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Computer simulation of a few thousands of particles moving (approximately) according to the energy and momentum
conservation laws on a tessellation of800 × 800 squares in discrete time steps and interacting according to the predator-
prey scheme is analyzed. The population dynamics are described by the basic Lotka-Volterra interactions (multiplication
of preys, predation and multiplication of predators, death of predators), but the spatial effects result in differences between
the system evolution and the mathematical description by the Lotka-Volterra equations. The spatial patterns were evaluated
using entropy and a cross correlation coefficient for the spatial distribution of both populations. In some simulations the
system oscillated with variable amplitude but rather stable period, but the particle distribution departed from the (quasi)
homogeneous state and did not return to it. The distribution entropy oscillated in the same rhythm as the population, but its
value was smaller than in the initial homogeneous state. The cross correlation coefficient oscillated between positive and
negative values. Its average value depended on the space scale applied for its evaluation with the negative values on the
small scale (separation of preys from predators) and the positive values on the large scale (aggregation of both populations).
The stability of such oscillation patterns was based on a balance of the population parameters and particle mobility. The
increased mobility (particle mixing) resulted in unstable oscillations with high amplitude, sustained homogeneity of the
particle distribution, and final extinction of one or both populations.
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1. Introduction

Individual-based simulations of population systems (e.g.
using cellular automata and particle modelling meth-
ods) may yield counter-intuitive results when compared
with the standard approach to population dynamics us-
ing ODEs or PDEs (Durrett and Levin, 1994). In
fact, individual-based methods operate in an intermedi-
ate regime, where the number of individuals is rather low,
their size cannot be neglected, and their movement is lim-
ited in space and velocity. Several studies on individual-
based models of the simple Lotka-Volterra system of prey-
predator interactions have shown a spatial instability of
the system and dynamic spatio-temporal patterns aris-

ing out of an initially (quasi) uniform distribution of in-
dividuals (Boccaraet al., 1994; 1998; Lipowski, 1999;
Lipowski and Lipowska, 2000; Satulovsky, 1996; Sat-
ulovsky and Tome, 1994; 1997; Tainaka and Fukazawa,
1992; Waniewski and Jędruch, 2000; Wilsonet al., 1995;
1993), and this observation was in contradiction to the
theoretical description of the system by reaction-diffusion
equations. The simplicity of the Lotka-Volterra equa-
tions needs a caricature description of biological interac-
tions between individuals in computer simulations. They
are reduced to a constant probability of prey multiplica-
tion (density independent with exponential growth of prey
population, or allowed only if there is an empty space in
the prey vicinity with a logistic type of the prey popula-
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tion growth), constant probability of predator death, and
an immediate exchange of the caught prey with a new
predator (Boccaraet al., 1994; 1998; Lipowski, 1999;
Lipowski and Lipowska, 2000; Satulovsky, 1996; Sat-
ulovsky and Tome, 1994; 1997; Tainaka and Fukazawa,
1992; Waniewski and Jędruch, 2000; Wilsonet al., 1995;
1993).

Individual-based simulations were applied also to
more realistic and more sophisticated biological systems.
The type II predator functional response (modelled as a
time lag between catching a prey and the multiplication
of the catcher) was studied by MacCauley, De Roos and
Wilson in a series of papers (McCauleyet al., 1993; 1996;
Roos et al., 1991; 1998). These simulations involved
three populations, with satiated predators being the third
one. A further complication in the simulations involved
a population of young predators, which cannot multi-
ply and have a lower mortality than adults (McCauleyet
al., 1993; 1996). Rand, Keeling and Wilson discussed
individual-based simulations of a three-population system
(resource, prey, predator) that, in the mean field approx-
imation, reveals chaotic behaviour (Rand, 1994; Randet
al., 1995; Rand and Wilson, 1995). In all those studies a
departure of the spatial distribution of individuals from an
initially homogenous one was found.

The patchiness of particle distribution in those stud-
ies was documented mostly by figures presenting the dis-
tribution of particles on the grid at a few selected mo-
ments of the system time evolution (Boccaraet al., 1994;
1998; McCauleyet al., 1993; 1996; Rand, 1994; Randet
al., 1995; Rand and Wilson, 1995; Satulovsky, 1996; Sat-
ulovsky and Tome, 1994; 1997; Tainaka and Fukazawa,
1992; Waniewski and Jędruch, 2000; Wilsonet al., 1995;
1993). In the present study we propose a method for quan-
titative assessment of the departure from homogeneous
distribution and the evaluation of the non-homogeneity of
the distribution using the distribution entropy and corre-
lation coefficient for the distributions of two populations.
Furthermore, we evaluate the consequences of pattern for-
mation for time evolution of the population system.

2. Computer Model of a Lotka-Volterra Gas

A short description of our simulation model is provided
below. More details can be found in (Waniewski and Ję-
druch, 2000). Particles move on a tessellation of800 ×
800 squares according to a discrete clock. Each site may
be occupied by no more than one particle. Periodic bound-
ary conditions are applied. Between collisions the parti-
cles move (on the average) with a prescribed velocity vec-
tor v ∈ R2 along approximately straight lines with the
direction defined by vectorv. The motion is performed by
jumping twice to one of the actual four neighbour squares

(two neighbours in vertical and two in horizontal direc-
tions) with the probabilities adjusted to the components of
v. The direction of particle movement and its displace-
ment after many time steps resembles a trajectory of free
motion with a constant velocity along a straight line. The
above rules impose maximum particle displacement per
unit time step. It consists in one jump per time step if
the velocity vector is horizontal or vertical. A collision
occures if particles are in two adjacent squares (i.e. the
squares with a common edge). During the collision, the
particles change their velocities according to the law of
scattering of two elastic discs; the law includes, however,
a random factor that reflects an uncertainty caused by the
discretization of disc movement on the tessellation. This
rule was not efficient for collisions of more than two parti-
cles, i.e. if clusters of three or more particles were formed.
Clusters are defined here as particles which are in contact
through the edges of their cells. The rule for the move-
ment of particles forming such clusters was based on the
well-known phenomenon of elastic scattering in one di-
mension: if a ball hits a row of a few standing balls, then
it stops and the ball on the other end of the raw starts to
move with the same velocity as the hitting ball. Thus, in
our simulations the horizontal components of velocities
of particles forming a continuous raw are redistributed in
increasing order from the left to the right. Then, the mag-
nitude of the horizontal velocity is selected at random and
all particles with the absolute value of the horizontal ve-
locity are moved according to the direction of their hori-
zontal velocities as one block. In this way the raw may be
split into three parts: the left part moves one cell to the left,
the middle one remains in place, and the right one moves
one cell to the right. The process of splitting is, however,
random and depends on the distribution of velocities in
the raw. In an analogous way the particles forming a col-
umn are moved. Generally, this rule defines the tendency
of particles to avoid staying in clusters, but rather to break
the cluster into smaller ones.

There are two types of particles: the prey (U ) and
the predator (V ). During a collision ofU and V , U is
changed intoV with probability αC per collision; the
velocity of the newV particle is the same as the veloc-
ity of the U particle. This procedure may be interpreted
as an act of predation and immediate multiplication of the
predator; it is, however, more similar to a chemical reac-
tion than to biological interactions. Each prey may give
birth to a new prey with probabilityαU per time step;
the new prey is located in the vicinity of the “mother”
prey according to a probability distribution over the parti-
cle neighbour cells, which is a decreasing function of the
distance from the particle. If the selected square is occu-
pied, then a new one is searched. In this way the effect of
crowding on prey multiplication is avoided. Each predator
may die with probabilityαV per time step. With spatial
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effects neglected, the equations for the rate of the change
of the size of the populations (or their local density) would
be the standard Lotka-Volterra equations:

dU

dt
= αUU − βUV,

dV

dt
= −αV V + βUV,

(1)

whereβ depends onαC and the mobility of particles.

Updating the system state is asynchronous with the
random order of particle selection for updating. The
movement of all particles is realized before the changes
in the size of the populations (birth, death, predation). Ini-
tially all particles have the same absolute velocity and a
randomly selected direction of the velocity. However, af-
ter 300 preparatory times steps of system evolution with-
out any change in the number and type of particles, the
distribution of the absolute values of velocities changes
into an equilibrium (Maxwell-like) one. The newly born
U particles have the initial (the same for all particles) ab-
solute value of the velocity and a randomly chosen veloc-
ity direction.

3. Entropy and Correlation Coefficient for
Spatial Distribution of Populations

A coarse-grained structure is imposed on the tessellation
with grains of the typical size of50 × 50 squares (c.f.
(Poland, 1989; Rand, 1994; Randet al., 1995) for another
application of the coarse-grained space for the analysis
of individual-based simulations). Then the density of the
particle distribution may be defined as a function of the
grain position:

ρi =
number of particles in thei-th grain

total number of particles
. (2)

The entropy of the distribution is defined in relation
to the grain structure of the tessellation as follows:

Ent = −
∑

i∈grains

ρi ln(ρi). (3)

Furthermore, normalized entropy,N Ent, is de-
fined as N Ent = Ent/Entmax, where Entmax = ln
(number of grains) is the maximal possible value of
entropy for a given grain structure (note thatρi =
1/(number of grains) = ρ for uniform distribution of par-
ticles between grains, cf. (3)). Thus0 ≤ N Ent ≤ 1.
However, for a low number of particles placed randomly
on the tessalation (in this way we realized quasi-uniform
distribution of particles on the tessalation), the normal-
ized entropy is lower than one, depends on the number of
particles, and approaches one only for a sufficiently high
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Fig. 1. Normalized (non-scaled) entropy (filled circles) as a
function of the number of particles and the scaling of
the normalized entropy for its values for small numbers
of particles. Continuous line: the best fit to experimental
points (open circles) of the function1 − N Entmax =
25.5 (Number of particles)−1.013. Tessellation size
800× 800, grain size50× 50.

number of particles (Fig. 1). To correct this effect, we nor-
malizedN Ent once more for an empirically found max-
imal practical value ofN Entmax for the given number of
particles N . We found that within the range of theN
values that appear in our simulations, we have

N Entmax ≈ 1− aN b,

where a and b were found for each specific tessalation
size separately by a random distribution of different num-
bers of particles and calculations ofN Entmax for var-
ious sizes of grains, see Fig. 1 for an example of such
calculations.

The cross-correlation coefficient,RUV , between the
distributions ofU and V particles was calculated using

RUV =

∑
i∈grains(ρUi − ρ)(ρV i − ρ)√∑

i∈grains(ρUi − ρ)2
√∑

i∈grains(ρV i − ρ)2
,

where ρ = 1/(number of grains) denotes the density of
the uniform distribution of particles.

The tendency of particles for clustering was also
recorded in a more direct way by counting the number
of clusters and the number of particles (for each particle
type separately) in clusters. Three types of clusters were
defined: Type I — tight clusters with an edge-to-edge
neighborhood, Type II — tight clusters with an edge-to-
edge and corner-to-corner neighbourhood, and Type III —
loose clusters with a neighbourhood containing all cells at
a distance less than two cells in horizontal or vertical di-
rections, cf. Fig. 2 for examples of different types of clus-
ters.
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Table 1. Characteristics of computer simulations calculated for one oscillation period (except entropy) defined
as the time interval between consecutive maxima of the amount ofU particles, mean± SD.

A (8000/8000)f) A1 (13500/13500)f) A2 (5000/5000)f) B (8000/8000)f)

DensityUa) 213±5 214±6 215±4 52±4

DensityV a) 211±5 210±4 211±5 53±5

Cycle period 554±74 585±116 568±66 1928±247

ϕb) 0.187±0.069 0.186±0.068 0.199±0.091 0.165±0.038

Maximum / AverageUc) 1.383±0.206 1.321±0.124 1.350±0.158 2.226±0.741

MaximumU /MaximumV d) 1.025±0.141 1.009±0.153 1.018±0.161 1.074±0.093

EntropyUe) 0.911±0.019 0.911±0.013 0.912±0.015 0.944±0.006

EntropyV e) 0.929±0.015 0.928±0.01 0.929±0.011 0.963±0.004

a) amount of particles per unit size area of100× 100 squares
b) phase shift between a maximum of theV amount and the preceding maximum of theU amount
c) ratio of maximal over average amount ofU particles
d) ratio of a maximum of theU amount over the consecutive maximum of theV amount
e) entropy of the spatial particle distribution calculated from 5000 to 30,000 time steps
f) initial numbers ofU and V (U/V )

4. Results

Two simulations of the system with various parameters for
the populations were examined. Simulation A had more
vigorous dynamics of the multiplication ofU (αU =
0.016) and the death ofV (αV = 0.016), more frequent
interactions betweenU and V (αC = 1), and a higher
density of particles, whereas the population dynamics in
Simulation B were more moderate (αU = αV = 0.004,
αC = 1), see Table 1 and Figures 3 and 4. The initial
velocity of particles was one in both simulations (with the
limit velocity equal to five, c.f. (Waniewski and Jedruch,
2000)). Two additional simulations, A1 and A2 (Table 1),
with the same parameters as in SimulationA but with
a different initial number of particles, were also included
into the study. All simulations were carried out for 30,000
time steps. The studied variables were recorded every 10
time steps.

In Simulations A and B we observed sustained os-
cillations with a variable amplitude (Figs. 3 and 4). The
normalized entropy decreased from the value close to one
in the initial state of the system and oscillated in the same
rhythm as the populations (Figs. 3–5). The entropy of the
distribution of U was smaller than the distribution en-
tropy of V . This reflects a higher tendency ofU to clus-
ter due to their multiplication. In both simulations the dis-
tribution entropy never returned back to the initial value
of one, i.e. the distribution of particles remained nonho-
mogeneous after the departure from the initial (quasi) ho-
mogeneous distribution. The oscillations of the entropy
in phase with oscillations of the population, i.e. the de-

crease in entropy with the decrease in the population size,
showed that during the oscillations the spatial distribu-
tion of the population was more ‘patchy’ (as measured
by the entropy) than for the population with more indi-
viduals which have to be spread over a larger area. The
patchiness of the particle distribution was higher in Sim-
ulation A than in Simulation B, as demonstrated by the
values of the average normalized entropy (Table 1).

The normalized entropy depended on the size of
grains used for its evaluation (Fig. 6). However, the qual-
itative features of the time-pattern of the entropy were
almost independent of the grain size, especially for grains
of smaller sizes (less than100, Fig. 6). The oscillations
of the cross-correlation coefficient were more irregular
and had a tendency for a frequency twice as high as the
oscillations of the entropy and the amount of particles for
one population (Fig. 7), which reflected the shift in phase
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Fig. 2. Examples of clusters of different types.
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Fig. 3. Time evolution of the number of theU and V particles
(top panel; continuous line – particlesU , dashed lines
– particles V ), normalized entropy of theU and V
space distributions (middle panel; continuous line – par-
ticles U , dashed lines – particlesV ), and cross correla-
tion coefficient RUV (bottom panel), shown for initial
15,000 time steps of Simulation A. The normalized en-
tropies and cross correlation coefficient were evaluated
for 50× 50 grains.

between theU and V oscillations. The momentary, as
well as time average values of the cross-correlationRUV

also depended on the size of the grain (Fig. 7). Note
that the time-average cross-correlation coefficient changes
from negative values for small grain sizes to positive ones
for larger grain sizes. The negative values ofRUV imply
the separation ofU andV populations in space. The ten-
dency of the populations to separate in space had a higher
space scale for moderate dynamics (Simulation B) than
for fast dynamics (Simulation A).

Clusters appeared more often and were larger in Sim-
ulation A than in Simulation B. A more detailed descrip-

0 5000 10000 15000 20000

0

2000

4000

6000

8000

10000

12000

14000

16000

N
u

m
b

e
r

o
f

p
a

rt
ic

le
s

0 5000 10000 15000 20000

0.5

0.6

0.7

0.8

0.9

1.0

N
o

rm
a

liz
e

d
e

n
tr

o
p

y

0 5000 10000 15000 20000

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Time

C
ro

s
s

c
o

rr
e

la
ti
o

n
c

o
e

ff
ic

ie
n

t

Fig. 4. Time evolution of the number of theU and V particles
(top panel; continuous line – particlesU , dashed lines
– particles V ), normalized entropy of theU and V
space distributions (middle panel; continuous line – par-
ticles U , dashed lines – particlesV ), and cross corre-
lation coefficientRUV (bottom panel) shown for initial
20,000 time steps of Simulation B. The normalized en-
tropies and cross correlation coefficient were evaluated
for 50× 50 grains.

tion of clusters of Type I, II, and III in Simulation A is
given in Table 2. Clusters of Type I reached occasionally
the size of 700–800 particles and on the average about
13% of particles were in those clusters. Most of the clus-
ters had from 3 to 9 particles, as follows from the com-
parison of the total number of clusters and the number of
large (more than 9 particles) clusters in Table 2. Further-
more, over 60% of particles were concentrated in the loose
clusters of Type III. ParticlesU had a stronger tendency
to aggregate than particlesV , and this tendency was even
more visible for large clusters. The respective values in
Simulation B were 10–100 times lower (data not shown).
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Fig. 5. Normalized entropy of the distribution ofU particles
(dotted line), cross correlation coefficientRUV (dashed
line), and the number ofU particles (continuous line,
scale not shown) versus time for a selected time interval
of Simulation A.
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Fig. 6. Normalized entropy ofU particles calculated for var-
ious sizes of grains versus time for a selected time in-
terval of Simulation A. Grain sizes:16× 16, 20× 20,
25×25, 32×32, 40×40, 50×50, 80×80, 100×100,
160 × 160, 200 × 200. The value of entropy increases
with the increased grain size.
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Fig. 7. Time average (from 5000 to 30,000 time steps) of the
cross-correlation coefficientRUV as a function of the
grain size for Simulations A (open circles) and B (closed
circles). Grain sizes as in Fig. 6.

The time-average characteristics of the number of
particles did not differ between simulations with the same
parameters but different initial numbers of the particles as
demonstrated in Simulations A, A1 and A2 (Fig. 8 and Ta-
ble 1). This observation is in contrast to the well-known
feature of Lotka-Volterra equations (which were the basis
for the arrangements of the interaction in our individual-
based model of the system) stating that the amplitude of
the oscillations of the populations size depends on the ini-
tial conditions.
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Fig. 8. Time evolution of the number ofU particles for Sim-
ulations A (continuous line), A1 (dashed line) and A2
(dotted line) during the initial 15,000 time steps. De-
scription of the simulations in the text and Table 1.

The dynamic spatio-temporal patterns yielded the
low and oscillating entropy of particle distribution and
the cross correlation coefficientRUV that oscillated be-
tween negative and positive values (Figs. 3 and 4). The
patterns resulted from the adjustment between the local
dynamics of the populations and the mobility of the par-
ticles, and contributed to the stability system. An ex-
ample of the importance of this adjustment was demon-
strated in Simulation B1 (Fig. 9). There, the initial state of

Fig. 9. Time course of the number ofU particles and normal-
ized (but not scaled) entropy forU distribution in sim-
ulation B1. The initial state of the system as in Simu-
lation B; velocity of newbornU particles was equal to
five; the probability of the interaction of U and V dur-
ing a collision was equal to 0.35; other parameters as in
simulation B.
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Table 2. Statistics of clusters in Simulation A.

Number Fraction of particles Fraction ofU particles

of clustersc) in clusters (%)d) in clustered particles (%)e)

All clustersa)

Type I 963±324 13±2 61±8

Type II 1618±455 26±5 60±8

Type III 2115±332 61±6 55±7

Large clustersb)

Type I 13±13 < 1 74±20

Type II 64±38 4±2 70±12

Type III 252±67 31±7 60±8

a) clusters with three or more particles,
b) clusters with ten or more particles,
c) average number of clusters per one time step (mean± SD),
d) ratio of the amount of particles in clusters over the total number of particles per one time step (mean± SD),
e) ratio of the amount of U particles in clusters over the amount of all particles in clusters (mean± SD).

the particles was identical as in Simulation B. However,
the newbornU particles had a higher mobility (v = 5,
i.e. the maximal possible displacement per one time step,
in contrast tov = 1 in Simulation B), and soon the av-
erage mobility of the particles was much higher than in
Simulation B. To keep the average number of particles at
a level similar as in Simulation B, we decreased the prob-
ability of the interaction between theU and V particles
to 0.35 (from 1 in Simulation B). Therefore the proba-
bility of the death of aU particle and the birth of aV
particle, which was equal to the probability of the colli-
sions betweenU and V multiplied by the probability of
the effective interaction during the collision was similar in
both simulations. In spite of this adjustment, the system
from Simulation B1 was unstable with the high amplitude
of oscillations. After a few cycles, particlesU got ex-
tinct (Fig. 9), and soon the population ofV particles died
out too. This kind of instability usually results in the ex-
tinction of one of the populations at the minimum of its
number and is often observed for small numbers of par-
ticles in the system (Waniewski and Jędruch, 1999). No-
tice that in contrast to Simulation B, the normalized en-
tropy during the whole simulation time was coming back
to the maximal value when the number of particles was
high (Fig. 9), which means that the distribution of parti-
cles was homogenous at these moments.

5. Discussion

The evolution of the Lotka-Volterra system in individual-
based simulations differs in many respects from its de-

scriptions by ODEs or reaction-diffusion PDEs. The dy-
namic spatio-temporal patterns, the drift of the oscillation
phase between different sub-areas of the tessellation, and
the independence of the oscillation amplitude of the initial
conditions demonstrate these differences. Generally, it is
well known that stochastic versions of some models (and
individual-based models are mostly stochastic) may yield
quite different predictions than those from their determin-
istic versions (Renshaw, 1991). Among other features
that can make a difference between individual-based sim-
ulations and their simple mathematical models are non-
locality and a non-standard diffusion process (Waniewski
and Jędruch, 2000).

On the other hand, the individual-based simulations
of the system retain many features of the Lotka-Volterra
model, as oscillations with a relatively stable period, a
stable phase shift between the cycles ofU and V , sim-
ilar amplitudes of theU and V oscillations if the dy-
namic parameters for both populations are the same, os-
cillations similar to harmonic ones for a small amplitude
and high thin peaks between wide troughs for high ampli-
tudes, and similar average values of the population num-
bers for all cycles (Table 1). Furthermore, the parame-
ters of Lotka-Volterra equations may be estimated with
high accuracy, especially if an appropriate size of the ob-
servation window is selected (Waniewski and Jędruch,
1999; Waniewski and Jędruch, 2000).

The oscillations of the system in individual-based
simulations are stable only for adequately selected param-
eters. The stability of the oscillations is related to the in-
stability of the homogeneous distribution of particles and
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the formation of their aggregates, i.e. to the decrease in
the entropy of the particle distribution. However, the de-
tails of the particle motion do not seem to be important for
those phenomena. In fact, similar results were obtained
with gas-like mobility (in the present study), random walk
(Wilson et al., 1995), and for a stochastic gas lattice,
i.e. without any particle motion (Satulovsky, 1996; Sat-
ulovsky and Tome, 1994; 1997; Tainaka and Fukazawa,
1992). In the last case it was possible to formulate a math-
ematical model of the system using the master equation
and decoupling by a mean-field approximation. The pair
approximation analysis demonstrated the instability of the
homogeneous states (Satulovsky and Tome, 1997).

The importance of the clustering ofU particles
on the behaviour of the Lotka-Volterra system was ana-
lyzed in detail by Poland using ODEs and lattice models
(Poland, 1989). He showed that the clustering of preys
(U ) yielded limit cycles, at least for some range of the
parameters. This effect might indeed contribute to the ob-
served features of the system trajectories in our simula-
tion, although the intrinsic stochasticity of the model did
not allow for the approach to a stable trajectory. Further-
more, bothU and V formed clusters in the presented
simulations (Table 2).

The temporal and spatial patterns of the interact-
ing populations may be studied using various methods
(Adami, 1998; McCauleyet al., 1996; Randet al., 1995;
Ranta and Kaitala, 1997; Rooset al., 1998; Satulovsky,
1996; Wiegandet al., 1999). Most of them were ap-
plied to characterize a static landscape or averaged-over-
time behaviour, or to determine a characteristic spatial
scale of the system. In the current study, the entropy and
cross-correlation coefficient of particle distribution and
the analysis of the system and the model parameters us-
ing different observation windows were applied to follow
the time evolution of the system and spatial distribution of
populations. The other methods may also be used for this
purpose, and the grained entropy and cross-correlation co-
efficient do not exhaust all possible ones. However, they
are simple, may be easily applied to particle computer
simulations, as well as to field and experimental studies,
and should be considered as an alternative or complemen-
tary way to study spatial phenomena in simulated and real
systems.

Complex spatio-temporal patterns have been recently
reported for animal populations, which are known to be
involved in predator-prey systems. A phase shift between
oscillations and its irregular drift was reported for the
Canadian lynx population in various Canadian provinces
(Rantaet al., 1997). Waves of vole population travel-
ling through Finland and France are another example of
such patterns (Ranta and Kaitala, 1997). Beside numerous
(density dependent and independent) factors, which may
affect any real population, spatially distributed predator-

prey interactions between individuals may substantially
contribute to those effects by dynamical enhancement of
local fluctuations in the populations size, as demonstrated
by individual-based modelling of the system.
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Waniewski J. and Jędruch W. (1999):Individual based modeling
and parameter estimation for a Lotka-Volterra system. —
Math. Biosci. 157, pp. 23–36.
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