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STURM-LIOUVILLE SYSTEMS ARE RIESZ-SPECTRAL SYSTEMS
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The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown
that the negative of a Sturm-Liouville operator is a Riesz-spectral operatéif om b) and the infinitesimal generator of a
Co-semigroup of bounded linear operators.
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1. Introduction entific literature (see, e.g., Sagan, 1961; Birkhoff, 1962;
) ] o Young, 1972; Renardy and Rogers, 1993). In Section 3
A fundamental concept in the analysis of distributed pa- \ye deduce from these properties that any S-L system is a
rameter systems ar€y-semigroups of bounded linear Riesz-spectral system ab?(a, b). To the authors’ knowl-
operators (see, e.g., (Curtain and Zwart, 1995) or (Pazy,gqge, the concept of the Sturm-Liouvikystemis new
1983)). A typical framework is the following class of sys- 514 so is the result concerning its connection with Riesz

tems: spectral systems, under this form. The authors would like
dz to stress the fact that this result is obtained by gathering
Fr Az(t) + Bu(t), z(0) = 2o, (1) a number of properties that are dispersed in the literature,

and expressed in a form that can be useful for system the-
y(t) = Ca(t) + Du(?), (2) ory and control, by emphasizing the concept of Sturm-

where z, v and y are the system state, input and out- Liouville systems. Such an application to systems analy-
put, respectivelyA is a densely defined differential linear SIS IS given in Section 4.
operator on an (infinite-dimensional) Hilbert space (e.g.,
L?(a,b), a, b € R), which generates &,-semigroup,
and B, C and D are bounded linear operators. More- 2 Sturm-Liouville Systems
over, if A is a Riesz-spectral operator, it possesses several
interesting properties, regarding in particular observabil- First et us recall the definition of Sturm-Liouville opera-
ity and controllability. tors (see, e.g., Naylor and Sell, 1982, Def. 7.5.1).

In many physical systems (e.g., vibration problems
in mechanics, diffusion problems), or — A, is aSturm- e , )
Liouville operator(see, e.g., Renardy and Rogers, 1993, Defmmon 1. Consider the operatad defined on the do-
Naylor and Sell, 1982, Ray, 1981, p. 157). This is also Man
the case for chemical reactor models with axial disper-
sion (see, e.g., Winkiet al, 2000, Laabissét al, 2001).  D(A) = {f € L?(a,b) : f,
In order to encompass all these applications in one sin-

df

—— absolutely continuoys
dz

gle unifying framework, it is natural to define the class dzf )
of Sturm-Liouville systemsThis is accomplished in Sec- 57 € L7(a,b), and ag—>(a) + fa f(a) = 0,
tion 2.

Many theoretical results regarding Sturm-Liouville abg(b) + Bpf(b) = 0}, (3)
(S-L) operators or S-L problems are available in the sci- dz
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wherea and b are real numbers(a,, 5,) # (0,0) and Proof of Lemma 1(i) A is a Riesz spectral operatoBy
(aw, Bp) # (0,0). A is said to be &turm-Liouville oper-  the definition of a Riesz-spectral operator (Curtain and
ator if Zwart, 1995, definition 2.3.4), it should be shown that:

Y feD(A), (a) Aisclosed
(b) its eigenvalues\,, aresimple
1 d df - ) _
Af = o \@ —p(z) 7 (2) | +a(2)f(z) ), (4) (c) {\..n € N} is totally disconnectedi.e. Va,b €
' {An,n € N}, [a,b] € {\,,n € N}
Wher_ep, dp/dz, ¢ and p are real-valued and continuous (d) the set of the corresponding eigenvectérs,, n >
functions, such thap > 0 andp > 0. 1} is aRiesz basisf L?(a,b), i.e., itis an orthonor-

Note that this definition only corresponds to regular mal basis with respect to an equivalent inner product
S-L problems (since: and b are assumed to be finite). (see Young, 1980, Theorem 9.2).

Based on the concept of the S-L operator, the class One can use the properties of an S-L operator spec-
of Sturm-Liouville systems is defined as follows: trum since the eigenvalues of the S-L operator are
-\, With ¢,, as their corresponding eigenvectors.

Therefore the eigenvalues of are real (Naylor and
Sell, 1982, Theorem 7.5.6), countable and simple (Sagan,
1961, Theorem V.8), and the set of the corresponding nor-
malized eigenvectorg¢,,n > 1} is an orthonormal
basis with respect to the equivalent inner product),
(Sagan, 1961, Chapter 2.4):

Definition 2. Consider the linear state-space syst&m
defined by (1) and (2), wherdl is a linear operator on
the Hilbert spacel?(a,b) (a, b € R), B is a bounded
linear operator from the Hilbert space to L%(a,b),
C is a bounded linear operator fromi?(a,b) to the
Hilbert spaceY, and D is a bounded linear operator
from U to Y. X is called aSturm-Liouville systentf
—A is a Sturm-Liouville operator. 1

Gmdaby = [ 620 (0n(2) a2 =0

Remarks:

1. One can ask why to consider A instead of A in for m # n. (More recently, all these properties of S-L op-
Definition 2. Actually, if we took A to be an S-L  €rators were also reported in (Renardy and Rogers, 1993,

operator, some results of the next section would not ThMs. 7.96 and 7.97; Pryce, 1993, Thms. 2.3 and 2.4).)

apply. Moreover, A is closed. Indeed;-A is closed since
any S-L operator is an invertible linear operator with a

2. Many processes involving a diffusion phenomenon bounded linear inverse (Curtain and Zwart, 1995, pp. 82—
may be modelled by S-L systems, and convection- 83 and Thm. A.3.46)

dispersion reactors in particular (Ray, 1981, Exam- i . )
ple 4.2.3; Laabissit al, 2001). It remains to prove thal{/\_n, n € N} is totally dis-
connected. To this end, considérsuch thath € p(A).

Then Naylor and Sell (1982, Thm. 7.5.5) show tfiaf —

. A)~! is compact for any S-L operatod. Thus the spec-

3. Main Result trum of AT — A is discrete, i.e., it consists only of isolated

The following theoretical result is reported: eigenvalues (Curtain and Zwart, 1995, Lemma A.4.19),
and so is the spectrum of.

Theorem 1. Any Sturm-Liouville systenk is a Riesz-

i) A generates a’y-semigroup.As A is a Riesz
spectral system. (i) Ag 0 group

spectral operator with simple eigenvalugs, it generates

a Cy-semigroup if, and only if,sup,,~; A, < oo (Cur-
tain and Zwart, 1995, Thm. 2.3.5(c)). From (Sagan, 1961,
Thm. V.7; Renardy and Rogers, 1993, Thm. 7.96.2), it is
known that the spectrum of any S-L operator is bounded
from below. Hence there exists, such that for alln,
—An > Ao, i€, A < =g < +00. [ ]

Proof. In view of the definition of Riesz-spectral systems
(Curtain and Zwart, 1995, Def. 4.1.1), it is sufficient to
prove the following lemma:

Lemma 1. Let A be the negative of a Sturm-Liouville
operator (4) defined on its domail(A4) given by (3).

Then Remarks:

i) A is a Riesz-spectral operator, and
® P P 1. Note that the second result of Lemma 1 would not

(ii) A is the infinitesimal generator of &,-semigroup hold if A was an S-L operator. Indeed, follow-
of bounded linear operators of?(a, b). ing, e.g., (Renardy and Rogers, 1993, Thm. 7.97.2),
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the eigenvalues of the S-L operatdr tend to +co. where D, v and k are positive constants, on its domain
Then (Curtain and Zwart, 1995, Thm. 2.3.5(c)) the

Riesz-spectral operatad does not generate &)- D(A) = {x e L2(0,1) :

semigroup.

2. The link between S-L and Riesz-spectral operators
was already touched upon in the literature. For exam-
ple, in (Belinskiy and Dauer, 1997; Zhidkov, 2000) it

dx .
x, © are absolutely continuous,
z

2
is shown that the eigenfunctions of a regular Sturm- d% € L*(0,1), and
Liouville problem form a Riesz basis for particular dz
boundary conditions. dx dx

D—(0) —vz(0)=0= (1)}. (8)
3. The converse of Theorem 1 does not hold. In- dz dz

deed, there are Riesz-spectral operators whose neg-

atives are not Sturm-Liouville ones. For example, In (Winkin et al,, 2000, pp. 355-356) it is shown that
the system operator associated with the undamped—4 is an S-L operator of the form (4), where the functions
wave equation with Dirichlet boudary conditionsisa £ P and ¢ are given by

Riesz-spectral operator, see, e.g., (Curtain and Zwatrt, v

1995, Ex. 2.3.8). This operator is defined as follows: p(z) = exp (—*Z) , p(z) =Dp(2), q(z)=—k.

D
I -
T2 N

on its domain

A

0 I 1 (5) Hence any system of the form (1)—(2), where the operator
—Ao 0 T A is given by (7)—(8), is an S-L system.

Such a system plays an important role in the lin-
ear dynamical description of isothermal or non-isothermal
D(A) = D(Ap) ® D(A(l)/z), tubular reactor models with axial dispersion, see, e.g.,
(Winkin et al, 2000; Laabissét al., 2001). In such models

where 4, is the linear operator given bylyx : the state variable: typically denotes a reactant or prod-

—d?z/dz* on the domain uct concentration, whereas the paramet&rsy and &
denote the axial dispersion coefficient, the fluid superfi-
D(Ag) = {:z: € L*(0,1) : cial velocity and the kinetic constant, respectively.

Moreover, such a systeri is also anintereseting

¥ df are absolutely continuous example of a Riesz-spectral system having a non-trivial
) L]

dz (i.e., non-orthonormal) Riesz basis of eigenvectors, see
A2 (Winkin et al, 2000, Lem. 5.1).
32 © L*(0,1), and It is known (Winkinet al, 2000) that the eigenvalues
of the operatorA defined by (7) and (8) are given by the
2(0) =0 = a:(l)}. (6) following expression:
82 7}2 1)2
However, the operator A is obviously not a Sturm- A== —k<— <4D + k> <0, (9

Liouville operator. This is confirmed by the fact that

all the eigenvalues of this operator are located on where {s,,, n > 1} is the set of all the solutions to the
the imaginary axis, see (Curtain and Zwart, 1995, resplvent equation

Ex. 2.3.8).
. s 2vus
More generally, any Riesz-spectral system whose tan (@) =gz ° > 0,
Cp-semigroup generator spectrum does not consist
of real eigenvalues is not an S-L system. such that0 < s,, < sp41 forall n > 1.

As any system> of the form (1)—(2), where the op-
erator A is given by (7) and (8), is an S-L system, it can be
4. Case Study deduced from Theorem 1 that it is a Riesz-spectral system.
Consider the linear operatot : D(A) — L?(0,1) given  HeNCe, sincéup,,>, A, < 0 (in view of (9)), it is eas-

b ily deduced from (Curtain and Zwart, 1995, Thm. 2.3.5.d)
y . :
A2z dz that the operatord is the generator of an exponentially
Az = Dos —vg, — ko (7 stable Cp-semigroup.
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Therefore, owing to Theorem 1 and the property Curtain R.F. and Zwart H. (1995)An Introduction to Infinite-
(Curtain and Zwart, 1995, Thm. 2.3.5.d) of Riesz-spectral Dim_ensional Linear Systems Theory— New York:
operators, we are able to verify the exponential stability of Springer.
the S-L systend> more rapidly and in an easier way than Kuiper C.R. and Zwart H.J. (1993)Solutions of the ARE in

itis done in (Winkinet al, 2000). terms of the Hamiltonian for Riesz-spectral systems
Lect. Not. Contr. Inf. Sci., Vol. 185, pp. 314-325.

5. Conclusion Laabissi M., Achhab M.E., Winkin J. and Dochain D. (2001):

Trajectory analysis of a nonisothermal tubular reactor
In this paper the class of Sturm-Liouville systems was de- nonlinear models— Syst. Contr. Lett., Vol. 42, No. 3,
fined. Then it was shown that they are a subclass of Riesz- pp. 169-184.

spectral systems. By performing this proof, on the basis
of the properties of S-L operators it was shown that these
are Riesz spectral operators and infinitesimal generators
of Cy-semigroups. Although some results exist for some pazy A. (1983): Semigroups of Linear Operators and Appli-
particular systems (e.g., Winkat al,, 2000), the last the- cations to Partial Differential Equations— New York:
oretical result was not available in the scientific literature, Springer.

to th thors’ knowl .
ofhe au_ ors ) owledge ) ) Pryce J.D. (1993)Numerical Solutions of Sturm-Liouville Prob-
The immediate consequence of this result is that the lems — New York: Oxford University Press.

properties of Riesz-spectral systems and operators (Cur-
tain and Zwart, 1995; Kuiper and Zwart, 1993) can be Ray W.H. (1981):Advanced Process Contret Boston: But-
used in the analysis or control of S-L systems, in particular terworths.

for convection-diffusion-reaction systems. Renardy M. and Rogers R.C. (1992)n Introduction to Partial
Differential Equations— New York: Springer.
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