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MINIMAL REALIZATION FOR POSITIVE MULTIVARIABLE LINEAR SYSTEMS
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The realization problem for positive multivariable discrete-time systems with one time delay is formulated and solved.
Conditions for the solvability of the realization problem are established. A procedure for the computation of a minimal
positive realization of a proper rational matrix is presented and illustrated by an example.
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1. Introduction

In positive systems, inputs, state variables and outputs
take only non-negative values. Examples of positive sys-
tems are industrial processes involving chemical reactors,
heat exchangers and distillation columns, storage systems,
compartmental systems, water and atmospheric pollution
models. A variety of models exhibiting positive linear
systems behaviour can be found in engineering, man-
agement studies, economics, social sciences, biology and
medicine, etc.

Positive linear systems are defined on cones and not
on linear spaces. Therefore, the theory of positive sys-
tems is more complicated and less advanced. An overview
of the state-of-the-art in positive systems theory is given
in the monographs (Farina and Rinaldi, 2000; Kaczorek,
2002). Recent developments in positive systems the-
ory and some new results are given in (Kaczorek, 2003).
Realization problems of positive linear systems without
time delays have been considered in many papers and
books (Benvenuti and Farina, 2003; Farina and Rinaldi,
2000; Kaczorek, 2002). An explicit solution of equations
describing the discrete-time systems with time delay was
given in (Busłowicz, 1982). Recently, the reachability,
controllability and minimum energy control of positive
linear discrete-time systems with time delays have been
considered in (Busłowicz and Kaczorek, 2004; Xie and
Wang, 2003).

In this paper the realization problem for positive mul-
tivariable discrete-time systems with time delay will be
formulated and solved. Conditions for the solvability of
the realization problem will be established and a proce-
dure for the computation of a minimal positive realiza-

tion of a proper rational matrix will be presented. To the
best of the authors’ knowledge, the realization problem
for positive linear systems with time delays has not been
considered yet.

2. Problem Formulation

Consider the multivariable discrete-time linear system
with one time delay:

xi+1 =A0xi+A1xi−1+Bui, i∈Z+ ={0, 1, . . . }, (1a)

yi =Cxi + Dui, (1b)

where xi ∈ Rn, ui ∈ Rm, yi ∈ Rp are the state, input
and output vectors, respectively, andAk ∈ Rn×n, k =
0, 1, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m.

The initial conditions for (1a) are given by

x−1, x0 ∈ Rn. (2)

Let Rn×m
+ be the set ofn × m real matrices with

non-negative entries andRn
+ = Rn×1

+ .

Definition 1. (Busłowicz and Kaczorek, 2004). The
system (1) is called (internally) positive if for every
x−1, x0 ∈ Rn

+ and all inputsui ∈ Rm
+ , i ∈ Z+ we

havexi ∈ Rn
+ and yi ∈ Rp

+ for i ∈ Z+.

Theorem 1. (Busłowicz and Kaczorek, 2004).The sys-
tem (1) is positive if and only if

A0 ∈ Rn×n
+ , A1 ∈ Rn×n

+ , B ∈ Rn×m
+ ,

C ∈ Rp×n
+ , D ∈ Rp×m

+ . (3)



T. Kaczorek and M. Busłowicz182

The transfer matrix of (1) is given by

T (z) = C
[
Inz −A0 −A1z

−1
]−1

B + D. (4)

Definition 2. The matrices (3) are called apositive real-
izationof a given proper rational matrixT (z) if and only
if they satisfy (4). A realization (3) is called minimal if
and only if the dimensionn of A0 and A1 is minimal
among all realizations ofT (z).

A positive realization problem can be stated as fol-
lows: Given a proper rational matrixT (z), find a positive
realization (3) of the rational matrixT (z). Conditions
for the solvability of the problem will be established and
a procedure for the computation of a positive realization
will be presented.

3. Problem Solution

The transfer matrix (4) can be rewritten in the form

T (z) = C
[
z−1

(
Inz2 −A0z −A1

)]−1
B + D

=
CzAdj[Inz2 −A0z −A1]B

det [Inz2 −A0z −A1]
+ D

=
zN (z)
d (z)

+ D, (5)

where

N(z) = CAdj
[
Inz2 −A0z −A1

]
B

= N2(n−1)z
2(n−1) + N2n−3z

2n−3

+ · · ·+ N1z + N0,

d(z) = det
[
Inz2 −A0z −A1

]
= z2n − a2n−1z

2n−1 − · · · − a1z − a0, (6)

and Adj [Inz2−A0z−A1] denotes the adjoint matrix for
[Inz2 −A0z −A1].

From (5) we have

D = lim
z→∞

T (z) (7)

since limz→∞[z−1(Inz2 −A0z −A1)]−1 = 0. The
strictly proper part ofT (z) is given by

Tsp (z) = T (z)−D =
zN(z)
d(z)

. (8)

Therefore, the positive realization problem has been re-
duced to finding matrices

A0∈Rn×n
+ , A1∈Rn×n

+ , B∈Rn×m
+ , C∈Rp×n

+ (9)

for a given strictly proper rational matrix (8).

Lemma 1. The strictly proper transfer matrix (8) has the
form

T ′sp(z) =
N (z)
d′ (z)

(10)

if and only if det A1 = 0, where

d′(z) = z2n−1 − a2n−1z
2n−2 − · · · − a2z − a1. (11)

Proof. From the definition ofd(z) for z = 0 it follows
that a0 = det A1. Note thatd(z) = zd′(z) if and only if
a0 = 0 and (8) can be reduced to (10).

Lemma 2. If the matricesA0 and A1 have one of the
following forms:

A0 =



0 0 . . . 0 0

a1 0 . . . 0 0

a3 0 . . . 0 0
...

...
...

...
...

a2n−7 0 . . . 0 0

a2n−5 0 . . . 0 0

a2n−3 0 . . . 0 a2n−1


∈ Rn×n,

A1 =



0 0 . . . 0 0 1

a0 0 . . . 0 0 0

a2 1 . . . 0 0 0
...

...
...

...
...

...

a2(n−4) 0 . . . 0 0 0

a2(n−3) 0 . . . 1 0 0

a2(n−2) 0 . . . 0 1 a2(n−1)


∈ Rn×n, (12a)

Ā0 =



0 a1 a3 . . . a2n−7 a2n−5 a2n−3

0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 a2n−1


,

Ā1 =



0 a0 a2 . . . a2(n−4) a2(n−3) a2(n−2)

0 0 1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . 0 1 0

0 0 0 . . . 0 0 1

1 0 0 . . . 0 0 a2(n−1)


, (12b)
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Â0 =



a2n−1 0 . . . 0 a2n−3

0 0 . . . 0 a2n−5

0 0 . . . 0 a2n−7

...
...

...
...

...

0 0 . . . 0 a3

0 0 . . . 0 a1

0 0 . . . 0 0


,

Â1 =



a2(n−1) 1 0 . . . 0 a2(n−2)

0 0 1 . . . 0 a2(n−3)

0 0 0 . . . 0 a2(n−4)

...
...

...
...

...
...

0 0 0 . . . 1 a2

0 0 0 . . . 0 a0

1 0 0 . . . 0 0


, (12c)

Ã0 =



a2n−1 0 0 . . . 0 0 0

0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . 0 0 0

a2n−3 a2n−5 a2n−7 . . . a3 a1 0


,

Ã1 =



a2(n−1) 0 0 . . . 0 0 1

1 0 0 . . . 0 0 0

0 1 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . 1 0 0

a2(n−2) a2(n−3) a2(n−4) . . . a2 a0 0


, (12d)

then

det
[
Inz2 −A0z −A1

]
= det

[
Inz2 − Ā0z − Ā1

]
=det

[
Inz2−Â0z−Â1

]
= det

[
Inz2 − Ã0z − Ã1

]
= z2n − a2n−1z

2n−1

−a2(n−1)z
2(n−1) − · · · − a1z − a0. (13)

Proof. The expansion of the determinant with respect to
the first row yields

det
[
Inz2 − A0z − A1

]

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z2 0 . . . 0 0 −1

−a1z − a0 z2 . . . 0 0 0

−a3z − a2 −1 . . . 0 0 0

...
...

. . .
...

...
...

−a2n−7z−a2(n−4) 0 . . . z2 0 0

−a2n−5z−a2(n−3) 0 . . . −1 z2 0

−a2n−3z−a2(n−2) 0 . . . 0 −1 z2−a2n−1z−a2(n−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= z2(n−1)(z2 − a2n−1z − a2(n−1))

+(−1)n+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a1z − a0 z2 0 . . . 0 0

−a3z − a2 −1 z2 . . . 0 0

...
...

...
. . .

...
...

−a2n−7z − a2(n−4) 0 0 . . . z2 0

−a2n−5z − a2(n−3) 0 0 . . . −1 z2

−a2n−3z − a2(n−2) 0 0 . . . 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= · · · = z2n−a2n−1z2n−1−a2(n−1)z

2(n−1)−. . .−a1z−a0.

The forms (12b) follow from the fact that we have
Ā0 = AT

0 , Ā1 = AT
1 and det[Inz2 − Ā0z − Ā1] =

det[Inz2 −A0z −A1]T , where T stands for the trans-
pose.

It is easy to verify thatÂ0 = PA0P and Â1 =
PA1P , where

P =



0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0
1 0 . . . 0 0

.

Taking into account thatP−1 = PT = P , we obtain

det
[
Inz2 − Â0z − Â1

]
= det

[
Inz2 −A0z −A1

]
.

Finally, note thatÃ0 = ÂT
0 and Ã1 = ÂT

1 .

The matrices A0 and A1 having one of the
forms (12) will be called thematrices in canonical forms.

Remark 1. The matrices (12) have non-negative entries if
and only if the coefficientsak, k = 0, 1, . . . , 2n − 1 of
the polynomial (13) are non-negative.

Remark 2. The dimensionn × n of the matrices (12) is
the smallest possible one for (8).
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Definition 3. A pair (A0, A1) of square matrices
A0, A1 ∈ Rn×n is calledcyclic if and only if its char-
acteristic polynomial

d(z) = det
[
Inz2 −A0z −A1

]
= z2n − a2n−1z

2n−1 − · · · − a1z − a0 (14)

is equal to the minimal polynomialΨ(z) of the pair, i.e.
d(z) = Ψ(z).

It is well known that the polynomials are related by

Ψ(z) =
d(z)

Dn−1(z)
(15)

and that
Ψ(z) = d(z) (16)

if and only if Dn−1(z) = 1 or, equivalently,

i1(z) = i2(z) = · · · = in−1(z) = 1, (17)

where Dn−1(z) is the greatest common divisor of all
n−1 order minors of the matrix[Inz2 −A0z −A1] and
ik(z), k = 1, . . . , n − 1 are its monic invariant polyno-
mials.

Lemma 3. Every pair of the matrices (12) is cyclic for
any values of its parametersak, k = 0, 1, . . . , 2n− 1.

Proof. The details of the proof will be given only for the
pair (12a). In the remaining cases the proof is similar.

Note that the minor obtained by removing the second
row and the first column of the matrix, i.e.[
Inz2 −A0z −A1

]

=



z2 0 . . . 0 0 −1

−a1z−a0 z2 . . . 0 0 0

−a3z−a2 −1 . . . 0 0 0

...
...

. . .
...

...
...

−a2n−7z−a2(n−4) 0 · · · z2 0 0

−a2n−5z−a2(n−3) 0 . . . −1 z2 0

−a2n−3z−a2(n−3) 0 . . . 0 −1 z2−a2n−1z−a2(n−1)


,

(18)

is equal to (−1)n−1. Therefore Dn−1(z) = 1 and,
by (15), Ψ(z) = d(z).

For any square matricesA0, A1 ∈ Rn×n the inverse
matrix [Inz2 −A0z −A1]−1 can be written in the form[

Inz2 −A0z −A1

]−1
=

N̄ (z)
d (z)

, (19)

where N̄(z) is an n× n polynomial matrix andd(z) is
a polynomial. The matrix (19) is said to be in the stan-
dard form if the matrixN̄(z)/d(z) is irreducible and the
leading coefficient ofd(z) is equal to1.

Definition 4. The matrix (19) is callednormal if and only
if every non-zero second-order minor of the polynomial
matrix N̄(z) is divisible (with zero remainder) byd(z).

Lemma 4. The standard matrix (19) forn ≥ 2 is normal
if and only if the pair(A0, A1) is cyclic.

Proof. Let the pair (A0, A1) be cyclic. Then by Defini-
tion 3, (16) and (17) hold and the Smith canonical form of
[Inz2 −A0z −A1] is equal to[

Inz2 −A0z −A1

]
S

= diag [1 1 . . . 1 d(z)] . (20)

The adjoint matrix to (20) is given by

Adj
[
Inz2 −A0z −A1

]
S

= diag [d(z) d(z) . . . d(z) 1] (21)

and every non-zero second-order minor of (21) is
divisible by d(z). By the Binet-Cauchy theorem,
every non-zero second-order minor of the matrix
V (z)Adj [Inz2 −A0z −A1]SU(z) is also divisible by
d(z) since it is the sum of the products of second-
order minors of the unimodular matricesV (z), U(z)
and of (21). The necessity will be shown by contra-
diction. By assumption, the matrix (19) is irreducible.
If the characteristic polynomial (14) is not equal to
the minimal one Ψ(z), Ψ(z) 6= d(z), then by (15)
Dn−1(z) 6= 1 and every non-zero(n − 1)-th order mi-
nor of [Inz2 −A0z −A1] is divisible by Dn−1(z). In
this casedet [Inz2 −A0z −A1] = Dn−1(z)d̄(z) and
the matrix (19) is reducible. So we get a contradiction.

Lemma 5. If the pair (A0, A1) has the canonical
form (12a), then the adjoint matrixAdj [Inz2 − A0z
−A1] can be decomposed as follows:

Adj [Inz2 −A0z −A1] = P̄ (z)Q̄(z)+d(z)Ḡ(z), (22a)

where

P̄ (z) =



1
z2(n−1)−a2n−1z

2n−3−. . .−a3z−a2

z2(n−2)−a2n−1z
2n−5−. . .−a5z−a4

...
z4−a2n−1z

3−a2(n−1)z
2−a2n−3z−a2(n−2)

z2


,

Q̄(z) =
[
z2(n−1) − a2n−1z

2n−3 − a2(n−1)z
2(n−2)

1 z2 z4 . . . z2(n−2)
]
, (22b)

Ḡ(z) =


0 0 . . . 0 0
∗ 0 . . . ∗ ∗
...

...
...

...
...

∗ 0 . . . ∗ ∗
∗ 0 . . . ∗ ∗

,

and ‘∗’ denotes the entries that are not important in the
considerations.
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Similar decompositions hold for the pairs (12b),
(12c) and (12d).

Proof. The adjoint matrix has the form

Adj
[
Inz2 −A0z −A1

]

=



m11 1 z2 . . . z2(n−2)

∗ m22 ∗ . . . ∗

∗ m32 ∗ . . . ∗
...

...
...

...
...

∗ mn2 ∗ . . . ∗

∗ z2 ∗ . . . ∗


, (23)

where

m11 = z2(n−1) − a2n−1z
2n−3 − a2(n−1)z

2(n−2),

m22 = z2(n−1) − a2n−1z
2n−3 − · · · − a3z − a2,

m32 = z2(n−2) − a2n−1z
2n−5 − · · · − a5z − a4,

mn2 = z4 − a2n−1z
3 − a2(n−1)z

2 − a2n−3z − a2(n−2),

and it can be written in the form (22) since by Lemma 4
every non-zero second-order minor of (23) is divisible by
d(z). It is easy to verify that (22b) satisfies (22a).

The substitution of (22a) into (8) yields

Tsp(z) =
CzAdj

[
Inz2 −A0z −A1

]
B

det [Inz2 −A0z −A1]

=
zPc(z)Qb(z)

d(z)
+ CzḠ(z)B, (24)

where

Pc(z) = CP̄ (z), Qb(z) = Q̄(z)B. (25)

Remark 3. From (24) it follows that the positive real-
ization (9) of (8) is independent of the polynomial matrix
Ḡ(z)(CzḠ(z)B).

Using (22b) and (25) we obtain

Pc(z) = CP̄ (z) =
[

C1 C2 . . . Cn

]

×



1

z2(n−1) − a2n−1z
2n−3 − · · · − a3z − a2

z2(n−2) − a2n−1z
2n−5 − · · · − a5z − a4

...

z4−a2n−1z
3−a2(n−1)z

2−a2n−3z−a2(n−2)

z2



= C2z
2(n−1) − C2a2n−1z

2n−3

+
(
C3 − a2(n−1)C2

)
z2(n−2) − · · ·

+(Cn−a2(n−1)Cn−1−. . .−a6C3−a4C2)z2

+. . .−(a2n−3Cn−1 . . .+a5C3+a3C2) z

+C1−a2C2−a4C3 . . .−a2(n−2)Cn−1, (26a)

Qb(z) = Q̄(z)B

=
[
z2(n−1) − a2n−1z

2n−3 − a2(n−1)z
2(n−2)

1 z2 z4 . . . z2(n−2)
]


B1

B2

...

Bn


= B1z

2(n−1) − a2n−1B1z
2n−3

+
(
Bn − a2(n−1)B1

)
z2(n−2)

+ · · ·+ B3z
2 + B2. (26b)

From Lemma 5 it follows that the strictly proper matrix (8)
can be decomposed as follows:

N(z) = P (z) Q (z) + d(z)G(z), (27)

where

P (z) = P2(n−1)z
2(n−1) − P2n−3z

2n−3

+ P2(n−2)z
2(n−2) − · · ·+ P2z

2 − P1z + P0,

Q(z) = Q2(n−1)z
2(n−1) −Q2n−3z

2n−3

+ Q2(n−2)z
2(n−2) − · · ·+ Q2z

2 −Q1z + Q0,

G(z) ∈ Rp×n[z]. (28)

The polynomial matricesP (z), Q(z) and G(z) of (27)
can be computed using the following procedure:

Procedure 1.

Step 1.Using elementary row and column operations per-
form the reduction

U(z)N(z)V (z) = p(z)

[
1 r (z)

c (z) M (z)

]
,

where U(z) and V (z) are unimodular matrices of el-
ementary operations,p(z) is a polynomial, r(z) ∈
R1×(m−1)[z], c(z) ∈ Rp−1[z] and M(z) ∈
R(p−1)×(m−1)[z].
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Step 2.Compute the matrices

P (z) = U−1(z)p(z)

[
1

c(z)

]
,

Q(z) =
[

1 r(z)
]
V −1(z) (29)

G(z) = U−1(z)

[
0 0
0 p(z)

(
M(z)−c(z)r(z)

)] V −1(z).

The comparison of (26) and (28) yields

P2(n−1) = C2, P2n−3 = C2a2n−1,

P2(n−2) = C3 − a2(n−1)C2, . . . ,

P0 = C1 − a2C2 − a4C3 − · · · − a2(n−2)Cn−1,

Q2(n−1) = B1, Q2n−3 = a2n−1B1,

Q2(n−2) = Bn − a2(n−1)B1, . . . , Q0 = B2. (30)

Given the matrices Pk and Qk for k =
0, 1, . . . , 2(n− 1), from (30) we can find Ci and
Bi, i = 1, . . . , n corresponding to the matricesC
and B.

From (30) it follows thatBi ∈ R1×m
+ and Ci ∈ Rp

+

for i = 1, . . . , n if Pk ∈ Rp
+ and Qk ∈ R1×m

+ for k =
0, 1, . . . , 2(n− 1) and aj ≥ 0 for j = 0, 1, . . . , 2n− 1.
Thus the following result was proven:

Theorem 2. Let the transfer matrix (4) be normal. The
positive realization problem has a solution if the following
conditions are satisfied:

(i) T (∞) = limz→∞ T (z) ∈ Rp×m
+ .

(ii) The coefficientsak, k = 0, 1, . . . , 2n−1 of the poly-
nomial d(z) are non-negative.

(iii) The polynomial matrixN(z) of (8) can be decom-
posed so that the polynomialsP (z) and Q(z) (de-
fined by (28)) have non-negative coefficients matri-
ces, i.e. Pk ∈ Rp

+ and Qk ∈ R1×m
+ for k =

0, 1, . . . , 2(n− 1) and the relations (29) are satis-
fied.

If the conditions of the theorem are satisfied, then a
positive realization (3) ofT (z) can be found using the
following procedure:

Procedure 2.

Step 1.Using (7) and (8), findD and the strictly proper
rational matrixTsp(z).

Step 2.Given the coefficientsak, k = 0, 1, . . . , 2n − 1
of d(z) find the matrices (12a) (or (12b), (12c), (12d)).

Step 3. Using Procedure 1 find the decomposition (27)
of the polynomial matrixN(z) of (8) and the coefficients
matricesPk andQk, k = 0, 1, . . . , 2(n− 1) of the poly-
nomial matrices (28).

Step 4.Using (30), findBi and Ci, i = 1, . . . , n and the
matricesB and C.

Example 1. Find a positive realization (3) of the transfer
matrix

T (z) =
1

z5 − z4 − 2z3 − 3z2 − 2z − 1

×
[
2z5+z4−2z3−4z2−3z−2 z5−2z3−z2−2z

z5+z4+2z3−2z2−z−1 2z4−z3−z2−2z−2

]
.

(31)

Using Procedure 1, we obtain successively the following
results:

Step 1.From (7) and (8) we have

D = lim
z→∞

T (z) =

[
2 1
1 0

]
(32)

and

Tsp(z) = T (z)−D =
N(z)
d′(z)

, (33)

where

N(z) =

[
3z4+2z3+2z2+z z4+2z2+1
2z4+4z3+z2+z 2z4−z3−z2−2z−2

]
,

d′(z) = z5 − z4 − 2z3 − 3z2 − 2z − 1.

Step 2. Taking into account the fact thata0 = 0, a1 =
a5 = 1, a2 = a4 = 2, a3 = 3 and using (12a), we obtain

A0 =

 0 0 0
1 0 0
3 0 1

 , A1 =

 0 0 1
0 0 0
2 1 2

 . (34)

Step 3. Using Procedure 1, we decompose the matrix
N(z) in the form (27) with

P (z) =

[
z2 + 1

z4 − z3 − z2 − 3z − 2

]

=

[
0
1

]
z4 −

[
0
1

]
z3 +

[
1
−1

]
z2

−

[
0
3

]
z +

[
1
−2

]

= P4z
4 − P3z

3 + P2z
2 − P1z + P0,
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Q(z) =
[

z4 − z3 z2 + 1
]

=
[

1 0
]
z4 −

[
1 0

]
z3 +

[
0 1

]
z2

+
[

0 1
]

= Q4z
4 −Q3z

3 + Q2z
2 −Q1z + Q0,

G(z) =

[
−1 0

−z2 + z − 1 −1

]
. (35)

Step 4.Using (30) and (35), we obtain

B1 = Q4 =
[

1 0
]
, B2 = Q0 =

[
0 1

]
,

B3 = Q2 + 2Q4 =
[

2 1
]
,

C1 = P0 + 2P4 =

[
1
0

]
, C2 = P4 =

[
0
1

]
,

C3 = P2 + 2P4 =

[
1
1

]
,

and

B =

 B1

B2

B3

 =

 1 0
0 1
2 1

 ,

C =
[

C1 C2 C3

]
=

[
1 0 1
0 1 1

]
. (36)

The desired positive minimal realization of (31) has the
form (34), (36) and (32).

4. Concluding Remarks

The realization problem for positive multivariable
discrete-time systems with one time delay has been for-
mulated and solved. The canonical forms (12) of the sys-
tem matricesA0 and A1 were introduced. It was shown
that the pair (12) is cyclic. The conditions for the exis-
tence of a positive minimal realization (3) of a proper ra-
tional matrix T (z) were established. A procedure for the
computation of a minimal positive realization of a proper
rational matrix was presented and illustrated by an exam-
ple. The deliberations can be extended to multivariable
discrete-time linear systems with many time delays. An
extension to continuous-time linear systems with time de-
lays is also possible.
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