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A new methodology for the design of filters that permits failure detection and isolation of dynamic systems is presented.
Assuming that the normal and the faulty behavior of a process can be modeled by two linear systems subject to inequality
bounded perturbations, a method for the on-line implementation of a test signal, guaranteeing failure detection, is proposed.
To improve the fault detectability of the dynamic process, appropriate test signals are injected into the system. All the
computations required by the proposed method are implemented as the solution of large sparse linear optimization problems.
A simple numerical example is given to illustrate the proposed procedure.
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1. Introduction sible, what kind it is. To achieve this, the measured input-
output relation is compared with the normal behavior of
The design of failure detection systems entails the con-the system. The passive approach is used to continuously
sideration of several issues. On one hand, a fast reactiormonitor the system, particularly when the detector cannot
of the failure detection mechanism when a failure occurs act upon the system for material or security reasons. In
in the system is desired. On the other hand, in systemsthe field of failure detection, most of the work is devoted
with high performance important degradations in perfor- to this type of approach.
mance, reflected in a high incidence of false alarms, are This approach for detecting changes in dynamical
generally not tolerated during the normal system opera- gy stems has been carefully studied (Basseville and Ben-
tion. These two considerations are often conflicting since veniste, 1985: Clark and Setzer, 1980; Isermann, 1984:
a system which is designed to react quickly to sudden yironoyski, 1980; Willsky, 1976) in many application
changes needs to be sensitive to high frequency effectsig|qs, to achieve failure detection in controlled systems
and therefore it is more sensitive to noise, increasing the ;. o, signal segmentation for speech recognition. Most
prpbability of.the occurrence of false alarm signals by the time-domain model-based methods use all the known or
failure detection system. estimated model parameters to perform the two funda-
The relative importance of these two design issues mental steps of change detection, that is to say, residual
depends on the system’s configuration and is best illus-generation and the choice of the statistical decision func-
trated through particular examples in which the cost of the tion (Willsky, 1976).
different design choices can be evaluated. For instance,  Forinstance, both filter innovations and parity checks
false alarms will be better tolerated in a highly redundant involve all model parameters, with the possible inclusion
system configuration than in a system deprived of signifi- of parameter uncertainties, and classical coefficients of
cant backup capacities (Gertler, 1998; Mangoubi, 1998). probability or Bayesian tests proceed similarly (Basseville

There are two ways of tackling the problem of failure €t al, 1987).
detection and isolation, which are known as the passive The active approach to failure detection, which is the
and active approaches. In the so-called passive approachgne used in this paper, involves acting upon the system on
the detector monitors the inputs and the outputs of a sys-a periodic basis or at critical times using a test signal so
tem to find out whether a failure has occurred and, if pos- as to show abnormal behavior which would otherwise re-
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main undetected during the normal operation (Nikoukhah, The outline of the paper is as follows. In Section 2,
1998). The detector can act either by taking the usual in- basic assumptions are presented and the model is intro-
puts of the system or through a special input channel, per-duced. The solution for Part 2 is characterized in Sec-
haps modifying the system structure. The structure of thetion 3. This solution is computed off-line over a finite
failure detection method considered in this paper is de- horizon, see, e.g., (Nikoukhah, 1998). The complexity of
picted in Fig. 1. the off-line computation can be important when dealing
with very large systems and long test signals, and this so-
v: test signal . lution cannot be used for many real applications. In Sec-
L, "5 output tion 4, a solution for Part 1 is proposed. The solution is

Detection only given in the case where the test signal enters the sys-

. System Filter Failure ;
u: input ‘ T decisior tem linearly.

Computationally implementable solutions for Part 2,

Fig. 1. Active failure detection. using sparse matrix algorithms, are presented in Section 5.
Since the computation time remains acceptable even for
very large systems and long test signals, the proposed

At some given time during the normal operation of method can be used in real applications. A simple nu-
the system, a test signal is injected into the system for aerical example is presented in Section 6.

finite period of time. This signal exposes the failure modes
of the system which are detected by the detection filter.

The design of test signals has been an important is-2' System Model

sue in system identification for many years, but their use The systems under consideration can be modeled as fol-
to detect failures has been introduced only recently (Ker- lows:

esteciglu, 1993; Uosaket al, 1984; Zhang, 1989). The

test signals (called auxiliary inputs) in these works are re-  z;(k +1) = Ai(k)z;(k) + Bi(k)u(k) + b;(k)
garded as linear outputs of stochastic models, and their +M;(k)vi(k),
objective is to optimize some statistical properties of the (1)
detector. y(k) = Ci(k)xi(k) + Di(k)u(k) + d; (k)

This work considers the detection and isolation of +Ni(k)vi(k),

failures using an active approach. The selection of the or k—0.
test signal, as well as the construction of the filter, are ’
performed off-line. The complexity of filter computation
and the design of the test signal is important when deal-
ing with high_dimensional systems and Iong_test signals. Bi, C, Di, M, N, b; and d; are matrices and vec-
Allthe Qperatlons_needed f_or_our_method are |mplementedtors of appropriate dimensions which depend orand
by solving large linear optimization problems. There are for which the notationd; (k) = A, (v(k)), etc., has been
many algc;]rithms for solvri]ng such p)robltre]mﬁ r(1(30ndbzio, used, wheres = v(k), k € [0, N — 1] is a,test ,signal.
1996; Mehrotra, 1992; Zhang, 1995), which have been ’ Y ’

implemented in packages using sparse-matrix data struc- The (known) inputsu(k) and the (annown) pertur-
ture utilities for Matlab (Zhang, 1995) and for Scilab (Ru- bationsv;(k) are both supposed to satisfy

bio Scola, 1999). On the other hand, the mathematical Rus(k)a(k) < poi(k)

operations needed for implementing the filter are a simple vENITIA = BV )
scalar product followed by a comparison test. Rui(B)u(k) < pui(k),

.,N—1,wherei = s andi = f correspond
respectively to the normal and failed modes. Herand

y are respectively inputs and outputs which are measured
on-line, andy;(k) are the (unknown) perturbationsi;,

The method proposed here consists of two basic

parts: where z;(k), u(k), y(k), vi(k), pyi(k), pui(k) are real

vectors, andR,;(k), R.:(k) are given matrices of ap-
Part 1: Finding a signalv such that the set of possible Propriate dimensions. The vectofs,(k), p.i(k) and

input-output pairs for normal systems is disjoint from the matrices R,;(k), R.;(k) also depend omv, i.e.,
the set of possible input-output pairs for failed sys- ftvi(k) = Rui(v(k)), etc. No assumption is made dt,;
tems. and R,; except that the inequalities (2) are consistent.

Here the inequalities should be interpreted as element-

Part 2: For the test signab found, and given an input-  WIS€.
output pair, recognizing whether this input-output re- The matrices and vectors do not necessarily have the
lation belongs to the normal system’s set or to the same dimensions in both systems. The systems have in
failed system’s set. common only the inputs(k) and the outputy(k).
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The basic assumption is that the normal and failed

&

constraints on the normal system (4) with= s and the

mode of the system can be modeled as in (1) and (2). Butconstraints on the failed system (4) with= f are in-

the system matrices can be (and hopefully are) differentconsistent, i.e.S(v) = 0.

for different operating modes.

Note that unlike most other approaches to uncertainty

modeling in dynamical systems for the purpose of failure
detection,v is not a stochastic white noise sequence, but
rather an arbitrary inequality bounded discrete sequence.

In Section 4, a method for
constructing a test signal is given.

Let v = v(k), k € [0, N — 1] be a test signal and
w = w(k), k € [0,N] be an observation of the sys-
tem state. The detection problem consists now in deciding
whether this vectorw is compatible withi = s or with

A fundamental, and reasonable, assumption here isi =/ in (4).

that, during the test period, the system is either in the nor-

mal mode or the failed mode; no transition occurs during
the test period.

Let w be the vector defined by

(25 (k) D s (k)L y (k) D w(k) T g (k) g (k) 7]
w(k)= if ke[0,N—-1], (3)
[2s(N)T, 2, (N)T]" if k= N.

The equations and inequalities (1), (2) for the normal sys-
tem ¢ = s) and the failed system & f) can be written
in the matrix form as

F;(v)w = pi(v),
(4)
E,L('U)U} S q’i(v)a
or, equivalently, as
F)w = p(v),
v)w = p(v) )
E(v)w < q(v),
with
_[ R ] _[ B
0= e | PO B |
_ (6)
_ | ps(v) _ | as(v)
P = [ ) | [ ar(v) ] |
The following polyhedra can then be defined:
Ss(v) = {w | w satisfies (4) with i = s}, (7)
S¢(v) = {w | w satisfies (4) with i = f}, (8)

S(v) = {w | w satisfies (5) } = S,(v) N Sy(v). (9)

3. Implementation of the Detection Filter

In this section it is assumed that the test sigmal=
{v(k),k € [0, N — 1]} is given. The test signal is a

Since the inequalities (4) define two disjoint convex
polyhedra, the problem is reduced to knowing to which
polyhedron the vectotw belongs. If a hyperplane can be
found that separateS; and S, it is sufficient to find on
which side of the hyperplane the vectar lies. Our work
is limited to finding such a hyperplane. Its existence is
guaranteed by the classical convexity theory.

The following lemma shows how to obtain con-
straints involving only inputs: and outputsy for testing
a failure without calculating the state variables and
xy of the systems (1).

Lemmal. Let S, and Sy be two nonempty disjoint con-
vex cylindrical polyhedra defined by (7) and (8), respec-
tively. Then the equation of any separating hyperplane is
of the formhy,y + h,u = d.

Proof. Suppose that the hyperplane is defined by

heths + hyibg + hyy + hyu = d, (10)

where W = (xs,us), Ujf = (xfwf), and hs, hf, hy,
h,, are not all zero.

Let (w7, w%,y°,u°) € Ss. Then for all wy, the
point (w?,wys,y°, u°) € S. It follows that

hswg + hgwy + hyy® + hyu® > d. (11)

Since h,wg + hyy° + h,u’ is fixed, andh gy can take
any value becauseé; is arbitrary, the expression (11) can
take values less thad, which contradicts the assumption
that the hyperplane separat§s and Sy. Thus hy = 0.
Analogously,hs; must be zero. =

The following lemma (see Rockafellar, 1972, p. 98,
Thm. 11.4) and its corollary show that it is possible to
convert the problem of separating two polyhedra into an
equivalent problem, separating a polyhedron from the
origin.

Lemma 2. Let S; and Sy be two nonempty convex poly-
hedra. There exists a hyperplane separatisig and S,

if and only if the convex polyhedro; — S; does not
contain 0, i.e., if and only if there exists a hyperplane sep-

sequence of vectors, as short as possible, such that tharating 0 and the convex polyhedrofi; — 5.



amcs @)

H. Rubio Scola et al.

Corollary 1. Let S; and Sy be two nonempty convex
polyhedra. Then the hyperplanfez = d separatessS;
and Sy if and only if the hyperplané.z; = d; separates
0 and the convex polyhedras;, — S, i.e., if and only if a
hyperplane separating; and S2 can be chosen parallel
to a hyperplane separating and S, — Ss.

3.1. Construction of a Difference Polyhedron

Owing to Corollary 1, the problem is now to find a hyper-
plane that separates a polyhedron from the origin. It will
be solved by linear programming and taking into account
the geometric property of the convex polyhedra given in
Lemma 1.

Let ws; andwy be suchthats € S; andwy € Sy,
where

[z (k)% ui(k)% vs(k)

if ke[0,N

(k) i (k)T Tup(k)T)"

1. (12)

T

[zs(N)T, zp(N)T]" if k=N,

with i = s, f.

For a normal system, Eqgn. (1) can be rewritten with
i = s, so that the input-output paify,u) is set to
(ys, us). Analogously, for a failed system, Eqgn. (1) can
be rewritten withi = f, and in this case the paiy, u) is
setto (yr,uy).

The difference between input-output pairs for normal
and failed systems can be defined as follows:

i — | e | L ws® | [ )
*) l eu(k) ] [ us (k) l uy(k) ] - (19)
Let w = [wl,eT)T, F = [F,F.] and E = [E, E,].

Using (5) and (13) the following equation fap is ob-
tained: ~
Fw

=D
_ (14)
Fw < q.
The difference polyhedron is defined as
T = {w | w satisfies(14)} . (15)

From the definitions ofS,, Sy and T, we get the follow-
ing result:

Lemma 3. The projection ofS, — Sy onto thee co-
ordinate is equal to the projection ofl’ onto the same
coordinate.

The properties ofS;, Sy and S — Sy given by
Corollary 1 and Lemma 3 are schematically depicted in
Fig. 2.

>

Y

Fig. 2. Properties of, and Sy.

3.2. Construction of a Separating Hyperplane

It is assumed that the solution sets of the systems (4)
for i = s, f have no intersection, i.e., the system (5)
has no solution. Then (14) has no solution of the form
[ wT 0 ]7 because (14) becomes (5)df= 0

Introducing a relaxation parameter

§ = [61(0),62(0),83(0),...,61(N — 1),
55(N —1),85(N —1)]"  (16)
in (14) yields

Fw+ Fee <p+ 6y,
—Fw — Fee < —p + 0o, (17)

Ew+ E.e < g+ 3.

Let us define the following polyhedra:

Ps = {e | Jw, (w, e) satisfies(17)}, (18)

and note their properties:
e Foré =0, 0¢&Ps.
o If 61 > 42, then B1 D Ps2.

e For § = 0, the projection ofS; — Sy onto thee
coordinate is B.

Choosing an appropriat& the polyhedron P can be en-
larged untile = 0 belongs to it, see Fig. 3.

Taking into account the polyhedron (17), the follow-
ing linear programming problem is solved:

Hlln E

] 1

subjectto (17)e =0 andé§ > 0.

=2

-1
5.7
0

(19)

?.
Il
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&

€y

hyperplane of contact

Fig. 3. Linear programming problem.

Let (w°,6°) be a solution to (19), wherg®
(697,697, 69717 Then permuting the rows of (17) (evalu-
ated at(w?, 0)), in such a way that the equality constraints
appear first, a permutation matrik; is obtained, such
that

P, [F,F,] = Far Feqn
e Fii Foin |’
(20)
50
Pp= ||, Pog=| %0t |,
Pin 51‘71

Equation (17) withe = 0 can be rewritten as follows:

Foiw® + Fe g10 = pg1+ 9074,
e I R (21)
Fiaw® + Fe ;10 < pi1+ 675

by

Analogously, P, and P; can be defined as

Fq,2
Fio

Fe,q,Z

P [F F] = 2
e,t,2

)

(22)
Eq Eeaq
E;, E.;

b

P3[E,E] =

so that Eqn. (17) can be rewritten as

— q,2wo - Fe,q,ZO = Pq,2 + 50,23
! (23)
—Fiow® — Fe ;20 < pi2+ 067,

B0 + Eog0 = gy + 625,
q q q q, (24)
E;w® + Ee,iO < q; + 523.

The active constraints in (17) become

Fq71w0 + Fe,q,lo = pq,l + 63,1,
- q,2w0 - Fe,q,ZO = —Pgq,2 + 62’27 (25)
Ew® + E, ,0 = g4 + (53_’3.

The general equations for the hyperplanes defined by
these active constraints are

Foiw+ Fegie = pga1 + 53,1,

—Foow —Fegpe = —pg2 +0g5, (26)
Eq'w + Ee,qe = (q + 6273.
Equation (26) can be written down as
dw + Ve = b+ 4y, (27)
where
Fq71 Fe,q,l
¢ = *Fq,2 , U= *Fe,q,Q s
Eq Ee’q
(28)
Pq,1 dg1
b= —pg2 |+ 05=| 002
dq 94,3

In (26), the hyperplane is defined as a function of
the variables(z, y, u,v) and (zf,y,u,vs). Now, in ac-
cordance with Lemma 1, the variablesz ¢, v, vy do not
appear in the hyperplane definition (26) because, as it is
defined by (z,y,u,v) and (zs,y,u,vs), the common
variables in the two sets afgy, u).

The following lemma and theorem show how to ob-
tain a separating hyperplane direction from (27).

Lemma 4. Let K be a full rank matrix whose columns
spanker(¢T). If e and w satisfy the constraintgw +
Ve = b+69, thene satisfiesHe = 0, whereH = K7'0.

Proof. Multiplying both sides of (27) by K™ gives

KT¢w + KTWe = KT(b+ 63). Now, Egn. (27) for
e =0is ¢w b+ dg. Also, it can be easily proved
that ¢ € Im(¢p) <= (ker(¢?))T¢ = 0, so that

KT(b+62)=0,i.e., He+0=0. [ |

Multiplying both sides of (27) byK” defines a
set of hyperplanesHe = 0 (cf. Lemma 4). By (13)
and Corollary 1, H(y,u) = d defines a set of hyper-
planes. There exists at least one hyperplane that sep-
arates the polyhedrs; and S¢, which is denoted by
H;(y,u) = d;. It remains to determingl;,. To do that,
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the hyperplanes tangent to the two convex polyhefiya
and S; are calculated:

1 = min H;(y,u), Mi1 = max H;(y,u),

=
s.t.w € Sy, s.t.w € Sy,

m

(29)
m? = min H;(y, u),

stwe S,

M? = max H;(y,u),

s.t.w e S;.
If M} < M? thend; = (M} +m?)/2,or,if M} > M2,
thend, = (M? +m})/2 with i =1,...,n,.

Then the hyperplane equation will be

H;(y,u) = d;. (30)

The following theorem shows that there always exists
i € [1,n,] such that the hyperplane in (30) separates the

two polyhedra.

Theorem 1. There existsi € [1,n,] such that
H;(y,u) = d; separates the convex polyhedrs,
and Sy.

Proof. Note that

if [w”,e”]" €T then He # 0. (31)
Let us suppose that
[wT, eT]T €T and He = 0. (32)

If [wT,eT}T € T, then Ve + ¢ow < b. Let b; be

such that
Ve + ¢pw = by <b. (33)
Multiplying both sides of (33) byK”' yields
KT™We + KT¢z = KTb,
(34)

He = KTb,.

It follows that KT b, = 0, i.e., by € Im¢. Then there
existsw; such that

Let 6; be a solution to the linear programming prob-

lem (19), i.e.,d7 > 0 is the minimall; norm such that
¢w < b+ 57 has a solution. We havé) # 0 since (5)
has no solution. It follows that the inequalityww < b has

no solution, i.e., (35) does not hold, (32) is false and (31)

holds.

It follows that there existsi € [1,n,] such

that H;(ys — ys,us — uy) # 0 and H;(ys,us) #
Hi(ys,up), Yws€Ss, wy€ Sy e,

Hy(S,) N H;(S) = 0. (36)

Since Sy and Sy are convex, so aréd;(S,) and
H,(Sy), and it follows thatH; (ys, us) < H;(ys,us) Or
H;(ys,us) > Hi(ys,uy) holds.

If Hi(ys,us) < Hi(ys,uys), then

Hi(ys»us) S maXHi(ys;us) < d’L
wsESs

< min H;(ys,uy) < Hi(ys,uy). (37)
wyESy

If Hi(ys,us) > H;(ys,us), then

Hi(y&us) > minHi(yS7us) > di
ws €S

> max H;(yr,uys) > Hi(yg,up). (38)
wy€ESy

This shows that the hyperplane defined by the equa-
tion H;(y,u) = d; separates the convex polyhedfa
and Sy. |

4. Test Signal Design

In this section it is shown how a detection hori-
zon N can be found and how a test signal =
{v(k),k € [0, N — 1]}, which is as short as possible and
such that (1) and (2) fof = s, f are mutually exclusive,
i.e., Sy NS, =0, can be constructed.

The solution to this problem is given only for the case
where the test signal enters the system linearly. This prob-
lem can be considered to be the counter-part of the off-line
auxiliary signal design problem of (Zhang, 1989). In this
paper, itis shown how a test signal can be designed for the
special class of Model (1), (2). In particular, it is assumed
that the matricesA;(k), B;(k), Ci(k), D;(k), M;(k)
and N;(k), for ¢ = s, f do not depend o and that

bj, (U(k)) = bll(k)ﬂ(/{) + bi,()(k)a

(39)
d; (’U(k)) = dz,l(k)v(k:) + di7o(k),
whereb; 1 (k) andd; 1 (k) are matrices of appropriate di-
mensions, and; ,(k) and d; ,(k) are vectors; = s, f.
On these assumptions, (1) and (2) can be rewritten as

Fw+ Rv = p,,
(40)
Fw < q.

The problem is then to find such that (40) is not satis-
fied for any w. The construction makes use of classical
convexity results (Rockafellar, 1972).

Consider the polyhedron

Sp={v|Jw, (w,v) satisfies(40)}. (41)
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Sp, is a convex polyhedron and can be expressed by meandor £ = 0,..

of inequality constraints inv (this results from the fact
that the projection of a convex polyhedron is a convex
polyhedron).

Equation (40) can be rewritten as

Fw+ Rv = p,,
Fw+4 =g, (42)
6 > 0.

The following lemma provides an equivalent formu-
lation to the above-mentioned problem of findingsuch
that (42) is not satisfied.

Lemma 5. Let K be a full rank matrix whose columns
spanker([F*, ET]). If v and § satisfy (42), then and
0 satisfy

Lo+ Go = h,
(43)
5 >0,
where
L—x7 |, G—KT[O], h—KTlpO].
I q
(44)

If ker([FT, ET]) = 0, then for all v (40) has a solution.

Proof. The proof is straighforward and therefore it is omit-
ted here. ]

Now the problem is to findv which does not sat-
isfy (43). Let L; be thei-th row of matrix L. Consider
the following linear programming problem:

max L (45)

subject to (43).

Let (v°,0°) be a solution to (45) (note that?
L;v°). Then

Liv=h{ (46)

is the equation of the tangent hyperplane to the polyhedronand vi & S, .

Sy. Then the test signal can be chosen such that

Liv > k. (47)

4.1. Additional Criteria for the Selection of the Test
Signal

It is possible to consider many criteria for choosing a test
signal v among thewv’s for which (40) has no solution.
Here, the following constraints will be considered:

QF)v(k) < qu(k) (48)

&

., N — 1. These can be rewritten as

Qu < qu, (49)
where Q = diag{Q(0), Q(1)....,Q(N — 1)}.
Define the following polyhedron:
Sy = {v | v satisfies (49)} . (50)

Note that there is na satisfying (49) and not satisfy-
ing (40) if and only if
Sq C Sh. (51)

The situation in order forv to exist is represented in
Fig. 4. Using the convexity ofS,, the following result
can be established:

Vo

Fig. 4. Test signal design.

Lemma 6. Let V;, be the set of the vertices &f,. There
is no v satisfying (49) and not satisfying (40) if and only

V, C Sp. (52)

It follows that the test signal satisfying the conditions
of Lemma 6 is such that € V, andv ¢ Sj. In other
words, a vertex inV; which does not belong t&), can
be chosen as the signal(e.g., v; in Fig. 4).

Testing (52) is easier than testing (51) becausds
a finite set, and the test can be performed by element-wise
checking if some element; exists such that, € V,
This vertex can then be used as a test
signal.

Even thoughv; satisfies the conditions in Lemma 6
for the test signal, it is an extreme solution, since it is on
the boundary of the conditions. To improve this situation,
a point near the boundary &}, can be chosen (point
in Fig. 1). Letwvy € S, NS, (without loss of generality,
it can be assumed that) = 0), and letv be the intersec-
tion point of the segmentyv; with the boundary ofS},.
Then v = A\vy, where )\ is the solution to the following
problem:

max A (53)

w,A
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subject to The number of variables in the problem (55), (56) is
Fw+ ARvy = po, lower than the number of variables in the problem (53),
(54) (54): in (55) and (56) the number of variables is equal to
Ew < g. the number of inequality constraints in (54) incremented
by one.

To find v overinterval [0, N — 1] with N as small
as possible, the following algorithm is proposed:

Algorithm 1:

Step 1. Set N = 1. There is some flexibility in the choice of the test signal,
. and in some special cases it could be interesting to select
Step 2. Find V5. specificv’s. Three different test signals are considered in
Step 3. If v; € V, exists suchthat, ¢ S, gotoStep4,  what follows.
otherwise setV = N + 1 and go to Step 1.

Step 4. Calculate\ according to (53), (54)y = Av;.

4.2. Special Cases

Case 1.If Q(k) = Q, and q,(k) = ¢, in (49) for k €

[0, N — 1], the following polyhedron can be defined:
To calculate the set of verticel;, the block diago-

nal property of matrixQ is exploited. The polyhedron Po={v|Qov < g0} (67)

vertices defined for each block will be found and then the

corresponding permutations to find all the element¥pf

will be performed.

In Step 3 of Algorithm 1,v; is sought among the
elements of set/,. If an element is found, the search
ends. In addition, the search is finite becadgehas a
finite number of elements.

Let V, = {wy,ws,...,w,} be the set of the ver-
tices of the polyhedrorP,. Then the vertices o5, are
permutations of the elements &f,.

The selection ofv can be restricted to the subsets
V1 and V5 of the set

Vg ={v | vis avertex ofS,;}, (58)
Owing to Lemma 5, the linear programming prob-

lem (53), (54) used by Algorithm 1 can be replaced by an where V; is the set ofv's such that
equivalent linear programming problem with fewer vari-

ables. This equivalent problem can be formulated as fol- w; if kel0, k],
lows: Letw, € V,. If 0 € S,,thenv =v,\ € S, VA € v(k) = _ (59)
[0,1]. Consider the following linear programming prob- w; if k€ [(ko +1), (N —1)]
lem:
max \ (55) with k, =0,...,N —1 andw;,w; € V,, and V5 is the
8,2 set of v's such that
subject to .
i f k 07 kO 9
LugA+G6 = h, wi k€0, ko)
k) = o 60
5> 0, (56) v(k) w; if ke[(k,+1), k], (60)
1> A>0. wp if kel(kr+1),(N-1)]
Let (6°, A°) be a solution to (55) and (56). Ik >  With ko, k1 € [0, N — 1] and w;, wj, w; € V.
A° and A € [0,1], thenv = v,A does not satisfy (43), This case was successfully applied, e.g., to the prob-
i.e. v € S, issuchthat ¢ 5. lem of an automatic control system (autopilot) for hydro-
foil boats (Clark, 1978; Clark and Setzer, 1980; Clark and
Algorithm 1 can be rewritten as follows: Walton, 1975). The results can be found in (Rubio Scola,
. 2000a; Rubio Scolat al, 2000).
Algorithm 2.
Step 1. SetN =1. Case 2.Another type of the test signal of interest can be
Step 2. Find V. defined by
Step 3. If v, € V, exists such that a solutiot\°, §°) vk+1)=v(k)+2(k), kel0,N—1], (61)
can be found to (55) and (56), go to Step 4, otherwise
set N = N + 1 and go to Step 1. n(k) <v(k) < m(k)

Step 4. Setv = v1 A with 1 < X\ > \°. with £ € [0,N — 1] and z € V.
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In order to reduce the problem to its original formula- _ .
. . P 9 Table 1. Size of the LP problem as a function of the length of
tion, a state variable should be added to the system. Equa- . Lom e
the test signalV. Notation: nr is the number of equa-

tions (1) are then transformed into tions, nc is the number of variablesynz is the num-
ber of nonzero entries in the matrix of constraints (56)

x;(k+1) _ | A b lwz(k) n B; u(k) of the LP problem anchip is the number of LP prob-
v(k+1) 0 1 v(k) 0 lems (55), (56) to solve (19) in this case.
n 0 (k) + Mi‘|yi<k)’ (62) N|1 2 3 4 5 6 7 8 9 10
1 0 nr 10 20 30 40 50 60 70 80 90 101
ne |21 41 61 81 101 121 141 161 181 201
J}Z(k}) nnz |20 40 60 80 100 120 140 160 180 293
y(k) = { Ci di } [ w(k) + Diu(k) + Nivi(k) nlp| 2 4 6 8 10 12 14 16 18 1
(63)
with 7 = s, f. For each test signal of the form (59), a linear pro-

Given z, a test signal constructed for the extended gramming problem (55), (56) has to be solved. In Table 1,
systems, the signal for the original system is completely the size of the linear problem'to be solved as a function of
defined by (61) once(0) (or any v(k)) is fixed. Then, ~ the length of the testsignaV is shown.
to design the test signal, initial conditions should be set A feasible direction h for a separating hyper-
to solve the linear programming problem (53), (54) with plane (30) has to be found. To calculate the hyperplane co-
additional bounds on some components.of efficients, the linear programming problem (19) is solved.

) ) ) o . . The problem constraints (17) have 420 equations and 210

This case is suitable for optimizing the amplitude in \ariaples. The density of the matrix (17) is 0.0231293.
those problems in which the amplitude is a relevant vari- . .

To determine the termi of the separating hyper-

able for exposing the failure modes. plane (30), the four linear programming problems (29)
have to be solved. The two linear programming problems
Case 3.t is possible to consider other criteria for choos- associated with the failed system have 160 equations and
ing a test signak, e.g., imposing that € V;, minimizes 115 variables. The density of the associated matrix in (4)
the following function: is 0.0277174. Analogously, the linear programming prob-
N1 lems associated with the normal system have 150 equa-
H Z z(k:)H (64) tions and 104 variables. The matrix density is 0.0256410.

All the calculations were made using LIPSOL in
Scilab. LIPSOL (Linear programming Interior-Point
SOLvers) (Zhang, 1995), is a package that uses sparse-
matrix data structure utilities to achieve both the program
5. Exploiting Sparsity simplicity and computational efficiency.
) ) The objective of using sparse matrix techniques for
The proposed algorithms have been successfully appliedsgying linear systems is to reduce computational costs by
to some real problems like gas pressure in (Nikoukhah, gxp|oiting sparsity. It is possible to achieve drastic reduc-

1998) and the automatic control system (autopilot) for hy- tions in storage and arithmetic requirements when com-
drofoil boats (Clark and Setzer, 1980). The results can bepared with the solutions of dense systems.

seen in (Rubio Scola, 2000a; Rubio Scetal., 2000). In
this section a simulation example is provided to illustrate
the sparsity of the linear programming problem. 6. Example

The results presented in what follows are taken from ap example of a very simple system is presented here.
a random system having five state variables and two out-gqyations (1) and (2) for this example are as follows:
puts. The following criterion is used to choose the test

signal v: 6.1. System Model
—300 < vy < 300. (65) -

) ) For the normal system, with = s, we have
The values of the test signal and )\ are obtained by the

method proposed in (59) and Algorithm 2. zs(k+1) = zs(k) + dv(k) + ve(k),
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y(k) = z5(k) + vs(k),
ve(k) < 0.02, (66)
—vs(k) < 0.02.
For the failed system, withh = f, we define

zp(k+1
y(k

) = zgp(k )+4U(k)+’/f(k)7
: (67)
vy (k)
—vs(k)
Let w be the vector defined according to (3) by
w = [xs(o)v :L'f(O), y(O), Vs(0)7 Vf<0)a xs(l)a xf(]-)v
y(1),v5(1), v (1), 24(2),27(2)] . (68)

From (5) it follows that

(-1 00-1 0 1 000 0 00]
-1 01 -10 0 000 000
0 -100 -1 0 100 000
F_ |0 01010000 000
0 000 0 -100-1010|"
0 000 0 —-101-10200
0 000 0 0 —-100 —-101
|0 000 0 0 010 -100]
e
0
—4
0
p=1, | (69)
0
4
_0_
[000 1 00000 0 00]
000—-1 00000 O 0O
0000 1 0000 0 0O
£_|0000 -10000 000
0000 00001 000}’
0000 0 000-1 000
0000 0000O0O 1 00
(000 0 00000 —100]

[ 0.02
0.02
0.02
0.02
=1 002 |- (70)
0.02
0.02

| 0.02

6.2. Test Signal Design

The first part of the problem consists in finding a signal
such that the set of possible input-output pairs for normal
systems is disjoint from the set of possible input-output
pairs for failed systems.

From Eqgn. (40) we get

R:[4. 0. 4. 0. 4. 0. 4. 0.},

(71)
po=[0 0 0 0 0 0 0 0]
According to (49), we have
Q = diag{Q(0), Q(1), Q(2)}, (72)
where Q(i) = [-1,1]", i=0,1,2, and
@w=[-1,1,-1,1,—-1.1". (73)
Equation (48) defines the vertex s}
—4. 0. 0.02
0. O. 0.04
L= 0. 0.|, h=1]0.04 |,
0. O. 0.04
0. 0. 0.04
(74)
0. 0. 1. 0. 0. —-1. 0. 1
0. 0. 0. 0. 1. 1. 0. O
G=|1 1. 0. 0. 0. 0. 0. 0
0. 0. 0. 0. 0. 0. 1. 1
0. 0. 1. 1. 0. 0. 0. 0

The linear programming problem (55), subject to the con-
ditions (56), is now solved for each elementidf until a
vertex v; is found such that the problem has a solution.
The value A = 0.015 is obtained, withv; = [—1,1];

v = vy IS adopted.
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6.3. Construction of a Separating Hyperplane

In the second part of the problem, for the test signal
found, and given an input-output pair, it must be recog-
nized whether it belongs to the normal system'’s or to the
failed system’s input-output set.

The linear programming problem (19), subject
to (17), is now solved with the matricds, E, p, q previ-
ously defined and the matricdg, E. defined as follows:

0.
0.
0.

—L (75)

A
PP e

S S

e e e

L _1. . (- -
Once the solution(w?, 6°) is found, (27) can be written
in terms of the active constraints given by the following
lines of (17):

1 4 6 10 16 19 21 24}. (76)
The matrix H in Lemma 4 is
H=[-1 1] (77)
Solving problems (29) yields
m' = —3.98, M'=-3.98,
(78)
m? =-0.04, M?=0.
The valued = —2.01 is selected, so that the hyperplane
equation is given by
—X1 + Tog = —2. (79)

7. Conclusions

The problem of active fault detection in linear systems

o

determines whether or not the measured input-output is in
the set of the normal systems or in the set of the failed
systems, using a separating hyperplane test.

The complexity of both filter computation and test
signal design can be important, since all the operations
needed for this method are implemented by solving large
linear optimization problems. To perform this computa-
tion, a Scilab Toolbox was developed by the first author.
Details of the implementation and real application exam-
ples are provided in (Rubio Scola, 2000b). A numerical
example for a simple system was given in this work in
order to illustrate the proposed procedure.

The method presented here can also be applied to
continuous-time linear dynamic systems with discrete-
time measurements. Also, it can be applied to very large
systems because it works with sparse matrices and linear
optimization problems taking advantage of sparsity.
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