Hadamard transform we
can find only2n linear functions. Theorem 1 allows us to
find all affine Boolean functions inVn.

Let R = [r0, r1, . . . , r2n−1] be a vector of spectral
coefficients and letR = [0, 0, . . . , 0] ⇔ f(x) = 0 and
R = [2n, 0, . . . , 0] ⇔ f(x) = 1 be trivial Boolean func-
tions.

Theorem 1. Any affine Boolean functionf (except for
the two above-mentioned trivial functions) is character-
ized by the unique Walsh-Hadamard spectrum distribution

rx =



+2n−1 for x = 0,

−2n−1 for x = k/2 ⇔ c = 0,

+2n−1 for x = (k − 1)/2 ⇔ c = 1,

0 otherwise,

(4)

wherek = c+
∑n

i=1 ai2i, aj , c ∈ GF (2) have the same
meaning as in Definition 9 andx = 0, 1, . . . , 2n − 1.

Proof. Directly from the definition of Walsh functions it
is known that they form a complete orthogonal system.
From the mutual orthogonality the rows of the Hadamard
matrix satisfy

2n−1∑
t=0

wal(i, t) · wal(j, t)=

{
2n for i = j,

0 for i 6= j.
(5)

For any Walsh function we have (Hurstet al., 1985)

2n−1∑
t=0

wal(i, t) =

{
2n for i = 0,

0 for i 6= 0.
(6)

Using (5), (6) and Corollary 1, we obtain (4).

Hence, in the proposed method, a linear Boolean
function can be defined by means of Walsh functions
(Corollary 1) or by means of spectral coefficientsrω ∈ R
(Theorem 1). Thus, in order to decide whether or not a
Boolean function is linear, it is only necessary to calculate
its spectrum. If the spectrum contains only two non-zero
values, then the function is affine and it has the polynomial
form (cf. Definition 8).
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Property 2. A Boolean function ofn variables is affine
if and only if r0 = 2n−1 and the value of then-th order
spectral coefficient is±2n−1.

Example 3. Table 1 includes the description of the given
Boolean functionsf1 and f2. It is necessary to check
whether these functions are linear. From the analysis of
spectral coefficients it follows that the spectrum includes
only two non-zero coefficients:r0 and r7. �

Table 1. Boolean functions and their spectrum.

x1x2x3 x =
n∑

i=1

xi2
n−i f1(x) r1

x f2(x) r2
x

000 0 1 4 0 4

001 1 0 0 1 0

010 2 0 0 1 0

011 3 1 0 0 0

100 4 0 0 1 0

101 5 1 0 0 0

110 6 1 0 0 0

111 7 0 4 1 -4

Hence, according to Theorem 1, the functionsf1and
f2 are affine.

From Table 1 it follows thatf1(x) = f2(x), and
those functions can be described by the Boolean formulae
f1(x1, x2, x3) = 1⊕ x1 ⊕ x2 ⊕ x3 and f2(x1, x2, x3) =
x1 ⊕ x2 ⊕ x3. The obtained results are consistent with
Properties 1 and 2. �

Unfortunately, the above matrix-based method is im-
practical for largen, but, as has been shown, Boolean
functions have particular properties which allow us to
modify them.

Proposition 1. Let Y =[y0, y1, . . . , y2n−1] be the two-
valued truth vector of a functionf(x1, x2, . . . , xn). From
the properties of Hadamard matrices it follows that all the
Walsh-Hadamard spectral coefficients of a Boolean func-
tion can be calculated recursively from the equation

Hn × [y0, y1, . . . , y2n−1] = Hn[y0, y1, . . . , y2n−1]T

=

[
A + B

A−B

]
, (7)

where A = Hn−1 [y0, y1, . . . , y2n−1−1]T and B =
Hn−1 [y2n−1 , y2n , . . . , y2n−1]T .

Formula (7) can be used to efficiently calculate the
Wash-Hadamard spectrum, because instead of inconve-
nient large matricesHn some much better small matri-
ces can be used. The described formula can be easily im-
plemented in parallel computations as well. The parallel

algorithms significantly accelerate the time of computa-
tions. In these cases the matricesHi can be first deter-
mined by a look-up table. Additionally, by means of (7),
it is easy to check whether or not a Boolean function is lin-
ear. In these instances each part of the spectrum calculated
by means of (7) must fulfil the conditions of Theorem 1.
Additionally, for those functions we haverA

i = |rB
i |,

where rA and rB denote spectral coefficients of partA
and B, respectively.

Example 4. Let Y = [01101001]T be the truth vector of
a given Boolean function. SplitY into four parts. Then

H1 =

[
1 1
1 −1

]
and on the basis of (7) we have

H1[01]T = [1− 1]T

H1[10]T = [1 1]T

H1[10]T = [1 1]T

H1[01]T = [1− 1]T

=
↗
↘

A=


+2

0
0

−2

 ↘

B=


+2

0
0

+2

 ↗
=



+4
0
0
0
0
0
0

−4


.

According to Theorem 1, the analysed function is
linear. �

The main limiting factor while using spectral meth-
ods in the processing of switching functions is their calcu-
lation complexity in spite of the existence of fast FFT-like
algorithms. For example, the total number of arithmetic
operations required to determine all Walsh-Hadamard co-
efficients is n2n for Boolean functions ofn variables.
Therefore the complexity isO(n2n). Such complex-
ity is attainable when fast transforms are applied, where
only addition and subtraction are used as arithmetic op-
erations. It is known that FFT-like algorithms are ex-
ecuted in n steps. In each step2n arithmetic oper-
ations are realized. Additionally, in order to store the
calculated spectrum,2n memory locations are required
(Ahmed and Rao, 1975; Clarkeet al., 1993; Harmuth,
1977; Karpovsky, 1976). In the presented method, addi-
tion and subtraction operations are also applied. From (7)
it follows that the complexity of the new method is the
same as in the FFT algorithm. If it is necessary to check
whether a Boolean function is linear, then the complex-
ity of such calculations is onlyO(2n+1), because only
the first two steps of the algorithm are needed. It is so
because after the second step, parts of spectra are known
and each of them must describe the spectrum of a linear
function. Note that the new method of calculating spectra,
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even though it has the complexity of FFT-like algorithms,
is very efficient. Unlike other methods, it is not necessary
to generateHn matrices. The formation of matricesHn

is very time-consuming, especially for largen. Instead of
this, additions and subtractions are solely applied.

Hence, for testing the linearity of Boolean functions
it is necessary to reserve only4 memory cells (instead of
2n) for any n. Each such cell stores one spectral coef-
ficient. Four spectral coefficients determine the so-called
subset spectrum. Hence, according to Theorem 1, on the
basis of a subset spectrum it can be checked whether a
Boolean function is linear. In that case, after the first par-
tition of the spectrum, the continuation of calculations is
needless. In this way, the method exploits the property
that the calculation of a subset ofk Walsh-Hadamard co-
efficients may be interpreted as a windowing operation
over the Hadamard matrix with ak × 2n window in the
multiplication of the Hadamard matrix and the truth vector
of the functionf .

Linearity and nonlinearity play important roles in
cryptography, transmission of information, correction er-
rors, etc. The main component of a stream cipher is a gen-
erator which produces a sequence of pseudo-random bits
from a random seed. These random bits are added modulo
2 to bits in a plain text and, consequently, a ciphertext is
sent to a receiver. The security of a block cipher depends
on the properties of the so-calleds-boxes. An n × m
s-box is a mappingB : {0, 1}n → {0, 1}m. B can be
represented asB(x) = [fm−1(x), fm−2(x), . . . , f0(x)],
where fi are fixed Boolean functionsfi : (0, 1)n →
(0, 1) for any i. The functionsfi are the columns of the
s-box. Finally, B can be represented by a2n × m bi-
nary matrix with the entry(i, j) being bit j of row i. In
these boxes bent functions are applied because an impor-
tant property of bent functions is that they have the highest
possible nonlinearity (Mister and Adams, 1996; Seberry
and Zhang, 1994).

Theorem 2. Any bent functionf(x1, . . . , xn) has the
Walsh-Hadamard spectrum

rx =

{
(2n − 2n/2)/2 or (2n + 2n/2)/2 for x = 0,

±(2n/2)/2 for x 6= 0
(8)

for x = 0, 1, . . . , 2n − 1.

Proof. In casex = 0, the value of the coefficientr0

follows immediately from Definition 5. Additionally,
from the properties of Walsh functions it follows that
wal(0, t) = 1 for any t = 0, 1, . . . , 2n − 1. Thus the
value of r0 is the number of cases whenf(x1, . . . , xn) =
1. In accordance with Definition 5, two such cases may
occur for the functionf and for the functionf . Hence
there are two different values for the coefficientr0. If for

f the number of cases whenf(x1, . . . , xn) = 1 is equal
to a = (2n + 2n/2)/2, then for f this number is equal
to 2n − a = (2n − 2n/2)/2. Searching values forrx6=0

can be considered similarly for the functionsf and f .
Only one case can be shown for the functionf . The proof
for the second case is identical. The Hadamard matrix in-
cludes discrete Walsh functions. As has been shown in
the paper, the Walsh basis is a generator of linear Boolean
functions. On the other hand, we know (Porwik, 2000a)
that spectral coefficientsrx can be calculated by means
of the formula rx = 2n−1 − d(f, wal(x, t)). Finally,
from the fact thatd(f, wal(x, t) = w(f ⊕wal(x, t)) and
taking into account Definition 5, it follows thatrx6=0 =
2n−1 − (2n + 2n/2)/2 = −(2n/2)/2.

Theorem 2 and Definition 5 imply that for fixedn
two bent functions can be extracted. When the bent func-
tion f is known, the second function can be found by the
formula f = 1 ⊕ f . This operation is very simple owing
to Property 1.

It can be observed that the functionf on Vn attains
the upper bound nonlinearities if and only if it is bent (Se-
berry and Zhang, 1994).

Example 5. Table 2 includes the description of two
bent functions and presents the spectrum of each of
them. �

Table 2. Boolean functions and their spectrum.

x1x2x3x4 x =
n∑

i=1

xi2
n−i f1(x) r1

x f2(x) r2
x

0000 0 0 6 1 10

0001 1 0 −2 1 2

0010 2 0 −2 1 2

0011 3 0 −2 1 2

0100 4 0 −2 1 2

0101 5 1 2 0 −2

0110 6 0 −2 1 2

0111 7 1 2 0 −2

1000 8 0 −2 1 2

1001 9 0 −2 1 2

1010 10 1 2 0 −2

1011 11 1 2 0 −2

1100 12 0 −2 1 2

1101 13 1 2 0 −2

1110 14 1 2 0 −2

1111 15 0 −2 1 2

Measuring nonlinearity, it is generally necessary to
record the Boolean function result for each possible com-
bination of the input variables. Unfortunately, the mea-
suring of large functions rapidly becomes impossible. So,
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we can measure nonlinearity in substitutional tables and
small block constructions.

5. Nonlinearity (Linearity) Spectral Measure

Nonlinearity is a crucial criterion for cryptographic func-
tions. That measure can be treated as a security system
factor. If a system is described by linear equations, then
it will be easily breakable by various attacks. The non-
linearity measure of a Boolean functionf : {0, 1}n →
{0, 1} is defined asN(f) = min{(d(f, ϕi), i =
1, 2, . . . , 2n+1} = min{w(f ⊕ ϕi), i = 1, 2, . . . , 2n+1},
where φ = {ϕ1, ϕ2, . . . , ϕ2n+1} is a set of affine func-
tions on Vn. The formula for nonlinearity thus described
is very inconvenient in practice, because in order to calcu-
late the Hamming distance between a givenf and affine
functions from the spaceVn, we have to execute22n+1

operations of comparisons. On the basis of the above, this
important problem can be defined as a more convenient
one in the spectral domain. In that casen2n operations
can be performed in the proposed spectral method (Por-
wik, 2000a).

In reference to the set of affine functions fromφ,
the measure of linearity or nonlinearity for any Boolean
function can be calculated on the basis of the set of lin-
ear functions obtained from the Hadamard matricesHn

or Hn, respectively. Higher numerical values of spec-
tral coefficients indicate the greater linearity of a function.
By finding the largest value we can find the closest linear
function.

It is obvious that using the theory described in the pa-
per, we can immediately construct two spectral measures:
the lowest nonlinearityNL(f) and the greatest nonlin-
earity NG(f) of a given functionf with reference to the
linear Boolean functions defined by matricesHn or Hn,
respectively. These measures can be defined formally by
means of spectral coefficients.

Definition 10. The nonlinearity of a Boolean functionf
can be determined using

NL(f) = 2n−1 − 1
2
{

maxS

∈ {2n − 2r0,−2r1, . . . ,−2r2n−1}
}
,

NG(f) = 2n−1 − 1
2
{

minS

∈ {2r0 − 2n,+2r1, . . . ,+2r2n−1}
}
,

where R = [r0, r1, . . . , r2n−1] is the vector of the spec-
tral coefficients of the functionf .

If we calculate the coefficients by means of the
Walsh-Hadamard transform, we simultaneously get the
coefficients for all affine functions from the setφ .

Example 6. Let Y =[0, 1, 1, 0, 0, 0, 0, 1] be the truth
vector of the functionf(x1, x2, x3). For matricesHn

and Hn we obtain the spectraRHn
= [3,−1,−1,

−1, 1, 1, 1,−3] and RHn
= −RHn

= [−3, 1, 1, 1,
−1,−1,−1, 3], respectively.

Table 3 shows all linear functionsf0, . . . , f15 which
were generated immediately on the basis of Definition 8.
The spectra of the functionsf0, f2, f4,. . . , f14 were
calculated usingHn. The spectra of the functionsf1,
f3, f5,. . . , f15 can be calculated by means ofHn, but
these coefficients were computed more effectively using
the spectrum for the first of the eight functions.

Hence, in accordance with Definition 10, we can eas-
ily characterize (by one spectrum calculation) both the
nonlinearity measuresNL(f) = 1 and NG(f) = 7.
From Table 3 is follows that the same results can be ob-
tained using the Hamming distance.

Table 3. Spectral coefficients and the Hamming dis-
tance of Boolean functionf in reference to
functions from setφ.

f0 f1 f2 f3 f4 f5 f6 f7

SpectrumR +3 −3 −1 +1 −1 +1 −1 +1

SpectrumS +2 −2 +2 −2 +2 −2 +2 −2

d(Y, fk) 3 5 3 5 3 5 3 5

f8 f9 f10 f11 f12 f13 f14 f15

+1 −1 +1 −1 +1 −1 −3 +3

−2 +2 −2 +2 −2 +2 +6 −6

5 3 5 3 5 3 1 7

Note. Index k for functions fk has the same meaning
as in Theorem 1. The functionsfk are arranged according to
Definition 9.

From Table 3 we can conclude that the closest linear
function to f is f14 = x1 ⊕ x2 ⊕ x3. The most distant
function from f is the affine functionf15 = 1 ⊕ x1 ⊕
x2 ⊕ x3.

Similar results are obtained for the Boolean functions
described in Example 5. As is said above, both the func-
tions f1and f2 are bent. For these functions we can com-
pute measuresNL(f1) = NL(f2) = 6 and NG(f1) =
NG(f2) = 10. �

The bent functions can be generated using several
methods (Adams and Tavares, 1990; Mister and Adams,
1996; Seberry and Zhang, 1994). In this paper, on the
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basis of the proposed definitions and theorems, a new
method of generating such functions has been presented
but generally, problems of building bent functions are not
described.

Theorem 3. (Seberry and Zhang, 1994)Let τn denote
the number of bent functions which can be represented by
truth vectors of length2n. Thenτn ≥ (2n − 2)τ2

n−2.

Since τ2 = 8, directly from Theorem 3 we can ob-
tain τ4 = (24 − 2)82 = 896, τ6 = (26 − 2)τ4 =
62 · 8962 = 49, 774, 592 different bent functions.

In (Seberry and Zhang, 1994) it was shown that us-
ing two known bent functions which have truth vectors of
length 22k−2 one can construct2k bent functions which
have truth vectors of length22k, k = 1, 2, . . . . The bent
functions described by the authors were generated on the
basis of the so-called bent matrices proposed and non-
degenerated linear transformations. Unfortunately, matri-
ces and transformations mentioned above must be found
first. That task can be solved more easily for any number
of pairs of bent functions.

Proposition 2. Let Bn−2 with n even be the set of bent
functionsf : {0, 1}n−2 → {0, 1} and fa, fb ∈ Bn−2.
Then the functionfc defined by the formula

fc(x1, x2, . . . , xn)

=


fa(x1, x2, . . . , xn−2) if xn−1 =0, xn =0,

fa(x1, x2, . . . , xn−2) if xn−1 =0, xn =1,

fb(x1, x2, . . . , xn−2) if xn−1 =1, xn =0,

fb(x1, x2, . . . , xn−2)⊕ 1 if xn−1 =1, xn =1

is bent.

Example 7. Let Ya = [0, 1, 1, 1] and Yb =
[0, 1, 0, 0] be the truth vectors of the bent func-
tions fa and fb, respectively. According to
Proposition 2, we have obtained the new vector
Yc=[0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1] of the
function fc. The functionfc has the spectrumRfc

=
[10,−2, 2, 2,−2,−2,−2, 2,−2, 2,−2,−2,−2,−2,−2, 2],
and thus on the basis of Theorem 2 we conclude that the
function fc is bent. �

On the other hand, from Definition 1 and Corollary
1 it follows directly that bent functions can be generated
also differently.

Proposition 3. Let vi
n (vi

n) be thei-th row of Hn (resp.
Hn). Let a be any bent sequence of length2n, and
n = 2, 4, 6, . . . . Then simple vector multiplicationvi

n×a
(resp. vi

n × a) generates a bent sequence.

Proof. The proof results immediately from Lemma 1 and
Corollary 1.

Let v1
n, v2

n, . . . , vn
n be a concatenation of the rows of

Hn. Then the new vector[v1
n, v2

n, . . . , vn
n ] is a bent se-

quence. This construction was proposed in (Adams and
Tavares, 1990), but the authors did not notice that any per-
mutation of rowsvj

n also gives a bent sequence. Hence
immediately fromHn (resp.Hn) we obtain(2n)! new,
different bent sequences of length2n × 2n = 4n. By
taking into account Proposition 3, each from(2n)! se-
quences can be multiplied by rows ofH2n (resp.H2n).
This solution allows us to obtain(2n)! × 2(2n) bent se-
quences from each matrix.

6. Experimental Results

All experiments were performed by means of a PC run-
ning Linux. The computer was equipped with AMD
Duron (Morgan) 1.2 GHz CPU and 128 MB main mem-
ory. All times are given in CPU microseconds.

In the first experiment for different methods of the
spectrum calculation the time of computations was de-
termined. As is known (Ahmed and Rao, 1975; Kar-
povsky, 1976; Porwik, 2002), Walsh-Hadamard spectral
coefficients can be calculated on the basis of the recur-
sive formula (2), by means of (7) or by a non-recursive
method (Ahmed and Rao, 1975). In Table 4 the time of
Walsh-Hadamard spectra calculations is presented.

As can be easily seen, the proposed method is more
efficient because it gives significantly better results. Our
technique also allows us to compute coefficients when re-
cursive and nonrecursive approaches fail. This situation
occurs for Boolean functions with largen (> 10) when
the capacity of the RAM memory is insufficient. The pre-
sented method consumes substantially less memory than
other methods.

In the second experiment, both theNL(f) and
NG(f) measures for a function ofn = 3 variables were
calculated. The obtained results are presented in Figs. 1
and 2. In that experiment eight functions with the non-
linearity measureNL(f) = 0 and eight functions with
the nonlinearity measureNG(f) = 8 were found. Both
groups are affine. The first group is of typex1⊕ . . . . The
second group is of type1⊕ x1 ⊕ . . . .

7. Conclusions

Nowadays, many systems of automatic design are oriented
towards detection of the linear part of a Boolean function.
The proposed spectral method of investigation allows us
to obtain fast information about the linearity of the ana-
lyzed function. The proposed method can be easily im-
plemented and has low complexity. The basic concept of
the spectral identification of linear Boolean functions was
also explained.
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Table 4. Experimental results: Runtime [µs]

n recursive non-recursive our method

1 0.0612 0.0571 0.0218

2 0.2339 0.3783 0.0293

3 0.8136 3.8663 0.0653

4 3.7490 15.6660 0.1852

5 122.7700 73.4100 0.5527

6 1417.0600 306.2400 1.2778

7 6432.8000 1304.8000 2.8400

8 26697.0000 5326.0000 6.4140

9 142452.0000 22662.0000 14.2640

10 604650.0000 92300.0000 31.6900

11 69.1800

12 151.8800

13 330.1667

14 769.8333

15 3044.5000

16 13584.0000

17 33404.0000

18 67533.3333

19 145900.0000

20 310950.0000

21 693900.0000

22 1568800.0000

23 3313200.0000

24 6978181.8182

25 14298333.3333
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Fig. 1. Spectral measure forNL(f).

In the paper, the relationship between Hadamard ma-
trices and linear Boolean functions and bent functions has
been discussed. A simple method to determine the linear-
ity of Boolean functions directly from their spectra was
also shown. It was demonstrated how to generate bent
functions using only Hadamard matrices. It was shown
how to quantify the linearity and nonlinearity of Boolean
functions by using Walsh-Hadamard spectral coefficients
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Fig. 2. Spectral measure forNG(f).

in complement and non-complement forms a basic set of
linear functions. The traditional analysis methods (e.g. the
Hamming distance calculation) are not effective in appli-
cations, because we must find the first set of all Boolean
functions for givenn.

Many applications of transforms like the Walsh-
Hadamard transform were previously impossible to use
because of memory constraints. Now it is possible. The
new theorems, propositions and equations also show a
new way which allows to find efficiently the spectral co-
efficients for Boolean functions and to find the bent func-
tions.

Using a straightforward implementation, the com-
plexity of these transformations rapidly increases with a
number of variables of Boolean functions. Therefore the
measuring of large functions rapidly becomes impossible.
As has been proven above, calculations of spectra can
be easily performed by means of the sum of some spec-
tral sub-vectors. When it is necessary to check whether a
Boolean function is linear, the test of linearity can be car-
ried out on the basis of one part of the spectra. In these
cases the computation complexity isO(2n+1). Immedi-
ately from the spectra of a Boolean functionf , the closest
and the most distant linear function tof can be found.
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