
Int. J. Appl. Math. Comput. Sci., 2004, Vol. 14, No. 2, 241–247

AN ALTERNATIVE EXTENSION OF THE k-MEANS ALGORITHM FOR CLUSTERING
CATEGORICAL DATA

OHN MAR SAN∗, VAN-NAM HUYNH∗∗, YOSHITERUNAKAMORI ∗∗

∗ Mathematics and Statistics Department
Co-Operative Degree College, Sagaing, Myanmar

∗∗ Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan

e-mail:huynh@jaist.ac.jp

Most of the earlier work on clustering has mainly been focused on numerical data whose inherent geometric properties
can be exploited to naturally define distance functions between data points. Recently, the problem of clustering categorical
data has started drawing interest. However, the computational cost makes most of the previous algorithms unacceptable for
clustering very large databases. Thek-means algorithm is well known for its efficiency in this respect. At the same time,
working only on numerical data prohibits them from being used for clustering categorical data. The main contribution of this
paper is to show how to apply the notion of “cluster centers” on a dataset of categorical objects and how to use this notion for
formulating the clustering problem of categorical objects as a partitioning problem. Finally, ak-means-like algorithm for
clustering categorical data is introduced. The clustering performance of the algorithm is demonstrated with two well-known
data sets, namely,soybean diseaseandnurserydatabases.
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1. Introduction

During the last decade, data-mining has emerged as a
rapidly growing interdisciplinary field which merges to-
gether databases, statistics, machine learning and related
areas in order to extract useful knowledge from data (Han
and Kamber, 2001). Clustering is one of fundamental op-
erations in data mining.

Clustering can be defined as the process of organiz-
ing objects in a database into clusters/groups such that ob-
jects within the same cluster have a high degree of simi-
larity, while objects belonging to different clusters have a
high degree of dissimilarity (Anderberg, 1973; Jain and
Dubes, 1988; Kaufman and Rousseeuw, 1990). Tradi-
tionally, numerical clustering methods have been viewed
in opposition to conceptual clustering methods developed
in Artificial Intelligence. Numerical techniques empha-
size the determination of homogeneous clusters accord-
ing to some similarity measures but providing low-level
descriptions of clusters (Anderberg, 1973; Kaufman and
Rousseeuw, 1990), while a conceptual approach is more
concerned with high-level (i.e. more understandable) de-
scriptions of classes (Fisher, 1987; Michalski and Stepp,
1983). Most of the earlier work on clustering has been fo-

cused on numerical data whose inherent geometric prop-
erties can be exploited to naturally define distance func-
tions between data points. However, data mining appli-
cations frequently involve many datasets that also consist
of categorical attributes on which distance functions are
not naturally defined (Gantiet al., 1999). Recently, clus-
tering data with categorical attributes have drawn some
attention (Gantiet al., 1999; Gibsonet al., 1998; Guhaet
al., 2000; Huang, 1998).

As is well known, k-means clustering (MacQueen,
1967) has been a very popular technique for partition-
ing large data sets with numerical attributes. Ralam-
bondrainy (1995) proposed a hybrid numeric-symbolic
method that integrates an extended version of thek-means
algorithm for cluster determination and a complementary
conceptual characterization algorithm for cluster descrip-
tion. However, converting categorical attributes into bi-
nary attributes in Ralambondrainy’s approach makes the
proposed technique face the increasing of both computa-
tional and space costs if categorical attributes have many
categories. Further, real values between 0 and 1 represent-
ing the cluster means do not indicate the characteristics
of the clusters. Recently, Huang (1997; 1998) proposed
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the k-modes algorithm to tackle the problem of clustering
large categorical data sets in data mining. Thek-modes
algorithm extends thek-means algorithm by using a sim-
ple matching dissimilarity measure for categorical objects,
modes instead of means for clusters, and a frequency-
based method to update modes in the clustering process to
minimize the clustering cost function. Further, Huang also
combined thek-modes algorithm with thek-means al-
gorithm resulting in the so-calledk-prototypes algorithm
for clustering objects described by mixed numerical and
categorical attributes. These extensions have removed the
numeric-only limitation of thek-means algorithm and en-
abled it to be used for efficient clustering of very large data
sets from real-world databases. However, thek-modes al-
gorithm is unstable due to non-uniqueness of the modes.
That is, the clustering results depend strongly on the se-
lection of modes during the clustering process.

This paper aims at eliminating the above drawback
in the k-modes algorithm by introducting a new notion
of “cluster centers” called representatives for categorical
objects. As arithmetic operations are completely absent
in the setting of categorical objects, we apply the notion
of fuzziness in defining representatives instead of means
for clusters. With this notion we can also formulate the
clustering problem of categorical objects as a partitioning
problem in the fashion similar tok-means clustering. The
remainder of this paper is organized as follows: In the
next section, we introduce the definition and notation for
categorical objects. In Section 3, we briefly outline thek-
means-type clustering for numerical and categorical data.
Section 4 formulates the clustering problem of categori-
cal objects as a partitioning problem in the fashion simi-
lar to k-means clustering, and describes the proposed al-
gorithm. Experimental results with two well-known data
sets, namely,soybean diseaseandnurserydatabases are
reported in Section 5. Finally, Section 6 presents some
concluding remarks and suggestions for further work.

2. Notation

Similar to (Huang, 1998), we assume that the set of ob-
jects to be clustered is stored in a datasetD defined by a
set of attributesA1, . . . , Am with domainsD1, . . . ,Dm,
respectively. Each object inD is represented by a tuple
t ∈ D1 × . . . × Dm. In terms of the clustering problem
discussed in this paper, we only consider two general data
types, namely,numericandcategorical. The domains of
attributes associated with these two types are called nu-
merical and categorical, respectively. A numerical do-
main consists of continuous real values. As such, each
numerical data object is considered as a point in a multi-
dimentional metric space adopting a distance metric such
as the Euclidean or the Mahalanobis measure (Jain and
Dubes, 1988). Following the lines of (Huang, 1998), a

domainDi is defined as categorical if it is finite and un-
ordered, e.g., that only a comparison operation is allowed
in Di. That is, for anya, b ∈ Di either a = b or a 6= b.
Symbolic data objects as considered in (Gowda and Di-
day, 1991) are not discussed in the present paper.

Logically, each data objectX in the dataset is also
represented as a conjunction of attribute-value pairs

[A1 = x1] ∧ . . . ∧ [Am = xm],

where xi ∈ Di for 1 ≤ i ≤ m. For simplicity, we
representX as a tuple

(x1, . . . , xm) ∈ D1 × · · · × Dm.

If all Di’s are categorical domains, then objects in
D are called categorical objects. Huang (1997; 1998) also
considered the clustering problem for mixed-type data ob-
jects where some domains are numeric, while others are
categorical.

3. k-Means Clustering

The general algorithm was introduced by Cox (1957), and
(Ball and Hall, 1967; MacQueen, 1967) first named itk-
means. Since then it has become widely popular and is
classified as apartitional or non-hierarchicalclustering
method (Jain and Dubes, 1988). It is defined as follows:
given a setD = {X1, . . . , Xn} of n numerical data ob-
jects, a natural numberk ≤ n, and a distance measure
d, the k-means algorithm aims at finding a paritionC of
D into k non-empty disjoint clustersC1, . . . , Ck with
Ci∩Cj = ∅ and

⋃k
i=1 Ci = D such that the overall sum

of the squared distances between data objects and their
cluster centers is minimized. Mathematically, if we use
indicator variableswi,l which take value 1 if objectXi

is in clusterCl, and 0 otherwise, then the problem can be
stated in terms of a constrained non-linear optimization
problem as follows: Minimize

P (W,Q) =
k∑

l=1

n∑
i=1

wi,ld(Xi, Ql) (1)

subject to
k∑

l=1

wi,l = 1, 1 ≤ i ≤ n, (2)

wi,l ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ l ≤ k,

where W = [wi,l]n×k is a partition matrix, Q =
{Q1, . . . , Qk} is a set of cluster centers, andd(·, ·) is
the squared Euclidean distance between two objects.

As is well known, the usual method toward the opti-
mization of P in (1) subject to the constraint (2) is to use
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partial optimization forQ and W . That is, we first fix
Q and find necessary conditions forW to minimize P .
Then we fix W and minimizeP according toQ. Basi-
cally, the k-means algorithm iterates through a three-step
process untilP (W,Q) converges to some local minimum
(Selim and Ismail, 1984):

1. Select an initialQ(0) = {Q(0)
1 , . . . , Q

(0)
k }, and set

t = 0.

2. Keep Q(t) fixed and solveP (W,Q(t)) to obtain
W (t), i.e., regardingQ(t) as the cluster centers, as-
sign each object to the cluster of its nearest cluster
center.

3. Keep W (t) fixed and generateQ(t+1) such that
P (W (t),Q(t+1)) is minimized, i.e., construct new
cluster centers according to the current distribution
of objects.

4. In the case of convergence or if a given stopping cri-
terion is fulfilled, output the result and stop. Other-
wise, sett = t + 1 and go to Step 2.

In the setting of numerical data clustering, the Eu-
clidean norm

d(X, Y ) =

√√√√ m∑
j=1

|xj − yj |2 (3)

is often chosen as a natural distance measure in thek-
means algorithm. With this distance measure, the com-
putation of the mean of a cluster’s objects returns the
cluster’s center, fulfilling the minimization condition of
Step 3 above. Namely,Q(t+1)

l = (q(t+1)
l,1 , . . . , q

(t+1)
l,m ) for

l = 1, . . . , k, and

q
(t+1)
l,j =

n∑
i=1

w
(t)
i,l xi,j

n∑
i=1

w
(t)
i,l

. (4)

To deal with the problem of not well-defined boundaries
between clusters, the notion of fuzzy partitions has been
applied successfully to the clustering problem resulting
in the so-calledfuzzy clustering(Ruspini, 1969; Bezdek,
1980; Ismail and Selim, 1986). However, we do not con-
sider this topic in the present paper.

As is shown in (Huang, 1998), thek-means algo-
rithm has the following characteristics:

• It is efficient in processing large data sets.

• It often terminates at a local optimum.

• It works only on numerical data.

• The clusters have convex shapes.

It was also shown in (Huang, 1997; Huang, 1998)
that the k-means method can be extended to categorical
data by using a simple matching distance measure for cat-
egorical objects with a majority-vote strategy to define
the “cluster centers” calledmodes. Specifically, the dis-
tance between two categorical objectsX1, X2 ∈ D, with
X1 = (x1,1, . . . , x1,m) and X2 = (x2,1, . . . , x2,m) con-
sisting of categorical values only, can be defined as fol-
lows:

d(X1, X2) =
m∑

j=1

δ(x1,j , x2,j), (5)

where

δ(x1,j , x2,j) =

{
0 if x1,j = x2,j ,

1 if x1,j 6= x2,j .

Given a cluster{X1, . . . , Xp} of categorical objects, with
Xi = (xi,1, . . . , xi,m), 1 ≤ i ≤ p, its mode Q =
(q1, . . . , qm) is defined by assigningqj , 1 ≤ j ≤ m, the
category most frequently encountered in{x1,j , . . . , xp,j}.

With these modifications, Huang (1998) proposed a
k-modes algorithm that mimics thek-means method to
cluster categorical data. However, it should be also em-
phasized that, by definition, the mode of a cluster is not
generally unique. This makes the algorithm unstable de-
pending on mode selection during the clustering process.
Huang (1998), presented two mode selection methods and
tested thek-modes algorithm with these methods (the re-
sult will be discussed in Section 5).

4. Proposed Algorithm

In this section we discuss how to avoid the drawback of
the k-modes algorithm, and propose a new alternative al-
gorithm that also mimics thek-means method in cluster-
ing categorical data.

As we have seen, in applying thek-means method to
categorical objects, two main problems are encountered,
namely, the formation of cluster centers and the calcula-
tion of dissimilarity between objects and cluster centers.
These problems have been completely solved in thek-
modes algorithm by using the simple matching dissimilar-
ity measure for categorical data instead of the Euclidean
distance measure, and replacing the means of clusters by
the modes. These modifications also meet the minimiza-
tion condition, as was shown in (Huang, 1998). In the fol-
lowing, we address these two problems before introducing
the proposed algorithm.

4.1. Formation of “Cluster Centers”

As arithmetic operations are completely absent in the set-
ting of categorical objects, we use the Cartesian product
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and union operations for the formation of “cluster centers”
based on the notion of means in the numerical setting. Par-
ticularly, we replace addition and multiplication in (4) by
the union and the Cartesian product, respectively, for cat-
egorical data in defining the notion ofrepresentativesfor
clusters.

Given a clusterC = {X1, . . . , Xp} of categorical
objects, with

Xi = (xi,1, . . . , xi,m), 1 ≤ i ≤ p,

denote by Dj the set formed from categorical values
x1,j , . . . , xp,j . For example, the set formed from values
a, b, a, c is {a, b, c}.

Then the representative ofC is defined byQ =
(q1, . . . , qm), with

qj = {(cj , fcj
) | cj ∈ Dj}, (6)

wherefcj
is the relative frequency of categorycj within

C, i.e., fcj
= ncj

/p, wherencj
is the number of objects

in C having categorycj at attributeAj . Formally, each
qj can be seen as a fuzzy set onDj with membership
grades of elements to be defined by their relative frequen-
cies within the cluster.

It would be worthwhile to note that if we apply the
above definition of representatives (cf. (6)) for numerical
data objects with replacing the union and Cartesian prod-
uct by addition and multiplication, respectively, we will
obtain the notion of cluster centers by means (cf. (4)).

4.2. Dissimilarity Measure

Due to the modification proposed in forming representa-
tives for clusters of categorical objects, the dissimilarity
between a categorical object and the representative of a
cluster is defined based on simple matching as follows.

Let C = {X1, . . . , Xp} be a cluster of categorical
objects, with

Xi = (xi,1, . . . , xi,m), 1 ≤ i ≤ p,

and X = (x1, . . . , xm) be a categorical object. Note
that X may or may not belong toC. Assume thatQ =
(q1, . . . , qm), with

qj = {(cj , fcj
) | cj ∈ Dj},

is a representative of clusterC. Now we define the dis-
similarity between objectX and representativeQ by

d(X, Q) =
m∑

j=1

∑
cj∈Dj

fcj · δ(xj , cj). (7)

Under such a definition, the dissimilarityd(X, Q) is
mainly dependent on the relative frequencies of categori-
cal values within the cluster and simple matching between
categorical values. It is also of interest to note that the
simple matching dissimilarity measure between categori-
cal objects can be considered as a categorical counterpart
of the squared Euclidean distance measure.

It is easily seen that

d(X, Q) =
m∑

j=1

∑
cj∈Dj

fcj δ(xj , cj)

=
m∑

j=1

∑
cj∈Dj ,cj 6=xj

fcj

=
m∑

j=1

(1− fxj
), (8)

where fxj
is the relative frequency of categoryxj

within C.

4.3. k-Representatives Algorithm

With the modifications just made above, we are now ready
to formulate the problem of clustering categorical data as a
partitioning problem in a fashion similar tok-means clus-
tering.

Assume that we have a data setD = {X1, . . . , Xn}
of categorical objects to be clustered, where each object
Xi = (xi,1, . . . , xi,m), 1 ≤ i ≤ n is described bym
categorical attributes. Then the problem can be mathe-
matically stated as follows: Minimize

P (W,Q) =
k∑

l=1

n∑
i=1

wi,ld(Xi, Ql), (9)

subject to
k∑

l=1

wi,l = 1, 1 ≤ i ≤ n, (10)

wi,l ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ l ≤ k,

where W = [wi,l]n×k is a partition matrix,
Q = {Q1, . . . , Qk} is the set of representatives, and
d(Xi, Ql) is the dissimilarity between objectXi and rep-
resentativeQl defined by (7).

In much the same way as in thek-mode algorithm
proposed in (Huang, 1998), we introduce the following
algorithm for clustering categorical data:

1. Initialize ak-partition of D randomly.

2. Calculatek representatives, one for each cluster.
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3. For eachXi, calculate the dissimilarities

d(Xi, Ql), l = 1, . . . , k.

ReassignXi to cluster Cl (from cluster Cl′ , say)
such that the dissimilarity betweenXi and Ql is
least. Update bothQl and Ql′ .

4. Repeat Step 3 until no object has changed clusters
after a full cycle test of the whole data set.

We should also note that the definition of represen-
tatives of clusters in the proposed technique is based on
the notion of means, i.e., the optimized solution of the
corresponding numerical problem (cf. (4)). Thus the opti-
mization problem (9) is reduced to the partial optimization
problem, namely,P1 (Huang, 1998), forW as specified
in the above algorithm.

According to (8), we have

d(Xi, Ql) =
m∑

j=1

(1− fxi,j
), (11)

where fxi,j
is the relative frequency of categoryxi,j

within clusterCl. Thus, in the proposed algorithm object
Xi will be allocated to clusterCl so that the categories
of Xi are most likely to constitute a mode1 of Cl related
to the other clusters. Note that, by definition, all possible
modes of each cluster are taken into account in the pro-
posed algorithm.

5. Experimental Results

In this section we present two experimental tests with
the proposed algorithm onsoybean diseaseand nursery
databases taken from the UCI Repository of Machine
Learning Databases and Domain Theorem (Blake and
Merz, 1998).

As is well known, the primary aim of clustering algo-
rithms is to discover classes that exist inherently in data.
With this purpose in mind, we first assume that a struc-
ture may exist in a given dataset and then a clustering
algorithm should be used to verify the assumption and re-
cover the structure. In order to evaluate thek-modes algo-
rithm, Huang (1998) adopted anexternal criterionwhich
measures the degree of correspondence between the clus-
ters obtained from the algorithm and the class assigned
a priori.

In this paper we intended to develop the idea pro-
posed by Huang for extending thek-means paradigm to
clustering categorical data. Therefore, in the following,
we also adopt the same criterion to analyze the clustering
results of our algorithm.

1in the sense of (Huang, 1998).

5.1. Soybean Data Set

In much the same way as in (Huang, 1998), this data set
is chosen to test our algorithm because of its public avail-
ability and since all its attributes can be treated as categor-
ical ones.

The soybean dataset has 47 instances, each being de-
scribed by 35 attributes. Also, we only selected 21 among
35 attributes in the present experiment as the others have
only one category. Each instance is labeled as one of four
diseases: Diaporthe Stem Canker, Charcoal Rot, Rhizoc-
tonia Root Rot, and Phytophthora Rot. Except for Phy-
tophthora Rot, which has 17 instances, all other diseases
have 10 instances each. To study the effect of the record
order, we created 1000 test data sets by randomly reorder-
ing the original records. We used thek-representatives
algorithm to cluster each test data set of the soybean dis-
ease data into four clusters and produced 1000 clustering
results. For each clustering result we also used a misclas-
sification matrix to analyze the correspondence between
the clusters and the disease classes of the instances. For
instance, two misclassification matrices for the two test
data sets are shown in Tables 1 and 2. The capital letters
D, C, R, P in the first column of the matrices represent the
four disease classes. In Table 1 there is a one-to-one cor-
respondence between clusters and disease classes, which
means the instances in the same disease classes were clus-
tered into the same clusters. This represents a complete
recovery of the four disease classes from the test data set,
while in Table 2 two instances of the disease class P were
misclassified into Cluster 1, which was dominated by the
instances of the disease type R. However, the instances
in the other two disease classes were correctly clustered
into Clusters 3 and 4. The misclassification matrix of each

Table 1. Misclassification matrix for the first test data set.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

D 10

C 10

R 10

P 17

Table 2. Misclassification matrix for the second test data set.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

D 10

C 10

R 10

P 2 15
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clustering result is also used to define the so-calledclus-
tering accuracyas below.

Huang (1998) proposed a measure of clustering re-
sults called theclustering accuracy, defined as follows:

r =
1
n

k∑
l=1

al,

whereal is the number of data objects that occur in both
cluster Cl and its corresponding labeled class, andn
is the number of objects in the data set. Further, the
clustering error is defined ase = 1 − r. For exam-
ple, with the misclassification matrix in Table 2 we have
r = (10 + 15 + 10 + 10)/47 = 0.9574 and e = 0.0426.

In the experiment with thek-representatives algo-
rithm, we produced 1000 clustering results and if we also
consider the clustering accuracyr > 0.87 as a ‘good’
clustering result, then 686 good results were produced.
This means there is a 68.6% chance to obtain a good result
by employing thek-representatives algorithm. The distri-
bution of the clustering accuracies is shown in Table 3.

Table 3. Distribution of accuracies in the first experiment.

Clustering accuraciesNumber of resultsGood results

0.531∼ 0.595 2

0.638∼ 0.659 7

0.680∼ 0.702 8

0.723∼ 0.744 28

0.765∼ 0.787 94

0.808∼ 0.829 86

0.851∼ 0.872 89

0.893∼ 0.914 80 good

0.936∼ 0.957 87 good

0.978∼ 1.000 519 good

5.2. Nursery Data Set

In this experiment we test the proposed algorithm with the
nursery dataset donated by Marko Bohanec and Blaz Zu-
pan, cf. Blake and Merz, 1998. The nursery dataset was
derived from a hierarchical decision model originally de-
veloped to rank applications for nursery schools. It has
in total 12960 instances, each being described by 8 cate-
gorical attributes, and there are no missing attribute val-
ues. The instances were classified into five classes. We
also created 1000 test data sets from the nursery data set
by randomly reordering the 12960 original instances. We
produced 1000 clustering results with the algorithm.

With the same measure of clustering accuracy de-
fined as above, we also obtained 691 good clustering re-
sults among 1000 tests with the accuracy ofr > 0.87.

This means that there is a 69.1% chance to obtain a good
clustering result by employing thek-representatives al-
gorithm for this data set. The distribution of clustering
accuracies for this experiment is shown in Table 4.

Table 4. Distribution of accuracies in the second experiment.

Clustering accuraciesNumber of resultsGood results

0.459∼ 0.475 3

0.506∼ 0.537 6

0.614∼ 0.621 26

0.675∼ 0.688 93

0.764∼ 0.791 77

0.857∼ 0.879 104

0.891∼ 0.926 27 good

0.956∼ 0.964 97 good

0.978∼ 1.000 567 good

5.3. Discussion

We should mention that with thek-modes algorithm,
Huang (1998) produced 200 clustering results for the soy-
bean data set, among which each 100 for one selection
method of modes. Also, considering the accuracyr >
0.87 as a good clustering result, Huang obtained 45 good
results with the first selection method and 64 good results
with the second one. This means that in applying thek-
modes algorithm we have a 45% chance to obtain a good
clustering result with the first selection method of modes
and a 64% chance with the second one. This shows that
clustering results of thek-modes algorithm strongly de-
pend on the method of mode selection chosen.

The experimental result for the soybean data set has
shown that thek-representatives algorithm is more sta-
ble than the k-modes algorithm. Because in thek-
representative algorithm each object is allocated to a clus-
ter, its categories are most likely to constitute a mode of
the cluster in relation to the other clusters. That is, by def-
inition, all possible modes of each cluster are taken into
account in the proposed algorithm. We have not made a
comparison with thek-modes algorithm in the case of the
nursery data set as Huang did not present a test for the
clustering performance with this data set in his papers.

6. Conclusions

In this paper we have made modifications in thek-means
method while apply the method to the problem of clus-
tering categorical data. Consequently, the so-calledk-
representatives algorithm for clustering categorical data
has been proposed. The clustering performance of the
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proposed algorithm is demonstrated with two well-known
data sets, namely,soybean diseaseandnurserydatabases.

The experimental results have shown that the pro-
posed algorithm gives better results, and is more stable
than the k-modes algorithm. Furthermore, it would be
straightforward to combine the proposed algorithm with
the k-means algorithm in a similar manner as is done in
(Huang, 1997; Huang, 1998) for applying thek-means
paradigm to clustering for mixed datasets. This problem,
as well as the extention of the proposed technique to the
problem of fuzzy clustering for categorical data (Huang
and Ng, 1999), are the subject of our further work.
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