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STURM-LIOUVILLE SYSTEMS ARE RIESZ-SPECTRAL SYSTEMS
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The class of Sturm-Liouville systems is defined. It appears to be a subclass of Riesz-spectral systems, since it is shown
that the negative of a Sturm-Liouville operator is a Riesz-spectral operator onL2(a, b) and the infinitesimal generator of a
C0-semigroup of bounded linear operators.
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1. Introduction

A fundamental concept in the analysis of distributed pa-
rameter systems areC0-semigroups of bounded linear
operators (see, e.g., (Curtain and Zwart, 1995) or (Pazy,
1983)). A typical framework is the following class of sys-
tems:

dx

dt
= Ax(t) + Bu(t), x(0) = x0, (1)

y(t) = Cx(t) + Du(t), (2)

where x, u and y are the system state, input and out-
put, respectively,A is a densely defined differential linear
operator on an (infinite-dimensional) Hilbert space (e.g.,
L2(a, b), a, b ∈ R), which generates aC0-semigroup,
and B, C and D are bounded linear operators. More-
over, if A is a Riesz-spectral operator, it possesses several
interesting properties, regarding in particular observabil-
ity and controllability.

In many physical systems (e.g., vibration problems
in mechanics, diffusion problems),A, or −A, is aSturm-
Liouville operator(see, e.g., Renardy and Rogers, 1993,
Naylor and Sell, 1982, Ray, 1981, p. 157). This is also
the case for chemical reactor models with axial disper-
sion (see, e.g., Winkinet al., 2000, Laabissiet al., 2001).
In order to encompass all these applications in one sin-
gle unifying framework, it is natural to define the class
of Sturm-Liouville systems. This is accomplished in Sec-
tion 2.

Many theoretical results regarding Sturm-Liouville
(S-L) operators or S-L problems are available in the sci-

entific literature (see, e.g., Sagan, 1961; Birkhoff, 1962;
Young, 1972; Renardy and Rogers, 1993). In Section 3
we deduce from these properties that any S-L system is a
Riesz-spectral system onL2(a, b). To the authors’ knowl-
edge, the concept of the Sturm-Liouvillesystemis new
and so is the result concerning its connection with Riesz
spectral systems, under this form. The authors would like
to stress the fact that this result is obtained by gathering
a number of properties that are dispersed in the literature,
and expressed in a form that can be useful for system the-
ory and control, by emphasizing the concept of Sturm-
Liouville systems. Such an application to systems analy-
sis is given in Section 4.

2. Sturm-Liouville Systems

First let us recall the definition of Sturm-Liouville opera-
tors (see, e.g., Naylor and Sell, 1982, Def. 7.5.1).

Definition 1. Consider the operatorA defined on the do-
main

D(A) =
{

f ∈ L2(a, b) : f,
df

dz
absolutely continuous,

d2f

dz2
∈ L2(a, b), and αa

df

dz
(a) + βaf(a) = 0,

αb
df

dz
(b) + βbf(b) = 0

}
, (3)
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where a and b are real numbers,(αa, βa) 6= (0, 0) and
(αb, βb) 6= (0, 0). A is said to be aSturm-Liouville oper-
ator if

∀ f ∈D(A),

Af =
1

ρ(z)

(
d
dz

(
−p(z)

df

dz
(z)

)
+ q(z)f(z)

)
, (4)

wherep, dp/dz, q and ρ are real-valued and continuous
functions, such thatρ > 0 and p > 0.

Note that this definition only corresponds to regular
S-L problems (sincea and b are assumed to be finite).

Based on the concept of the S-L operator, the class
of Sturm-Liouville systems is defined as follows:

Definition 2. Consider the linear state-space systemΣ
defined by (1) and (2), whereA is a linear operator on
the Hilbert spaceL2(a, b) (a, b ∈ R), B is a bounded
linear operator from the Hilbert spaceU to L2(a, b),
C is a bounded linear operator fromL2(a, b) to the
Hilbert spaceY , and D is a bounded linear operator
from U to Y . Σ is called aSturm-Liouville systemif
−A is a Sturm-Liouville operator.

Remarks:

1. One can ask why to consider−A instead ofA in
Definition 2. Actually, if we tookA to be an S-L
operator, some results of the next section would not
apply.

2. Many processes involving a diffusion phenomenon
may be modelled by S-L systems, and convection-
dispersion reactors in particular (Ray, 1981, Exam-
ple 4.2.3; Laabissiet al., 2001).

3. Main Result

The following theoretical result is reported:

Theorem 1. Any Sturm-Liouville systemΣ is a Riesz-
spectral system.

Proof. In view of the definition of Riesz-spectral systems
(Curtain and Zwart, 1995, Def. 4.1.1), it is sufficient to
prove the following lemma:

Lemma 1. Let A be the negative of a Sturm-Liouville
operator (4) defined on its domainD(A) given by (3).

Then

(i) A is a Riesz-spectral operator, and

(ii) A is the infinitesimal generator of aC0-semigroup
of bounded linear operators onL2(a, b).

Proof of Lemma 1.(i) A is a Riesz spectral operator.By
the definition of a Riesz-spectral operator (Curtain and
Zwart, 1995, definition 2.3.4), it should be shown that:

(a) A is closed,

(b) its eigenvaluesλn aresimple,

(c) {λn, n ∈ N} is totally disconnected, i.e. ∀a, b ∈
{λn, n ∈ N}, [a, b] * {λn, n ∈ N}

(d) the set of the corresponding eigenvectors{φn, n ≥
1} is aRiesz basisof L2(a, b), i.e., it is an orthonor-
mal basis with respect to an equivalent inner product
(see Young, 1980, Theorem 9.2).

One can use the properties of an S-L operator spec-
trum since the eigenvalues of the S-L operator−A are
−λn with φn as their corresponding eigenvectors.

Therefore the eigenvalues ofA are real (Naylor and
Sell, 1982, Theorem 7.5.6), countable and simple (Sagan,
1961, Theorem V.8), and the set of the corresponding nor-
malized eigenvectors{φn, n ≥ 1} is an orthonormal
basis with respect to the equivalent inner product〈·, ·〉ρ
(Sagan, 1961, Chapter 2.4):

〈φm, φn〉ρ =
∫ 1

0

ρ(z)φm(z)φn(z) dz = 0

for m 6= n. (More recently, all these properties of S-L op-
erators were also reported in (Renardy and Rogers, 1993,
Thms. 7.96 and 7.97; Pryce, 1993, Thms. 2.3 and 2.4).)

Moreover,A is closed. Indeed,−A is closed since
any S-L operator is an invertible linear operator with a
bounded linear inverse (Curtain and Zwart, 1995, pp. 82–
83 and Thm. A.3.46).

It remains to prove that{λn, n ∈ N} is totally dis-
connected. To this end, considerλ such thatλ ∈ ρ(A).
Then Naylor and Sell (1982, Thm. 7.5.5) show that(λI−
A)−1 is compact for any S-L operatorA. Thus the spec-
trum of λI−A is discrete, i.e., it consists only of isolated
eigenvalues (Curtain and Zwart, 1995, Lemma A.4.19),
and so is the spectrum ofA.

(ii) A generates aC0-semigroup.As A is a Riesz
spectral operator with simple eigenvaluesλn, it generates
a C0-semigroup if, and only if,supn≥1 λn < ∞ (Cur-
tain and Zwart, 1995, Thm. 2.3.5(c)). From (Sagan, 1961,
Thm. V.7; Renardy and Rogers, 1993, Thm. 7.96.2), it is
known that the spectrum of any S-L operator is bounded
from below. Hence there existsλ0 such that for alln,
−λn > λ0, i.e., λn < −λ0 < +∞.

Remarks:

1. Note that the second result of Lemma 1 would not
hold if A was an S-L operator. Indeed, follow-
ing, e.g., (Renardy and Rogers, 1993, Thm. 7.97.2),



Sturm-Liouville systems are Riesz-spectral systems 483

the eigenvalues of the S-L operatorA tend to +∞.
Then (Curtain and Zwart, 1995, Thm. 2.3.5(c)) the
Riesz-spectral operatorA does not generate aC0-
semigroup.

2. The link between S-L and Riesz-spectral operators
was already touched upon in the literature. For exam-
ple, in (Belinskiy and Dauer, 1997; Zhidkov, 2000) it
is shown that the eigenfunctions of a regular Sturm-
Liouville problem form a Riesz basis for particular
boundary conditions.

3. The converse of Theorem 1 does not hold. In-
deed, there are Riesz-spectral operators whose neg-
atives are not Sturm-Liouville ones. For example,
the system operator associated with the undamped
wave equation with Dirichlet boudary conditions is a
Riesz-spectral operator, see, e.g., (Curtain and Zwart,
1995, Ex. 2.3.8). This operator is defined as follows:

A

[
x1

x2

]
=

[
0 I

−A0 0

] [
x1

x2

]
(5)

on its domain

D(A) = D(A0)⊕D(A1/2
0 ),

where A0 is the linear operator given byA0x :=
−d2x/dz2 on the domain

D(A0) =
{

x ∈ L2(0, 1) :

f,
df

dz
are absolutely continuous,

d2x

dz2
∈ L2(0, 1), and

x(0) = 0 = x(1)
}

. (6)

However, the operator−A is obviously not a Sturm-
Liouville operator. This is confirmed by the fact that
all the eigenvalues of this operator are located on
the imaginary axis, see (Curtain and Zwart, 1995,
Ex. 2.3.8).

More generally, any Riesz-spectral system whose
C0-semigroup generator spectrum does not consist
of real eigenvalues is not an S-L system.

4. Case Study

Consider the linear operatorA : D(A) → L2(0, 1) given
by

Ax = D
d2x

dz2
− v

dx

dz
− kx, (7)

whereD, v and k are positive constants, on its domain

D(A) =
{

x ∈ L2(0, 1) :

x,
dx

dz
are absolutely continuous,

d2x

dz2
∈ L2(0, 1), and

D
dx

dz
(0)− vx(0) = 0 =

dx

dz
(1)

}
. (8)

In (Winkin et al., 2000, pp. 355–356) it is shown that
−A is an S-L operator of the form (4), where the functions
ρ, p and q are given by

ρ(z) = exp
(
− v

D
z
)

, p(z) = Dρ(z), q(z) = −k.

Hence any system of the form (1)–(2), where the operator
A is given by (7)–(8), is an S-L system.

Such a system plays an important role in the lin-
ear dynamical description of isothermal or non-isothermal
tubular reactor models with axial dispersion, see, e.g.,
(Winkin et al., 2000; Laabissiet al., 2001). In such models
the state variablex typically denotes a reactant or prod-
uct concentration, whereas the parametersD, v and k
denote the axial dispersion coefficient, the fluid superfi-
cial velocity and the kinetic constant, respectively.

Moreover, such a systemΣ is also anintereseting
example of a Riesz-spectral system having a non-trivial
(i.e., non-orthonormal) Riesz basis of eigenvectors, see
(Winkin et al., 2000, Lem. 5.1).

It is known (Winkinet al., 2000) that the eigenvalues
of the operatorA defined by (7) and (8) are given by the
following expression:

λn = −s2
nv2

4D
− k < −

(
v2

4D
+ k

)
< 0, (9)

where {sn, n ≥ 1} is the set of all the solutions to the
resolvent equation

tan
( s

2D

)
=

2vs

s2 − v2
, s > 0,

such that0 < sn < sn+1 for all n ≥ 1.

As any systemΣ of the form (1)–(2), where the op-
eratorA is given by (7) and (8), is an S-L system, it can be
deduced from Theorem 1 that it is a Riesz-spectral system.
Hence, sincesupn≥1 λn < 0 (in view of (9)), it is eas-
ily deduced from (Curtain and Zwart, 1995, Thm. 2.3.5.d)
that the operatorA is the generator of an exponentially
stableC0-semigroup.
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Therefore, owing to Theorem 1 and the property
(Curtain and Zwart, 1995, Thm. 2.3.5.d) of Riesz-spectral
operators, we are able to verify the exponential stability of
the S-L systemΣ more rapidly and in an easier way than
it is done in (Winkinet al., 2000).

5. Conclusion

In this paper the class of Sturm-Liouville systems was de-
fined. Then it was shown that they are a subclass of Riesz-
spectral systems. By performing this proof, on the basis
of the properties of S-L operators it was shown that these
are Riesz spectral operators and infinitesimal generators
of C0-semigroups. Although some results exist for some
particular systems (e.g., Winkinet al., 2000), the last the-
oretical result was not available in the scientific literature,
to the authors’ knowledge.

The immediate consequence of this result is that the
properties of Riesz-spectral systems and operators (Cur-
tain and Zwart, 1995; Kuiper and Zwart, 1993) can be
used in the analysis or control of S-L systems, in particular
for convection-diffusion-reaction systems.
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