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A new methodology for the design of filters that permits failure detection and isolation of dynamic systems is presented.
Assuming that the normal and the faulty behavior of a process can be modeled by two linear systems subject to inequality
bounded perturbations, a method for the on-line implementation of a test signal, guaranteeing failure detection, is proposed.
To improve the fault detectability of the dynamic process, appropriate test signals are injected into the system. All the
computations required by the proposed method are implemented as the solution of large sparse linear optimization problems.
A simple numerical example is given to illustrate the proposed procedure.
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1. Introduction

The design of failure detection systems entails the con-
sideration of several issues. On one hand, a fast reaction
of the failure detection mechanism when a failure occurs
in the system is desired. On the other hand, in systems
with high performance important degradations in perfor-
mance, reflected in a high incidence of false alarms, are
generally not tolerated during the normal system opera-
tion. These two considerations are often conflicting since
a system which is designed to react quickly to sudden
changes needs to be sensitive to high frequency effects,
and therefore it is more sensitive to noise, increasing the
probability of the occurrence of false alarm signals by the
failure detection system.

The relative importance of these two design issues
depends on the system’s configuration and is best illus-
trated through particular examples in which the cost of the
different design choices can be evaluated. For instance,
false alarms will be better tolerated in a highly redundant
system configuration than in a system deprived of signifi-
cant backup capacities (Gertler, 1998; Mangoubi, 1998).

There are two ways of tackling the problem of failure
detection and isolation, which are known as the passive
and active approaches. In the so-called passive approach,
the detector monitors the inputs and the outputs of a sys-
tem to find out whether a failure has occurred and, if pos-

sible, what kind it is. To achieve this, the measured input-
output relation is compared with the normal behavior of
the system. The passive approach is used to continuously
monitor the system, particularly when the detector cannot
act upon the system for material or security reasons. In
the field of failure detection, most of the work is devoted
to this type of approach.

This approach for detecting changes in dynamical
systems has been carefully studied (Basseville and Ben-
veniste, 1985; Clark and Setzer, 1980; Isermann, 1984;
Mironovski, 1980; Willsky, 1976) in many application
fields, to achieve failure detection in controlled systems
or on signal segmentation for speech recognition. Most
time-domain model-based methods use all the known or
estimated model parameters to perform the two funda-
mental steps of change detection, that is to say, residual
generation and the choice of the statistical decision func-
tion (Willsky, 1976).

For instance, both filter innovations and parity checks
involve all model parameters, with the possible inclusion
of parameter uncertainties, and classical coefficients of
probability or Bayesian tests proceed similarly (Basseville
et al., 1987).

The active approach to failure detection, which is the
one used in this paper, involves acting upon the system on
a periodic basis or at critical times using a test signal so
as to show abnormal behavior which would otherwise re-



H. Rubio Scola et al.516

main undetected during the normal operation (Nikoukhah,
1998). The detector can act either by taking the usual in-
puts of the system or through a special input channel, per-
haps modifying the system structure. The structure of the
failure detection method considered in this paper is de-
picted in Fig. 1.

v: test  signal
 noise

y: output
Detection 
Filter Failure 

decision
System

u: input

Fig. 1. Active failure detection.

At some given time during the normal operation of
the system, a test signal is injected into the system for a
finite period of time. This signal exposes the failure modes
of the system which are detected by the detection filter.

The design of test signals has been an important is-
sue in system identification for many years, but their use
to detect failures has been introduced only recently (Ker-
esteciǒglu, 1993; Uosakiet al., 1984; Zhang, 1989). The
test signals (called auxiliary inputs) in these works are re-
garded as linear outputs of stochastic models, and their
objective is to optimize some statistical properties of the
detector.

This work considers the detection and isolation of
failures using an active approach. The selection of the
test signal, as well as the construction of the filter, are
performed off-line. The complexity of filter computation
and the design of the test signal is important when deal-
ing with high dimensional systems and long test signals.
All the operations needed for our method are implemented
by solving large linear optimization problems. There are
many algorithms for solving such problems (Gondzio,
1996; Mehrotra, 1992; Zhang, 1995), which have been
implemented in packages using sparse-matrix data struc-
ture utilities for Matlab (Zhang, 1995) and for Scilab (Ru-
bio Scola, 1999). On the other hand, the mathematical
operations needed for implementing the filter are a simple
scalar product followed by a comparison test.

The method proposed here consists of two basic
parts:

Part 1: Finding a signalv such that the set of possible
input-output pairs for normal systems is disjoint from
the set of possible input-output pairs for failed sys-
tems.

Part 2: For the test signalv found, and given an input-
output pair, recognizing whether this input-output re-
lation belongs to the normal system’s set or to the
failed system’s set.

The outline of the paper is as follows. In Section 2,
basic assumptions are presented and the model is intro-
duced. The solution for Part 2 is characterized in Sec-
tion 3. This solution is computed off-line over a finite
horizon, see, e.g., (Nikoukhah, 1998). The complexity of
the off-line computation can be important when dealing
with very large systems and long test signals, and this so-
lution cannot be used for many real applications. In Sec-
tion 4, a solution for Part 1 is proposed. The solution is
only given in the case where the test signal enters the sys-
tem linearly.

Computationally implementable solutions for Part 2,
using sparse matrix algorithms, are presented in Section 5.
Since the computation time remains acceptable even for
very large systems and long test signals, the proposed
method can be used in real applications. A simple nu-
merical example is presented in Section 6.

2. System Model

The systems under consideration can be modeled as fol-
lows:

xi(k + 1) = Ai(k)xi(k) + Bi(k)u(k) + bi(k)
+Mi(k)νi(k),

y(k) = Ci(k)xi(k) + Di(k)u(k) + di(k)
+Ni(k)νi(k),

(1)

for k = 0, . . . , N−1, wherei = s and i = f correspond
respectively to the normal and failed modes. Hereu and
y are respectively inputs and outputs which are measured
on-line, andνi(k) are the (unknown) perturbations.Ai,
Bi, Ci, Di, Mi, Ni, bi and di are matrices and vec-
tors of appropriate dimensions which depend onv and
for which the notationAi(k) = Ai(v(k)), etc., has been
used, wherev = v(k), k ∈ [0, N − 1] is a test signal.

The (known) inputsu(k) and the (unknown) pertur-
bationsνi(k) are both supposed to satisfy

Rνi(k)νi(k) ≤ pνi(k),

Rui(k)u(k) ≤ pui(k),
(2)

wherexi(k), u(k), y(k), νi(k), pνi(k), pui(k) are real
vectors, andRνi(k), Rui(k) are given matrices of ap-
propriate dimensions. The vectorspνi(k), pui(k) and
the matricesRνi(k), Rui(k) also depend onv, i.e.,
Rνi(k) = Rνi(v(k)), etc. No assumption is made onRνi

and Rui except that the inequalities (2) are consistent.
Here the inequalities should be interpreted as element-
wise.

The matrices and vectors do not necessarily have the
same dimensions in both systems. The systems have in
common only the inputu(k) and the outputy(k).



Test signal design for failure detection: A linear programming approach 517

The basic assumption is that the normal and failed
mode of the system can be modeled as in (1) and (2). But
the system matrices can be (and hopefully are) different
for different operating modes.

Note that unlike most other approaches to uncertainty
modeling in dynamical systems for the purpose of failure
detection,ν is not a stochastic white noise sequence, but
rather an arbitrary inequality bounded discrete sequence.

A fundamental, and reasonable, assumption here is
that, during the test period, the system is either in the nor-
mal mode or the failed mode; no transition occurs during
the test period.

Let w be the vector defined by

w(k)=



[
xs(k)T, xf (k)T, y(k)T, u(k)T, νs(k)T, νf (k)T

]T

if k ∈ [0, N − 1],[
xs(N)T, xf (N)T

]T
if k = N .

(3)

The equations and inequalities (1), (2) for the normal sys-
tem (i = s) and the failed system (i = f ) can be written
in the matrix form as

Fi(v)w = pi(v),

Ei(v)w ≤ qi(v),
(4)

or, equivalently, as

F (v)w = p(v),

E(v)w ≤ q(v),
(5)

with

F (v) =

[
Fs(v)
Ff (v)

]
, E(v) =

[
Es(v)
Ef (v)

]
,

(6)

p(v) =

[
ps(v)
pf (v)

]
, q(v) =

[
qs(v)
qf (v)

]
.

The following polyhedra can then be defined:

Ss(v) = {w | w satisfies(4) with i = s} , (7)

Sf (v) = {w | w satisfies(4) with i = f} , (8)

S(v) = {w | w satisfies(5) } = Ss(v) ∩ Sf (v). (9)

3. Implementation of the Detection Filter

In this section it is assumed that the test signalv =
{v(k), k ∈ [0, N − 1]} is given. The test signalv is a
sequence of vectors, as short as possible, such that the

constraints on the normal system (4) withi = s and the
constraints on the failed system (4) withi = f are in-
consistent, i.e.,S(v) = ∅. In Section 4, a method for
constructing a test signalv is given.

Let v = v(k), k ∈ [0, N − 1] be a test signal and
w = w(k), k ∈ [0, N ] be an observation of the sys-
tem state. The detection problem consists now in deciding
whether this vectorw is compatible withi = s or with
i = f in (4).

Since the inequalities (4) define two disjoint convex
polyhedra, the problem is reduced to knowing to which
polyhedron the vectorw belongs. If a hyperplane can be
found that separatesSs and Sf , it is sufficient to find on
which side of the hyperplane the vectorw lies. Our work
is limited to finding such a hyperplane. Its existence is
guaranteed by the classical convexity theory.

The following lemma shows how to obtain con-
straints involving only inputsu and outputsy for testing
a failure without calculating the state variablesxs and
xf of the systems (1).

Lemma 1. Let Ss and Sf be two nonempty disjoint con-
vex cylindrical polyhedra defined by (7) and (8), respec-
tively. Then the equation of any separating hyperplane is
of the formhyy + huu = d.

Proof. Suppose that the hyperplane is defined by

hsw̃s + hf w̃f + hyy + huu = d, (10)

where w̃s = (xs, νs), w̃f = (xf , νf ), and hs, hf , hy,
hy are not all zero.

Let (w̃o
s , w̃

o
f , yo, uo) ∈ Ss. Then for all w̃f , the

point (w̃o
s , w̃f , yo, uo) ∈ Ss. It follows that

hsw̃
o
s + hf w̃f + hyyo + huuo ≥ d. (11)

Sincehsw̃
o
s + hyyo + huuo is fixed, andhf w̃f can take

any value becausẽwf is arbitrary, the expression (11) can
take values less thand, which contradicts the assumption
that the hyperplane separatesSs and Sf . Thus hf = 0.
Analogously,hs must be zero.

The following lemma (see Rockafellar, 1972, p. 98,
Thm. 11.4) and its corollary show that it is possible to
convert the problem of separating two polyhedra into an
equivalent problem, separating a polyhedron from the
origin.

Lemma 2. Let S1 and S2 be two nonempty convex poly-
hedra. There exists a hyperplane separatingS1 and S2

if and only if the convex polyhedronS1 − S2 does not
contain 0, i.e., if and only if there exists a hyperplane sep-
arating 0 and the convex polyhedronS1 − S2.



H. Rubio Scola et al.518

Corollary 1. Let S1 and S2 be two nonempty convex
polyhedra. Then the hyperplanehz = d separatesS1

and S2 if and only if the hyperplanehzd = dd separates
0 and the convex polyhedronS1−S2, i.e., if and only if a
hyperplane separatingS1 and S2 can be chosen parallel
to a hyperplane separating0 and S1 − S2.

3.1. Construction of a Difference Polyhedron

Owing to Corollary 1, the problem is now to find a hyper-
plane that separates a polyhedron from the origin. It will
be solved by linear programming and taking into account
the geometric property of the convex polyhedra given in
Lemma 1.

Let ws andwf be such thatws ∈ Ss andwf ∈ Sf ,
where

wi(k)=


[
xs(k)T, xf (k)T, yi(k)T, ui(k)T, νs(k)T, νf (k)T

]T

if k ∈ [0, N − 1],[
xs(N)T , xf (N)T

]T
if k = N ,

(12)

with i = s, f .

For a normal system, Eqn. (1) can be rewritten with
i = s, so that the input-output pair(y, u) is set to
(ys, us). Analogously, for a failed system, Eqn. (1) can
be rewritten withi = f , and in this case the pair(y, u) is
set to (yf , uf ).

The difference between input-output pairs for normal
and failed systems can be defined as follows:

e(k) =

[
ey(k)
eu(k)

]
=

[
ys(k)
us(k)

]
−

[
yf (k)
uf (k)

]
. (13)

Let w̄ = [wT
s , eT ]T , F̄ = [F, Fe] and Ē = [E,Ee].

Using (5) and (13), the following equation for̄w is ob-
tained:

F̄ w̄ = p,

Ēw̄ ≤ q.
(14)

The difference polyhedron is defined as

T = {w̄ | w̄ satisfies(14)} . (15)

From the definitions ofSs, Sf and T , we get the follow-
ing result:

Lemma 3. The projection ofSs − Sf onto the e co-
ordinate is equal to the projection ofT onto the same
coordinate.

The properties ofSs, Sf and Ss − Sf given by
Corollary 1 and Lemma 3 are schematically depicted in
Fig. 2.

u eu

y ey

Ss − Sf

Ss

Sf

Fig. 2. Properties ofSs and Sf .

3.2. Construction of a Separating Hyperplane

It is assumed that the solution sets of the systems (4)
for i = s, f have no intersection, i.e., the system (5)
has no solution. Then (14) has no solution of the form
[ wT 0 ]T because (14) becomes (5) ife = 0.

Introducing a relaxation parameter

δ =
[
δ1(0), δ2(0), δ3(0), . . . , δ1(N − 1),

δ2(N − 1), δ3(N − 1)
]T

(16)

in (14) yields

Fw + Fee ≤ p + δ1,

−Fw − Fee ≤ −p + δ2, (17)

Ew + Eee ≤ q + δ3.

Let us define the following polyhedra:

Pδ = {e | ∃w, (w, e) satisfies(17)} , (18)

and note their properties:

• For δ = 0, 0 6∈ Pδ.

• If δ1 ≥ δ2, then Pδ1 ⊇ Pδ2 .

• For δ = 0, the projection ofSs − Sf onto the e
coordinate is Pδ.

Choosing an appropriateδ, the polyhedron Pδ can be en-
larged untile = 0 belongs to it, see Fig. 3.

Taking into account the polyhedron (17), the follow-
ing linear programming problem is solved:

min
w,δ

3∑
j=1

N−1∑
k=0

δj(k) (19)

subject to (17),e = 0 and δ ≥ 0.
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hyperplane of contact

eu

δ3

Ss − Sf

δ2

δ1

ey

Fig. 3. Linear programming problem.

Let (wo, δo) be a solution to (19), whereδo =
[δoT

1 , δoT
2 , δoT

3 ]T . Then permuting the rows of (17) (evalu-
ated at(wo, 0)), in such a way that the equality constraints
appear first, a permutation matrixP1 is obtained, such
that

P1 [F, Fe] =

[
Fq,1 Fe,q,1

Fi,1 Fe,i,1

]
,

P1p =

[
pq,1

pi,1

]
, P1δ

o
1 =

[
δo
q,1

δo
i,1

]
.

(20)

Equation (17) withe = 0 can be rewritten as follows:

Fq,1w
o + Fe,q,10 = pq,1 + δo

q,1,

Fi,1w
o + Fe,i,10 < pi,1 + δo

i,1.
(21)

Analogously,P2 and P3 can be defined as

P2 [F, Fe] =

[
Fq,2 Fe,q,2

Fi,2 Fe,i,2

]
,

P3 [E,Ee] =

[
Eq Ee,q

Ei Ee,i

]
,

(22)

so that Eqn. (17) can be rewritten as

−Fq,2w
o − Fe,q,20 = pq,2 + δo

q,2,

−Fi,2w
o − Fe,i,20 < pi,2 + δo

i,2,
(23)

Eqw
o + Ee,q0 = qq + δo

q,3,

Eiw
o + Ee,i0 < qi + δo

i,3.
(24)

The active constraints in (17) become

Fq,1w
o + Fe,q,10 = pq,1 + δo

q,1,

−Fq,2w
o − Fe,q,20 = −pq,2 + δo

q,2,

Eqw
o + Ee,q0 = qq + δo

q,3.

(25)

The general equations for the hyperplanes defined by
these active constraints are

Fq,1w + Fe,q,1e = pq,1 + δo
q,1,

−Fq,2w − Fe,q,2e = −pq,2 + δo
q,2,

Eqw + Ee,qe = qq + δo
q,3.

(26)

Equation (26) can be written down as

φw + Ψe = b + δo
q , (27)

where

φ =

 Fq,1

−Fq,2

Eq

 , Ψ =

 Fe,q,1

−Fe,q,2

Ee,q

 ,

b =

 pq,1

−pq,2

qq

 , δo
q =

 δo
q,1

δo
q,2

δo
q,3

 .

(28)

In (26), the hyperplane is defined as a function of
the variables(x, y, u, ν) and (xf , y, u, νf ). Now, in ac-
cordance with Lemma 1, the variablesx, xf , ν, νf do not
appear in the hyperplane definition (26) because, as it is
defined by (x, y, u, ν) and (xf , y, u, νf ), the common
variables in the two sets are(y, u).

The following lemma and theorem show how to ob-
tain a separating hyperplane direction from (27).

Lemma 4. Let K be a full rank matrix whose columns
span ker(φT ). If e and w satisfy the constraintsφw +
Ψe = b+δo

q , thene satisfiesHe = 0, whereH = KT Ψ.

Proof. Multiplying both sides of (27) byKT gives
KT φw + KT Ψe = KT (b + δo

q). Now, Eqn. (27) for
e = 0 is φw = b + δo

q . Also, it can be easily proved
that ξ ∈ Im(φ) ⇐⇒ (ker(φT ))T ξ = 0, so that
KT (b + δo

q) = 0, i.e., He + 0 = 0.

Multiplying both sides of (27) byKT defines a
set of hyperplanesHe = 0 (cf. Lemma 4). By (13)
and Corollary 1,H(y, u) = d defines a set of hyper-
planes. There exists at least one hyperplane that sep-
arates the polyhedraSs and Sf , which is denoted by
Hi(y, u) = di. It remains to determinedi. To do that,
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the hyperplanes tangent to the two convex polyhedraSs

and Sf are calculated:

m1
i = minHi(y, u), M1

i = maxHi(y, u),
s.t.w ∈ Sf , s.t.w ∈ Sf ,

m2
i = minHi(y, u), M2

i = maxHi(y, u),
s.t.w ∈ Ss, s.t.w ∈ Ss.

(29)

If M1
i < M2

i then di = (M1
i +m2

i )/2, or, if M1
i > M2

i ,
then di = (M2

i + m1
i )/2 with i = 1, . . . , np.

Then the hyperplane equation will be

Hi(y, u) = di. (30)

The following theorem shows that there always exists
i ∈ [1, np] such that the hyperplane in (30) separates the
two polyhedra.

Theorem 1. There exists i ∈ [1, np] such that
Hi(y, u) = di separates the convex polyhedraSs

and Sf .

Proof. Note that

if
[
wT , eT

]T ∈ T then He 6= 0. (31)

Let us suppose that[
wT , eT

]T ∈ T and He = 0. (32)

If
[
wT , eT

]T ∈ T , then Ψe + φw ≤ b. Let b1 be
such that

Ψe + φw = b1 ≤ b. (33)

Multiplying both sides of (33) byKT yields

KT Ψe + KT φz = KT b1,

He = KT b1.
(34)

It follows that KT b1 = 0, i.e., b1 ∈ Imφ. Then there
existsw1 such that

φw1 = b1 ≤ b. (35)

Let δo
q be a solution to the linear programming prob-

lem (19), i.e.,δo
q ≥ 0 is the minimal l1 norm such that

φw ≤ b + δo
q has a solution. We haveδo

q 6= 0 since (5)
has no solution. It follows that the inequalityφw ≤ b has
no solution, i.e., (35) does not hold, (32) is false and (31)
holds.

It follows that there existsi ∈ [1, np] such
that Hi(ys − yf , us − uf ) 6= 0 and Hi(ys, us) 6=
Hi(yf , uf ), ∀ ws ∈ Ss, wf ∈ Sf , i.e.,

Hi(Ss) ∩Hi(Sf ) = ∅. (36)

Since Ss and Sf are convex, so areHi(Ss) and
Hi(Sf ), and it follows thatHi(ys, us) < Hi(yf , uf ) or
Hi(ys, us) > Hi(yf , uf ) holds.

If Hi(ys, us) < Hi(yf , uf ), then

Hi(ys, us) ≤ max Hi(ys, us)
ws∈Ss

< di

< minHi(yf , uf )
wf∈Sf

≤ Hi(yf , uf ). (37)

If Hi(ys, us) > Hi(yf , uf ), then

Hi(ys, us) ≥ minHi(ys, us)
ws∈Ss

> di

> max Hi(yf , uf )
wf∈Sf

≥ Hi(yf , uf ). (38)

This shows that the hyperplane defined by the equa-
tion Hi(y, u) = di separates the convex polyhedraSs

and Sf .

4. Test Signal Design

In this section it is shown how a detection hori-
zon N can be found and how a test signalv =
{v(k), k ∈ [0, N − 1]}, which is as short as possible and
such that (1) and (2) fori = s, f are mutually exclusive,
i.e., Sf ∩ Ss = ∅, can be constructed.

The solution to this problem is given only for the case
where the test signal enters the system linearly. This prob-
lem can be considered to be the counter-part of the off-line
auxiliary signal design problem of (Zhang, 1989). In this
paper, it is shown how a test signal can be designed for the
special class of Model (1), (2). In particular, it is assumed
that the matricesAi(k), Bi(k), Ci(k), Di(k), Mi(k)
and Ni(k), for i = s, f do not depend onv and that

bi

(
v(k)

)
= bi,1(k)v(k) + bi,o(k),

di

(
v(k)

)
= di,1(k)v(k) + di,o(k),

(39)

wherebi,1(k) and di,1(k) are matrices of appropriate di-
mensions, andbi,o(k) and di,o(k) are vectors,i = s, f .
On these assumptions, (1) and (2) can be rewritten as

Fw + Rv = po,

Ew ≤ q.
(40)

The problem is then to findv such that (40) is not satis-
fied for any w. The construction makes use of classical
convexity results (Rockafellar, 1972).

Consider the polyhedron

Sh = {v | ∃ w, (w, v) satisfies(40)} . (41)
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Sh is a convex polyhedron and can be expressed by means
of inequality constraints inv (this results from the fact
that the projection of a convex polyhedron is a convex
polyhedron).

Equation (40) can be rewritten as

Fw + Rv = po,

Ew + δ = q,

δ ≥ 0.

(42)

The following lemma provides an equivalent formu-
lation to the above-mentioned problem of findingv such
that (42) is not satisfied.

Lemma 5. Let K be a full rank matrix whose columns
spanker(

[
FT , ET

]
). If v and δ satisfy (42), thenv and

δ satisfy
Lv + Gδ = h,

δ ≥ 0,
(43)

where

L = KT

[
R

0

]
, G = KT

[
O

I

]
, h = KT

[
po

q

]
.

(44)

If ker(
[
FT , ET

]
) = 0, then for all v (40) has a solution.

Proof. The proof is straighforward and therefore it is omit-
ted here.

Now the problem is to findv which does not sat-
isfy (43). Let Li be the i-th row of matrix L. Consider
the following linear programming problem:

max
v,δ

Liv (45)

subject to (43).

Let (vo, δo) be a solution to (45) (note thatho
i =

Liv
o). Then

Liv = ho
i (46)

is the equation of the tangent hyperplane to the polyhedron
Sh. Then the test signalv can be chosen such that

Liv > ho
i . (47)

4.1. Additional Criteria for the Selection of the Test
Signal

It is possible to consider many criteria for choosing a test
signal v among thev’s for which (40) has no solution.
Here, the following constraints will be considered:

Q(k)v(k) ≤ qv(k) (48)

for k = 0, . . . , N − 1. These can be rewritten as

Qv ≤ qv, (49)

whereQ = diag{Q(0), Q(1), . . . , Q(N − 1)}.
Define the following polyhedron:

Sq = {v | v satisfies(49)} . (50)

Note that there is nov satisfying (49) and not satisfy-
ing (40) if and only if

Sq ⊆ Sh. (51)

The situation in order forv to exist is represented in
Fig. 4. Using the convexity ofSq, the following result
can be established:

Sq

Sh

v0 v v1

Fig. 4. Test signal design.

Lemma 6. Let Vq be the set of the vertices ofSq. There
is no v satisfying (49) and not satisfying (40) if and only
if

Vq ⊆ Sh. (52)

It follows that the test signal satisfying the conditions
of Lemma 6 is such thatv ∈ Vq and v /∈ Sh. In other
words, a vertex inVq which does not belong toSh can
be chosen as the signalv (e.g., v1 in Fig. 4).

Testing (52) is easier than testing (51) becauseVq is
a finite set, and the test can be performed by element-wise
checking if some elementv1 exists such thatv1 ∈ Vq

and v1 6∈ Sh . This vertex can then be used as a test
signal.

Even thoughv1 satisfies the conditions in Lemma 6
for the test signal, it is an extreme solution, since it is on
the boundary of the conditions. To improve this situation,
a point near the boundary ofSh can be chosen (pointv
in Fig. 1). Let v0 ∈ Sq ∩ Sh (without loss of generality,
it can be assumed thatv0 = 0 ), and letv be the intersec-
tion point of the segmentv0v1 with the boundary ofSh.
Then v = λv1, where λ is the solution to the following
problem:

max
w,λ

λ (53)
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subject to
Fw + λRv1 = p0,

Ew ≤ q.
(54)

To find v over interval [0, N − 1] with N as small
as possible, the following algorithm is proposed:

Algorithm 1:

Step 1. Set N = 1.

Step 2. Find Vq.

Step 3. If v1 ∈ Vq exists such thatv1 6∈ Sh, go to Step 4,
otherwise setN = N + 1 and go to Step 1.

Step 4. Calculateλ according to (53), (54),v = λv1.

To calculate the set of verticesVq, the block diago-
nal property of matrixQ is exploited. The polyhedron
vertices defined for each block will be found and then the
corresponding permutations to find all the elements ofVq

will be performed.

In Step 3 of Algorithm 1,v1 is sought among the
elements of setVq. If an element is found, the search
ends. In addition, the search is finite becauseVq has a
finite number of elements.

Owing to Lemma 5, the linear programming prob-
lem (53), (54) used by Algorithm 1 can be replaced by an
equivalent linear programming problem with fewer vari-
ables. This equivalent problem can be formulated as fol-
lows: Let vo ∈ Vq. If 0 ∈ Sq, then v = voλ ∈ Sq, ∀λ ∈
[0, 1]. Consider the following linear programming prob-
lem:

max
δ,λ

λ (55)

subject to
Lvoλ + Gδ = h,

δ ≥ 0,

1 ≥ λ ≥ 0.

(56)

Let (δo, λo) be a solution to (55) and (56). Ifλ >
λo and λ ∈ [0, 1], then v = voλ does not satisfy (43),
i.e. v ∈ Sq is such thatv 6∈ Sh.

Algorithm 1 can be rewritten as follows:

Algorithm 2.

Step 1. Set N = 1.

Step 2. Find Vq.

Step 3. If vo ∈ Vq exists such that a solution(λo, δ0)
can be found to (55) and (56), go to Step 4, otherwise
set N = N + 1 and go to Step 1.

Step 4. Set v = v1λ with 1 ≤ λ > λo.

The number of variables in the problem (55), (56) is
lower than the number of variables in the problem (53),
(54): in (55) and (56) the number of variables is equal to
the number of inequality constraints in (54) incremented
by one.

4.2. Special Cases

There is some flexibility in the choice of the test signal,
and in some special cases it could be interesting to select
specificv’s. Three different test signals are considered in
what follows.

Case 1.If Q(k) = Qo and qv(k) = qo in (49) for k ∈
[0, N − 1], the following polyhedron can be defined:

Po = {v | Qov ≤ qo} . (57)

Let Vo = {w1, w2, . . . , wn} be the set of the ver-
tices of the polyhedronPo. Then the vertices ofSq are
permutations of the elements ofVo.

The selection ofv can be restricted to the subsets
V1 and V2 of the set

Vq = {v | v is a vertex ofSq} , (58)

whereV1 is the set ofv’s such that

v(k) =

 wi if k ∈ [0, ko],

wj if k ∈ [(ko + 1), (N − 1)]
(59)

with ko = 0, . . . , N − 1 and wi, wj ∈ Vo, and V2 is the
set of v’s such that

v(k) =


wi if k ∈ [0, ko],

wj if k ∈ [(ko + 1), k1],

wl if k ∈ [(k1 + 1), (N − 1)]

(60)

with ko, k1 ∈ [0, N − 1] and wi, wj , wl ∈ Vo.

This case was successfully applied, e.g., to the prob-
lem of an automatic control system (autopilot) for hydro-
foil boats (Clark, 1978; Clark and Setzer, 1980; Clark and
Walton, 1975). The results can be found in (Rubio Scola,
2000a; Rubio Scolaet al., 2000).

Case 2.Another type of the test signal of interest can be
defined by

v(k + 1) = v(k) + z(k), k ∈ [0, N − 1], (61)

n(k) ≤ v(k) ≤ m(k)

with k ∈ [0, N − 1] and z ∈ Vq.
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In order to reduce the problem to its original formula-
tion, a state variable should be added to the system. Equa-
tions (1) are then transformed into[

xi(k + 1)
v(k + 1)

]
=

[
Ai bi

0 1

] [
xi(k)
v(k)

]
+

[
Bi

0

]
u(k)

+

[
0
1

]
z(k) +

[
Mi

0

]
νi(k), (62)

y(k) =
[

Ci di

] [
xi(k)
v(k)

]
+ Diu(k) + Niνi(k)

(63)
with i = s, f .

Given z, a test signal constructed for the extended
systems, the signalv for the original system is completely
defined by (61) oncev(0) (or any v(k)) is fixed. Then,
to design the test signal, initial conditions should be set
to solve the linear programming problem (53), (54) with
additional bounds on some components ofv.

This case is suitable for optimizing the amplitude in
those problems in which the amplitude is a relevant vari-
able for exposing the failure modes.

Case 3.It is possible to consider other criteria for choos-
ing a test signalz, e.g., imposing thatz ∈ Vq minimizes
the following function:

∥∥∥ N−1∑
k=0

z(k)
∥∥∥. (64)

5. Exploiting Sparsity

The proposed algorithms have been successfully applied
to some real problems like gas pressure in (Nikoukhah,
1998) and the automatic control system (autopilot) for hy-
drofoil boats (Clark and Setzer, 1980). The results can be
seen in (Rubio Scola, 2000a; Rubio Scolaet al., 2000). In
this section a simulation example is provided to illustrate
the sparsity of the linear programming problem.

The results presented in what follows are taken from
a random system having five state variables and two out-
puts. The following criterion is used to choose the test
signal v:

−300 ≤ vk ≤ 300. (65)

The values of the test signalv1 and λ are obtained by the
method proposed in (59) and Algorithm 2.

Table 1. Size of the LP problem as a function of the length of
the test signalN . Notation: nr is the number of equa-
tions, nc is the number of variables,nnz is the num-
ber of nonzero entries in the matrix of constraints (56)
of the LP problem andnlp is the number of LP prob-
lems (55), (56) to solve (19) in this case.

N 1 2 3 4 5 6 7 8 9 10

nr 10 20 30 40 50 60 70 80 90 101

nc 21 41 61 81 101 121 141 161 181 201

nnz 20 40 60 80 100 120 140 160 180 293

nlp 2 4 6 8 10 12 14 16 18 1

For each test signal of the form (59), a linear pro-
gramming problem (55), (56) has to be solved. In Table 1,
the size of the linear problem to be solved as a function of
the length of the test signalN is shown.

A feasible direction h for a separating hyper-
plane (30) has to be found. To calculate the hyperplane co-
efficients, the linear programming problem (19) is solved.
The problem constraints (17) have 420 equations and 210
variables. The density of the matrix (17) is 0.0231293.

To determine the termd of the separating hyper-
plane (30), the four linear programming problems (29)
have to be solved. The two linear programming problems
associated with the failed system have 160 equations and
115 variables. The density of the associated matrix in (4)
is 0.0277174. Analogously, the linear programming prob-
lems associated with the normal system have 150 equa-
tions and 104 variables. The matrix density is 0.0256410.

All the calculations were made using LIPSOL in
Scilab. LIPSOL (Linear programming Interior-Point
SOLvers) (Zhang, 1995), is a package that uses sparse-
matrix data structure utilities to achieve both the program
simplicity and computational efficiency.

The objective of using sparse matrix techniques for
solving linear systems is to reduce computational costs by
exploiting sparsity. It is possible to achieve drastic reduc-
tions in storage and arithmetic requirements when com-
pared with the solutions of dense systems.

6. Example

An example of a very simple system is presented here.
Equations (1) and (2) for this example are as follows:

6.1. System Model

For the normal system, withi = s, we have

xs(k + 1) = xs(k) + 4v(k) + νs(k),
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y(k) = xs(k) + νs(k),

νs(k) ≤ 0.02,

−νs(k) ≤ 0.02.

(66)

For the failed system, withi = f , we define

xf (k + 1) = xf (k) + 4v(k) + νf (k),

y(k) = νf (k),

νf (k) ≤ 0.02,

−νf (k) ≤ 0.02.

(67)

Let w be the vector defined according to (3) by

w =
[
xs(0), xf (0), y(0), νs(0), νf (0), xs(1), xf (1),

y(1), νs(1), νf (1), xs(2), xf (2)
]T

. (68)

From (5) it follows that

F =



−1 0 0 −1 0 1 0 0 0 0 0 0
−1 0 1 −1 0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 1 0 0 0 0 0
0 0 1 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1 −1 0 0 0
0 0 0 0 0 0 −1 0 0 −1 0 1
0 0 0 0 0 0 0 1 0 −1 0 0


,

p =



−4
0
−4
0
4
0
4
0


, (69)

E =



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 −1 0 0


,

q =



0.02
0.02
0.02
0.02
0.02
0.02
0.02
0.02


. (70)

6.2. Test Signal Design

The first part of the problem consists in finding a signalv
such that the set of possible input-output pairs for normal
systems is disjoint from the set of possible input-output
pairs for failed systems.

From Eqn. (40) we get

R =
[

4. 0. 4. 0. 4. 0. 4. 0.
]
,

p0 =
[

0. 0. 0. 0. 0. 0. 0. 0.
]
.

(71)

According to (49), we have

Q = diag{Q(0), Q(1), Q(2)}, (72)

whereQ(i) = [−1, 1]T , i = 0, 1, 2, and

qv = [−1, 1,−1, 1,−1.1]T . (73)

Equation (48) defines the vertex setVq

L =


−4. 0.

0. 0.

0. 0.

0. 0.

0. 0.

 , h =


0.02
0.04
0.04
0.04
0.04

 ,

G =


0. 0. 1. 0. 0. −1. 0. 1.

0. 0. 0. 0. 1. 1. 0. 0.

1. 1. 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0. 1. 1.

0. 0. 1. 1. 0. 0. 0. 0.

 .

(74)

The linear programming problem (55), subject to the con-
ditions (56), is now solved for each element ofVs until a
vertex v1 is found such that the problem has a solution.
The valueλ = 0.015 is obtained, withv1 = [−1, 1];
v = v1 is adopted.
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6.3. Construction of a Separating Hyperplane

In the second part of the problem, for the test signalv
found, and given an input-output pair, it must be recog-
nized whether it belongs to the normal system’s or to the
failed system’s input-output set.

The linear programming problem (19), subject
to (17), is now solved with the matricesF , E, p, q previ-
ously defined and the matricesFe, Ee defined as follows:

Fe =



0. 0.

0. 0.

0. 0.

−1. 0.

0. 0.

0. 0.

0. 0.

0. −1.


, Ee =



0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.

0. 0.


. (75)

Once the solution(wo, δo) is found, (27) can be written
in terms of the active constraints given by the following
lines of (17):[

1 4 6 10 16 19 21 24
]
. (76)

The matrixH in Lemma 4 is

H =
[
−1 1

]
. (77)

Solving problems (29) yields

m1 = −3.98, M1 = −3.98,

m2 = −0.04, M2 = 0.
(78)

The valued = −2.01 is selected, so that the hyperplane
equation is given by

−x1 + x2 = −2. (79)

7. Conclusions

The problem of active fault detection in linear systems
subject to inequality bounded perturbations has been con-
sidered. Under certain conditions, there exist test signals
v that can completely expose various failure modes of the
system. A method of designing a filter for detecting and
isolating failures in systems excited by such test signals
has been presented.

The method proposed in this work involves inject-
ing a test signalv into the system for a finite period of
time, at some given time during the normal operation of
the system. For the found test signalv, the detection filter

determines whether or not the measured input-output is in
the set of the normal systems or in the set of the failed
systems, using a separating hyperplane test.

The complexity of both filter computation and test
signal design can be important, since all the operations
needed for this method are implemented by solving large
linear optimization problems. To perform this computa-
tion, a Scilab Toolbox was developed by the first author.
Details of the implementation and real application exam-
ples are provided in (Rubio Scola, 2000b). A numerical
example for a simple system was given in this work in
order to illustrate the proposed procedure.

The method presented here can also be applied to
continuous-time linear dynamic systems with discrete-
time measurements. Also, it can be applied to very large
systems because it works with sparse matrices and linear
optimization problems taking advantage of sparsity.
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