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BILATERAL POLYNOMIAL EQUATIONS WITH UNIMODULAR
RIGHT-HAND-SIDE MATRICES
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Necessary and sufficient conditions are established for the existence of a solution to some bilateral polynomial matrix equa-
tions with unimodular right-hand-side matrices. A procedure for the computation of the solution is derived and illustrated
by a numerical example. Two examples of applications of bilateral polynomial matrix equations are presented.
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1. Introduction

The polynomial equation approach to linear control sys-
tems has been considered in many papers and books
(Kučera, 1972; 1981; 1979; Kaczorek, 2002c; 1993;
2003). In (Kaczorek, 2003) the solvability problem of
polynomial matrix equations and its relationship with the
infinite eigenvalue assignment by state feedback was con-
sidered. The infinite eigenvalue assignment is the crucial
issue in the design of perfect observers (Kaczorek, 2000a;
2002b; 2002c, Dai, 1989). Necessary and sufficient condi-
tions for the infinite eigenvalue assignment by state feed-
back in linear systems were established in (Chu and Ho,
1999; Kaczorek, 2003).

In this paper necessary and sufficient conditions will
be established for the existence of a solution to some bilat-
eral polynomial matrix equations with unimodular right-
hand-side matrices and a procedure for the computation
of the solutions will be given. Some examples of applica-
tions of this type of bilateral polynomial matrix equations
will also be given.

2. Problem Formulation

Let Rn×m (Rn := Rn×1) be the set ofn × m matri-
ces with the entries from the fieldR of real numbers and
Rn×m[s] be the set ofn × m polynomial matrices with
real coefficients in the variables. Consider the polyno-
mial matrix equation

[Es−A]X + BY C = U(s), (1)

whereE,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and
U(s) ∈ Rn×n[s] is a unimodular matrix withdet U(s) =
α (α is a scalar independent ofs). It is assumed that
rank B = m and rank C = p. The problem can be for-
mulated as follows: Given matricesE, A, B, C and
U(s), find a solutionX, Y of Eqn. (1) satisfying the con-
ditions

X = In, Y ∈ Rm×p, (2)

where In stands for then× n identity matrix.

3. Problem Solution

Theorem 1.The problem has a solution only if

rank [Es−A,B] = rank

[
Es−A

C

]
= n (3)

for all finite s ∈ C (the field of complex numbers) and

D = Es− U(s) ∈ Rn×n (4)

is a real matrix independent ofs.

Proof. Since

Es−A + BY C = [Es−A,B]

[
In

Y C

]

= [In, BY ]

[
Es−A

C

]
(5)

and detU(s) = α, it follows that (1) and (2) imply (3).
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From (1) and (2) we have

Es− U(s) = A−BY C = D ∈ Rn×n. (6)

Therefore, Eqn. (1) has a solution (2) only if (3) and (4)
are satisfied.

Let P,Q ∈ Rn×n be nonsingular matrices of el-
ementary row and column operations (Kaczorek, 1993;
2003) such that

PB =

[
B1

0

]
, CQ = [C1 0], (7)

where B1 ∈ Rm×m and C1 ∈ Rp×p are nonsingu-
lar matrices owing to the assumptionrank B = m and
rank C = p. Equation (1) forX = In can be rewritten
as

BY C = A−D, (8)

whereD is defined by (4).

Premultiplying (8) byP , postmultiplying the result
by Q and using (7) we obtain

[
B1

0

]
Y [C10] =

 A1 −D1

......
A2 −D2

. . . . . . . . . . . . . . . . . . . . . .

A3 −D3

 , (9)

where

PAQ =

 A1

......
A2

. . . . . . . . . . .

A3

 ,

PDQ =

 D1

......
D2

. . . . . . . . . . .

D3

 ,

(10)

A1, D1 ∈ Rm×p, A2, D2 ∈ Rm×(n−p), A3, D3 ∈
R(n−m)×n.

Theorem 2. Let the conditions (3) and (4) be satisfied.
Equation (1) has a solution (2) if and only if

A2 = D2, A3 = D3. (11)

The desired solution is given by

Y = B−1
1 (A1 −D1)C−1

1 . (12)

Proof. From (9) we have

A1Y C1 = A1 −D1, (13)

and the conditions (11). The matricesB1 and C1

are nonsingular and from (13) we obtain the solu-
tion (12).

Example 1.Find a solution (2) of Eqn. (1) with

E =

 0 0 1
0 0 0
0 1 0

 , A =

 −1 1 0
1 2 −1
0 2 1

 ,

B =

 0
1
0

 , C =

[
1 2 −1
0 1 0

]
,

U(s) =

 1 −1 s

0 −α 0
0 s− 2 −1

 .

(14)

In this case the assumptions (3) and (4) are satisfied since

rank [Es−A,B] = rank

 1 −1 s 0
−1 −2 1 1

0 s− 2 −1 0

 = 3,

rank

[
Es−A

C

]
= rank


1 −1 s

−1 −2 1
0 s− 2 −1
1 2 −1
0 1 0

 = 3

for all finite s ∈ C, and the matrix

D = Es− U(s) =

 −1 1 0
0 α 0
0 2 1

 (15)

is real.

The matricesP and Q satisfying (7) have the forms

P =

 0 1 0
1 0 0
0 0 1

 , Q =

 1 −2 1
0 1 0
0 0 1

 (16)

since

PB =


1
· · ·
0
0

 , CQ =

[
1 0

... 0
0 1

... 0

]
.
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Using (14)–(16), we obtain

PAQ=

A1

......
A2

. . . . . . . . . . . .

A3

=


1 0

......
0

. . . . . . . . . . . . .

−1 3 −1
0 2 1

 ,

PDQ=

D1

......
D2

. . . . . . . . . . .

D3

=


0 α

......
0

. . . . . . . . . . . . .

−1 3 −1
0 2 1

 .

(17)

From (17) it follows that the conditions (11) are sat-
isfied and Eqn. (1) with (14) has a solution. Using (12),
we obtain the desired solution

Y = B−1
1 (A1 −D1)C−1

1 = [1,−α]. (18)

It is easy to verify that (18) andX = I3 satisfy the equa-
tion since

[Es−A]X + BY C

=

 1 −1 s

−1 −2 1
0 s− 2 −1



+

 0
1
0

 [1,−α]

[
1 2 −1
0 1 0

]

=

 1 −1 s

0 −α 0
0 s− 2 −1

.

4. Applications

Consider the singular continuous-time linear system

Eẋ = Ax + Bu,

y = Cx,
(19)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the semistate,
input and output vectors, respectively, andE,A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n with det E = 0.

The infinite eigenvalue assignment problem for (19)
can be formulated as follows: Given matricesE, A, B,
C and a nonzero scalarα, find an output-feedback gain
matrix F ∈ Rm×p such that

det[Es−A + BFC] = α. (20)

The equality (20) can be written down as

det

{
[Es−A,B]

[
In

FC

]}
= detU(s) (21)

and
[Es−A]X + BY C = U(s), (22)

where
X = In, Y = F (23)

and U(s) ∈ Rn×n[s] is a unimodular matrix with
detU(s) = α (Kaczorek, 2003).

The transfer matrix of (19) with the output-feedback
u = v − Fy = v − FCx (v ∈ Rm is a new input) is
given by

T (s) = C[Es−A + BFC]−1B. (24)

If Es − A + BFC = U(s) with U(s) being uni-
modular, then the transfer matrix in (24) takes the form
T (s) = CU−1(s)B being a polynomial matrix. There-
fore, finding the solution (23) of (22) is equivalent to
finding an output-feedback gain matrixF such that the
closed-loop transfer matrix is polynomial.

5. Concluding Remarks

Necessary and sufficient conditions for the existence of
the solution (2) to the polynomial matrix equation (1) have
been established. A procedure for the computation of the
solution was derived and illustrated by a numerical exam-
ple. The studies presented in (Kaczorek, 2003) are a par-
ticular case of the ones given here forC = In . Two ex-
amples of applications of the equation were presented. An
extension of the presented approach to two-dimensional
matrix polynomial equations (Kaczorek, 1993) is possible
but it is not trivial.
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