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In this paper the classical detection filter design problem is considered as an input reconstruction problem. Input reconstruc-
tion is viewed as a dynamic inversion problem. This approach is based on the existence of the left inverse and arrives at
detector architectures whose outputs are the fault signals while the inputs are the measured system inputs and outputs and
possibly their time derivatives. The paper gives a brief summary of the properties and existence of the inverse for linear and
nonlinear multivariable systems. A view of the inversion-based input reconstruction with special emphasis on the aspects of
fault detection and isolation by using invariant subspaces and the results of classical geometrical systems theory is provided.
The applicability of the idea to fault reconstruction is demonstrated through examples.
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1. Introduction and Problem Formulation

In the solution of the problem of fault detection and isola-
tion (FDI), the principle of analytical redundancy is usu-
ally used when direct measurements from the system are
not available. One method to infer the component fault
status and analytically detect the existence of a fault is
to look for anomalies in the plant’s output relative to a
model-based estimate of that output. Plant models, how-
ever, are generally incomplete and inaccurate. Moreover,
the fault detection and isolation algorithms often assume
the presence of a particular failure mode. These plant dy-
namics and failure mode modelling errors can either cause
a high false alarm rate, or make it difficult to detect or iso-
late the faults. Any robust detection and isolation method
that is designed to overcome the problems associated with
these modelling errors must be able to distinguish among
model uncertainties, disturbances and fault signals in or-
der to avoid excessive false alarms or missed detections.

One possible approach to robustness relies on the use
of models that describe the behaviour of the plant more
precisely. This often leads to varying structure, time de-
pendent or nonlinear models whose successful treatment
depends on the development of new, more complex the-
ories. Starting with nonlinear system models, however,
may lead to difficulties not only from the point of view

of theoretical complexity but also realizability. Besides
these difficulties, one of the underlying problems with
the application of nonlinear approaches is that most of
the standard results established in linear systems theory
must be relinquished, even if they comprise the basics for
our understanding of dynamical systems. Nevertheless, it
has already been widely recognized that the formulation
and solution of many control and filtering problems in the
framework of nonlinear theory of systems is much more a
matter of necessity than of pure mathematical virtuosity.

In model-based FDI, the fault detection and isola-
tion problem can be characterized as a two-step proce-
dure: The first and basic problem is the detection and iso-
lation of faults on the basis of the residual signal gener-
ated by a filter or detector. In some cases providing in-
formation about the real magnitude of the fault signal is
required. This is usually referred to as fault estimation.
In the second stage of the procedure the validation of the
fault effects, i.e., the evaluation of the actual failure situa-
tion is accomplished by using a special logic or hypothesis
testing.

The main objective addressed in this paper is the de-
sign and analysis of a residual generator for classes of
nonlinear input affine systems subject to multiple, possi-
bly simultaneous faults given in the most general form in
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the state space as

ẋ(t) = f(x, u) +
m∑

i=1

gi(x, u)νi

(1)

y(t) = h(x, u) +
m∑

i=1

`i(x, u)νi,

where f, g, h, ` are analytic functions andx(t) ∈ X ⊂
Rn, u(t) ∈ Rm, y(t) ∈ Rp being the vector valued
state, input and output variables of the system, respec-
tively, ν(t) is the fault signal(ν1, . . . , νm)T whose ele-
mentsνi : [0,+∞) → R are arbitrary functions of time.
The fault signalsνi can represent both actuator and sen-
sor failures, in general. The goal is to detect the occur-
rence of the componentsνi of the fault signal indepen-
dently of each other and identify which fault component
specifically occurred.

Along with the discussion of this paper, linear and
nonlinear problems will be treated in parallel to each
other. Results for linear time invariant (LTI) systems will
always be viewed as special cases of the results obtained
for the nonlinear problems specified by the general system
model (1).

In our approach a detector, i.e., another dynamic sys-
tem is constructed with outputsν and with inputsu, y
and possibly their time derivatives or integrals which, in
the most general form, can be thought of as

ζ̇(t) = ϕ(ζ, y, ẏ, . . . , u, u̇, . . .),
(2)

ν(t) = ω(ζ, y, ẏ, . . . , u, u̇, . . .),

with the state variableζ(t) assumingϕ, ω are arbitrary
analytic time functions. The filter reproduces the fault sig-
nal at its output that is zero in the normal system opera-
tion, while it differs from zero if a particular fault occurs.

This detector should satisfy a number of require-
ments. It should distinguish among different failure
modes νi, e.g., between two independent faults in two
particular actuators. Moreover, it is aimed to completely
decouple the faults from the effect of disturbances and
also from the input signals. Note that for LTI systems the
filter (2) traditionally serves as a residual generator which
assigns the fault effects and the disturbances to disjoint
subspaces in the detector output space.

Various solutions are known for generating residuals.
The traditional methods of residual generation are based
on the error dynamics of a state observer, see, e.g., the ge-
ometric approach of detection filters as initiated by (Mas-
soumnia, 1986) for LTI systems. The parity space ap-
proaches were discussed in (Gertler, 1998), the unknown
input observer in (Chen and Patton, 1998), the multiple
model and the generalized likelihood ratio approaches in
(Basseville and Nikiforov, 1993), just to mention a few.

These approaches are used in a number of situations dif-
fering in the assumptions about noise, disturbances, ro-
bustness properties and in the specific design methods.
For comparison, see some representations in the litera-
ture such as (Mangoubi, 1998; Mangoubi and Edelmayer,
2000).

It will be shown in this paper that residual genera-
tion for both linear and nonlinear systems can be viewed
as an input reconstruction process and can be solved by
using the idea of system inversion. The close relation of
input reconstruction with the inverse problem was recog-
nized by many authors earlier, see, e.g., (Hou and Patton,
1998), but the application of the idea to FDI was first con-
sidered by Szigetiet al. (2000). In the past few years,
the solution of various types of inverse problems became
particularly important in control and filtering. Inversion,
which is a key to our approach, was studied, e.g., in the
early works (Silverman, 1969; Hirschorn, 1979) for LTI,
and was also considered in (Fliess, 1986; Isidori, 1995)
for nonlinear systems. On-line dynamic inversion meth-
ods were successfully applied to many interesting prob-
lems in aerospace and aviation, such as e.g. (Krupadanam
et al., 2002). A summarizing study on related ideas was
published in (Goodwin, 2002).

Input reconstruction addresses the problem of de-
signing a filter or detector which, on the basis of the in-
put and output measurements, returns the unknown inputs
of the original system by utilizing its inverse representa-
tion, see Fig. 1. Though the solution of the inverse prob-
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-
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-

-
u(t)
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-

-ν1(t)

νk(t)

...

Fig. 1. Input (fault) reconstruction and the idea of system
inversion: Σ is the plant,D is the detector which,
most conveniently, can be obtained as the (left) in-
verseΣ−1

` of the original system.

lem received considerable attention in the past years, there
remained a number of open problems in this area, espe-
cially from the point of view of fault detection problems.
Earlier approaches to system inversion (Silverman, 1969)
considered the properties and calculation of the inverse
as guaranteeing neither minimality (or observability, de-
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tectability) nor stability properties of the resulting inverse
system.

The applicability of system inversion to FDI in LTI
systems was first demonstrated in (Szigetiet al., 2001).
Additional issues of inverse computation for the FDI prob-
lem can be found, e.g., in (Szigetiet al., 2002), as well as
in (Varga, 2002). One of the advantages of the inversion
approach is that the extension of the idea to nonlinear sys-
tems is possible. It will be shown in this paper that, by
using this concept, linear and nonlinear problems can be
treated in the same theoretical framework. In most fault
detection and residual generation methods developed for
LTI systems this generalization cannot be made.

The content and organization of the paper is as fol-
lows. If we want to reconstruct the unmeasured fault sig-
nal at the output of the detector, the property of input ob-
servability is an important quality of the system. There-
fore, we begin with the background of input observability
of LTI systems. Some issues of input observability for
linear systems were discussed, e.g., in (Hou and Patton,
1998). These preliminary results are briefly reviewed and
the idea is related to system invertibility in Section 2.

In the past years geometric approaches proved to be
particularly useful and successful means for the design
and analysis of FDI methods. They provided fundamen-
tal tools for the design of residual generators aimed at
providing structured and directional residuals, i.e., detec-
tion filters. Most of the results obtained for the classi-
cal detection filter theory were made available on the ge-
ometric platform, see, e.g., the results of (Massoumnia,
1986; White and Speyer, 1987; Massoumniaet al., 1989)
for LTI, (Edelmayeret al., 1997) for linear time varying
(LTV), and (Hammouriet al., 1999) for bilinear systems
based on geometric theory originated in (Wonham, 1992).

Efforts to extend geometric concepts to nonlinear
problems were made, e.g., in (De Persis and Isidori, 2001).
The generalization of geometric ideas to nonlinear sys-
tems, such as invariant subspaces used for LTI systems in
a standard way, may prove to be cumbersome from sev-
eral points of view in practice. Our approach attempts to
avoid difficulties stemming from nonlinear invariant sub-
space theory and invariant distributions. It will be shown
that the inverse problem for nonlinear systems can be dealt
with with relative ease on the basis of standard geomet-
ric concepts introduced in (Wonham, 1992) and partly in
(Isidori, 1995).

Therefore, it makes sense to relate the inversion prob-
lem to the classical results of geometric detection filter
theory in Section 3. Section 3.1 gives geometric interpre-
tation of the inverse problem in LTI systems. Then, we
continue with input observability properties in the non-
linear framework. The generalization of the concepts ob-
tained in the previous sections to nonlinear problems is

discussed and geometric interpretation of inversion-based
fault reconstruction in nonlinear systems is given in Sec-
tion 4. This geometric approach not only proved to be
useful from the point of view of better understanding the
idea, but it also creates a theoretical basis for constructing
efficient inversion algorithms. The technique is applied to
simple demonstrative examples for both LTI and nonlinear
systems.

2. Input (Fault) Observability of LTI Systems

Consider the minimal state space representation of the LTI
system

ẋ = Ax + Bu,
(3)

y = Cx + Du.

Input observability of the linear dynamical systems (3) is
closely related to their invertibility. In order to show this
property, let us summarize some important results from
the literature by considering the following proposition.

Definition 1. (Hou and Patton, 1998) The inputu(t) is
said to beobservableif y(t) = 0 for t ≥ 0 implies
u(t) = 0 for t > 0 provided thatx(0) = 0.

Definition 2. (Basile and Marro, 1973) A linear system
is calledleft invertibleif the input u(t) can be recovered
from the knowledge of the output functiony(t) and the
initial statex(0).

Remark 1. For any known initial conditionx(0), input
observability implies left invertibility.

Let us denote byΩ the set of all possible inputs
of (3) and assume that they are at leastn times differ-
entiable.

Proposition 1. By taking the restriction of the input set

Ωo = {u ∈ Ω : u(0) = 0,

u̇(0) = 0, . . . , u(n−1)(0) = 0}

and considering the system (3) overΩo, left invertibility
and input observability are equivalent.

Proof. By successively taking the derivatives of the out-
put, one has the equations

y = Cx + Du,

ẏ = CAx + CBu + Du̇,

...

yn−1 = CAn−1x + CAn−2Bu + · · ·

+ CBu(n−2) + Du(n−1),
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and for t = 0 on Ωo we get

y = Cx(0),

ẏ = CAx(0),

...

yn−1 = CAn−1x(0).

It follows that the output functiony(t) determines
uniquely the initial statex(0) which, according to Re-
mark 1, means that left invertibility and input observabil-
ity are equivalent onΩo.

Remark 2. (Fault observability and invertibility.) In case
we work with fault detection problems, i.e., we consider
systems of the type

ẋ = Ax + Bu + L1ν,

y = Cx + Du + L2ν, (4)

where the fault signalsν ∈ Rq may represent both actu-
ator and sensor faults as reflected in the structure of the
matricesL1, L2, all derivatives of the fault signals in the
diagnostic system models will be zero fort = 0, since
it is always supposed thatν(t) = 0 if t ≤ to > 0. It
follows that the residual system is invertible iff it is in-
put observable. Clearly, ifL2 is a full rank matrix, the
inverse can be obtained by simple algebraic calculations.
For treating more general cases, however, we need to con-
sider the properties of invertibility in greater detail in the
next sections.

3. Invertibility and the Relative Degree
of Linear Systems

Consider the LTI systemS given in (3) and the construc-
tion of its inverse representation. The systemS is said to
be left invertible (i.e., it has a left inverse denoted byS−1)
if there exists a corresponding system representation such
that the composition, shown in Fig. 2, will result in the
identity for each pair(u, y) (cf. Definition 1).

S S−1- -
u(t) y(t)

-
u(t)

Fig. 2. The composition of systemsS and
S−1 resulting in the identity.

Let us consider the left invertible LTI system

ẋ = Ax + Bu,

y = Cx. (5)

The derivatives of the measurement vector can be written
as

ẋ = Ax + Bu,

y = Cx,

ẏ = Cẋ = CAx + CBu,

ÿ = CA2x + CABu + CBu̇,

...

y(k) = CAkx + CAk−1Bu + . . . + CBu(k−1),

wherek ≥ 0.

Let us denote byci the rows of the matrixC. If
there exist integersri > 0, such that

ciA
kB = 0, ciA

ri−1B 6= 0,∀ k < ri − 1, (6)

and

rank


c1A

r1−1B
...

cpA
rp−1B

 = m, (7)

then ri is called a relative degree of the system. Based on
the individual componentsri, the vector relative degree
r is defined asr = [ r1, . . . , rp ]. Then one can construct
the equations

y
(r1)
1
...

y
(rp)
p

 =


c1A

r1

...

cpA
rp

x +


c1A

r1−1B
...

cpA
rp−1B

u. (8)

Obviously, from the representation (8) the input variable
u can be obtained by inversion. The inverse system can
be given in the possible nonminimal form:

η̇ = Ainvη + Binvvinv

u = Cinvη + Dinvvinv,

where

vinv =
[
y1 · · · y

(r1)
1 · · · yp · · · y

(rp)
p

]T
. (9)

If the realization of the inverse system is minimal, then
Ainv gives the so-called zero dynamics of(A,B,C).
Throughout this paper, it will be assumed that the zero
dynamics of the system is asymptotically stable, i.e., the
residual system is minimum phase. If this condition does
not hold, the method presented here is not applicable.
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3.1. Geometrical Properties of the Inverse
in LTI Systems

In order to show the existence of a left inverse system in
LTI systems consider the following results.

Proposition 2. The systemS given in the state space
form (A,B,C) is left invertible iff B is monic and

V∗(B) ∩ Im B = 0, (10)

where V∗ is the supremal(A,B)-invariant subspace in
ker C and F is the feedback, such that(A + BF )V∗ ⊆
V∗, i.e., (A+BF ) is maximally unobservable, see (Won-
ham, 1992).

An equivalent description of the invertibility can also
be given by the following proposition:

Proposition 3. The systemS is invertible iff for the max-
imal controllability subspaceR∗ contained inker C, the
conditionR∗ = 0 holds, see (Morse and Wonham, 1971).

Remark 3. The subspaceV∗ can be calculated by using
the (A,B)-invariant subspace algorithm without explic-
itly constructingF .

Proposition 4. Consider the left invertible systemS :
(A,B,C). The dynamics of the (left) inverse can be given
as the restriction of(A + BF ) on V∗, i.e.,

Ainv = (A + BF ) | V∗. (11)

Corollary 1. The dimension of the state-space for the in-
verse system isninv = dimV∗ = n − ρ(r), wheren is
the state dimension ofS, r is its (vector) relative degree
and ρ(r) =

∑p
i=1 ri.

Proof. Let us denote byV ∗ the insertion map ofV∗,
and consider the state transform defined byz = Tx =
[ ξ η ]T , ξ ∈ V∗⊥, η ∈ V∗, where

T−1 =
[

B Λ V ∗
]
, and Im Λ ⊂ V∗⊥. (12)

From the invertibility conditionV∗∩ Im B = 0, it follows
that V∗ ⊂ (Im B)⊥, i.e., the transformationT is well
defined.

In the new coordinate system the state matrices will
take the form of

Ā =

[
Ā11 Ā12

Ā21︸︷︷︸
ρ

Ā22︸︷︷︸
n−ρ

]
} ρ

} n−ρ
, B̄ =

[
B̄1

0

]
} ρ

} n−ρ
,

C̄ =
[

C̄1 C̄2

]
,

whereρ = dim (V∗⊥).

Since V∗ ⊂ ker C, the matrix C̄2 should be zero,
i.e.

C̄ =
[

C̄1︸︷︷︸
ρ

0︸︷︷︸
n−ρ

]
.

Also, sinceĀV∗ ⊆ V∗ + Im B̄, it follows that[
Ā11 Ā12

Ā21 Ā22

][
0
V∗

]
=

[
Ā12V̄∗

Ā22V̄∗

]
⊆

[
Im B

V∗

]
,

i.e., there exists a unique matrixF2 (since B̄1 is monic)
such that

B̄1F2 = −Ā12.

By choosing

F =
[

0 F2

]
,

we get

Ā + B̄F =

[
Ā11 Ā12

Ā21 Ā22

]
+

[
B̄1

0

] [
0 F2

]

=

[
Ā11 0
Ā21 Ā22

]
.

To simplify the notation, the matrices̄B1 and C̄1 will be
referred to asB̄ and C̄, respectively. By the selection of
T , one hasB̄ = [ Im 0 ]T .

Applying the feedbacku = F2η + v to the trans-
formed system, one gets the following equations:

ξ̇ = Ā11ξ + B̄v, (13)

y = C̄ξ.

One can prove by induction that fromciA
kB = 0, it fol-

lows that c̄iĀ
k
11B̄ = 0 and c̄iĀ

ri−1
11 B̄ 6= 0 for k <

ri − 1.

Since dim(V∗⊥) =
∑p

i=1 ri, see (Wonham, 1992),
one can define a state transformS for (13) such that

w =



y1

...

y
(r1−1)
1

...

yp

...

y
(rp−1)
p


= Sξ,
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where

S =



c̄1

...

c̄1Ā
r1−1
11
...

c̄p

...

c̄pĀ
rp−1
11


. (14)

It follows that

v = B̄(−1)S−1(ẇ − SĀ11S
−1w), (15)

where SĀ11S
−1 is exactly the observer canonical form

of Ā11. From

η̇ = Ā22η + Ā21S
−1w,

u = F2η + v, (16)

one may get the matrix

Ā22 = (A + BF )|V∗ = Ainv (17)

in the basis represented byT , which proves Proposi-
tion 4.

Corollary 2. The inverse dynamics of(A,B,C) can
simply be obtained by calculatingV∗ using the(A,B)-
invariant subspace algorithm. Choose a basis forV∗
and compute the state transformation matrixT as defined
by (12).

Let us introduce the vector vinv =
[ wT y

(r1)
1 · · · y

(rp)
p ]T as the input of the in-

verse system wherew is defined by (14). Then, one can
define

Ainv = Ā22, Binv =

[
Ā21S

−1

0

]
, (18)

where (Ainv, Binv) describes the zero dynamics as

η̇ = Ainvη + Binvvinv. (19)

The inputu can be obtained from the equations

u = Cinvη + Dinvvinv, (20)

whereCinv = F2. Moreover,

Dinv = Z −

[
SĀ11S

−1 0
0 0

]
. (21)

The matrixZ is given as

Z =


Z1 0 · · · 0 E1

0 Z1 · · · 0 Ep

...

0 0 · · · Zp Ep

 , (22)

where

Zi =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

0 0 0 · · · 1 0
0 0 0 · · · 0 0

 , Ei =

[
0
eT
i

]
, (23)

with ei being thei-th unit vector inRp.

To conclude this section let us recall the characteri-
zation of the transmission zeros of linear systems:

Proposition 5. (Transmission zeros.) The transmission
zeros of(A,B,C) are the poles of the inverse dynamics,
i.e., the eigenvalues of(Ā + B̄F )|V∗ = Ā|V∗.

Example 1. In order to demonstrate the inverse calcula-
tion in LTI systems based on geometric characterization of
the procedure presented in the previous section, consider
the system representation (4) given by the matrices

A =


−1 0 −1 1

1 −2 0 0
0 1 0 −1
0 0 2 0

 , B =


0 0
1 0
0 1
0 0

 ,

L =


0 0
0 0
1 1
1 −1

 , C =

[
0 0 1 0
0 0 0 1

]
,

assuming thatD and M are zero. It is simple to ar-
rive at V∗ = ker C, i.e., dimV∗ = 2. Since dimV∗ =
n − ρ, it follows that the relative degree of the system is
ρ = 4− 2 = 2. Indeed, a simple calculation reveals that
the relative degreer = [ 1 1 ], i.e., r1 = 1, r2 = 1
and, therefore,ρ = 1 + 1 = 2. SinceV∗ ∩ ImL = 0,
(A,L,C) is left invertible.

The calculation ofV∗⊥ can be carried out from the
span of the rows ofC, i.e.,

V∗⊥ =

[
0 0 1 0
0 0 0 1

]
= C
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and one can choose

L⊥ =

[
1 0 0 0
0 1 0 0

]
.

The state transform can be written as a simple change of
coordinatesxi:

T =

[
V∗⊥

L⊥

]
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

Then the coordinate transformsz = Tx, B̄ = TB and
L̄ = TL are written as

z =


x3

x4

x1

x2

 , B̄ =


0 1
0 0
0 0
1 0

 , L̄ =


1 1
1 −1
0 0
0 0

 .

Moreover, with

C̄ = CT−1 = CTT =

[
1 0 0 0
0 1 0 0

]

and Ā = TAT−1 = TATT

Ā =

[
Ā11 Ā12

Ā21 Ā22

]
=


0 −1 0 1
2 0 0 0

−1 1 −1 0
0 0 0 −2

 ,

one arrives atAinv = A| V∗ = A22. Then the trans-
formed state space system can be written in the form

ż1

ż2

ż3

ż4

 =


0 −1 0 1
2 0 0 0

−1 1 −1 0
0 0 0 −2




z1

z2

z3

z4



+


0 1
0 0
0 0
1 0

u−


1 1
1 −1
0 0
0 0

 ν. (24)

As the zero dynamics isη = [z3, z4]T , the inverse
system can be represented as

η̇ =

[
−1 0

0 −2

]
η +

[
−1 1

0 0

][
z1

z2

]
+

[
0 0
1 0

]
u.

Since r1 = 1, r2 = 1 and S is the identity matrix, by
(15) the unknown inputsν1 and ν2 can be derived from
the first two equations of (24) as[

ν1

ν2

]
=

[
1 1
1 −1

]−1([
ż1

ż2

]
−

[
0 −1
2 0

][
z1

z2

]

−

[
0 1
0 0

]
η −

[
0 1
0 0

][
u1

u2

])

which, by using the identitiesy1 = z1, y2 = z2, z3 = x1

and z4 = x2, can be expressed in the form

ν1 = −1
2
(−ẏ1 − ẏ2 + y2 − z4 − u),

ν2 = −1
2
(−ẏ1 + ẏ2 + 2y1).

�

4. Geometric Characterization of
Inversion-Based Input Reconstruction
for Nonlinear Systems

To create a basis for further discussions, let us recall some
elementary facts and definitions from nonlinear system
theory as found, e.g., in (Isidori, 1995; Nijmeijer and
van der Schaft, 1991).

Consider the nonlinear input affine system written in
the form

ẋ = f(x) + g(x)u, g(x) =
m∑

i=1

gi(x)ui,

u ∈ Rm, y ∈ Rp,

yj = hj(x), j = 1, . . . , p. (25)

A smooth connected submanifoldM which contains the
point xo is said to belocally controlled invariantat xo

if there exists a smooth feedbackα(x) and a neigh-
borhood Uo of xo such that the vector field̃f(x) =
f(x) + g(x)α(x) is tangent toM for all x ∈ M ∩ Uo,
i.e., M is locally invariant underf̃ .

A smooth connected submanifoldM that is locally
controlled invariant atxo and with the property that
M ⊂ h−1(0) is called an output-zeroing submanifold of
Σ. This means that for some choice of the feedback con-
trol α(x) the trajectories ofΣ which start in M stay
in M for all t in a neighborhood ofto = 0 while the
corresponding output is identically zero.

A submanifoldM is said to be an integral subman-
ifold of a distribution ∆ if for every x ∈ M and the
tangent spaceTxM to M at x one hasTxM = ∆(x).
The maximal locally controlled invariant output-zeroing
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submanifold for a systemΣ can be determined by the
following zero dynamics algorithm:

Let Uo be a neighborhood ofxo and

1. Mo = h−1(0) ∩ Uo,

2. assume thatMk is a submanifold throughxo and
defineMk+1 as

Mk+1 = {x ∈ Mk | f(x) ∈ span{gi(x)}+ TxMk}.

If there is a Uo such thatMk is a smooth submanifold
through xo for each k ≥ 0, then xo is called a reg-
ular point of the algorithm and there is ak∗ such that
Mk∗+l = Mk∗ for all l ≥ 0. If, in addition,

dim span { gi(xo) | i = 1,m} = m, (26)

and
dim span{ gi(x) | i = 1,m} ∩ TxM c

k∗

is constant for allx ∈ M c
k∗ , then the maximal connected

component ofMk∗ , denoted byZ∗, is the locally maxi-
mal output-zeroing submanifold ofΣ. Moreover, if

dim span { gi(x) | i = 1,m} ∩ TxM c
k∗ = 0, (27)

then there is a unique smooth feedback controlα∗ such
that f∗(x) := f(x) + g(x)α∗(x) is tangent toZ∗.

An algorithm for computingZ∗ in general cases can
be found in (Isidori, 1995) and (Nijmeijer and van der
Schaft, 1991). However, in some casesZ∗ can be de-
termined easily by relating it to the maximal controlled
invariant distribution∆∗ contained inker (dh), given by
the following controlled invariant codistribution algorithm
(CIcDA):

Ω1 = span{dhi | i = 1, p}

Ωk+1 = Ωk + Lf (Ωk ∩ g⊥) +
m∑

i=1

Lgi
(Ωk ∩ g⊥). (28)

Moreover,∆∗ = Ω⊥∗ .

Theorem 1. (Isidori, 1995) Suppose thatxo is a regu-
lar point regarding the controlled invariant codistribution
algorithm anddim g(xo) = m. Also suppose that

Lgi
(Ωk ∩ g⊥) ⊂ Ωk

for all k ≥ 0. Then, for all x in a neighborhood ofxo,
one has

∆∗(x) = TxZ∗.

Remark 4. Conditions of Theorem 1 are trivially satisfied
for linear systems, therefore,V∗ = Z∗, which provides
the result of Proposition 10 in a straightforward way.

4.1. Nonlinear Systems with a Vector Relative Degree

The conditions of Theorem 1 are satisfied for nonlinear
systems having a vector relative degree. A multivariable
nonlinear system is said to have a vector relative degree
r = {r1, · · · , rp} at a pointxo if

Lgj L
k
fhi(x) = 0 (29)

for j = 1, . . . ,m and i = 1, . . . , p for all k < ri − 1,
assuming that the matrix

A(x) :=

 Lg1L
r1−1
f h1(x) · · · Lgm

Lr1−1
f h1(x)

· · · · · · · · ·
Lg1L

rp−1
f hp(x) · · · Lgm

L
rp−1
f hp(x)


is nonsingular atx = xo or, equivalently,

rank A(xo) = m. (30)

If condition (30) does not hold but there exist numbersri

satisfying the property (29), thenri are called therelative
ordersof the system (25).

Remark 5. It is easily seen that for linear systems rep-
resented in the formẋ = Ax + Bu, y = Cx, the
conditions (29) and (30) inherently include the condition
(6) since, in this case, we writef(x) = Ax, g(x) =
B, h(x) = Cx, which implies Lk

fh(x) = CAkx and
thereforeLgL

k
fh(x) = CAkB.

Lemma 1. Let us suppose that the system (25) has a rel-
ative degree. Then the row vectors

dh1(xo), . . . ,dLr1−1
f h1(xo), . . . ,dhp(xo),

. . . , dL
rp−1
f hp(xo)

are linearly independent.

Remark 6. From the proof of the lemma, see (Isidori,
1995), it is clear that (30) constitutes a necessary condi-
tion, i.e., the existence of the finite relative orders alone
does not ensure linear independence of the entire system.

Remark 7. Since for any real valued functionλ there
holdsdLfλ(x) = Lfdλ(x) and, by the algorithm CIcDA
one has that all the codistributionsdLk

fhi(x), satisfying
the propertyLgj

Lk
fhi(x) = 0, are contained inΩ∗, i.e.,

in ∆∗⊥, it follows that ∆∗ ⊂ span {dLk
fhi | k = 0, ri −

1, i = 1, p }⊥.

The conditions (26) and (27) can be interpreted as a
special property of theinvertibility of the system (25). Our
interest in the determination of the output-zeroing man-
ifold is motivated by the role played by these issues in
the principle of invertibility and the construction of the
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reduced order inverse of linear and nonlinear controlled
systems.

As has been already stated, ifrank A(x) = m, then

Z∗ = {x |Lk
fhi = 0, i = 1, . . . , p

and k = 0, . . . , ri − 1} (31)

and

∆∗⊥ = ker span {dLk
fhi, i = 1, . . . , p

and k = 0, . . . , ri − 1}, (32)

see also (Nijmeijer and van der Schaft, 1991). Moreover,
the control feedbacku∗(x) = α(x) is the solution of the
equation

A(x)α(x) + B(x) = 0 (33)

by using the notation

B(x) :=


Lr1

f h1(x)
...

L
rp

f hp(x)

 .

Let ξ = Ξ(x) denote the diffeomorphism formed by
(ξi)i=1,p defined by ξi = (Lk

fhi(x))k=0,ri−1. It is a
standard computation that

ξ̇i = Aiξi + Biy
(ri)
i , (34)

whereAi and Bi are of the Brunowsky canonical form.
Let us note thatξi

1 = yi.

Let us completeΞ(x) to be a diffeomorphism[
ξ

η

]
= Φ(x) :=

[
Ξ(x)
Λ(x)

]
(35)

on X. Since∂xΞ = [dLk
fhi], one has

ξ̇ = [dLk
fhi]f |Φ−1 + [dLk

fhi]g|Φ−1u, (36)

i.e., maintaining the nonzero rows

[ξ̇i
ri

] = B|Φ−1 + A|Φ−1u (37)

and
η̇ = ∂xΛf |Φ−1 + ∂xΛg|Φ−1u. (38)

The zero dynamics can be obtained by

η̇ = ∂xΛf |Φ−1 + ∂xΛgα|Φ−1 , (39)

putting ξ = 0. If g is involutive, then one can choose
dΛ ⊂ g⊥, and then

η̇ = ∂xΛf |Φ−1 . (40)

Example 2. Let us consider the following nonlinear input
affine system subject to multiple faults:

ẋ = fo(x) +
m∑

i=1

fi(x)ui +
q∑

l=1

g`(x)ν`,

yj = hj(x), j = 1, . . . , p. (41)

If one considersf(x, u) = fo(x) +
∑m

i=1 fi(x)ui, then,
by introducing timet as an auxiliary state, one may ap-
ply the results of the previous section to the augmented
system.

The decoupling matrixA will also depend on the
control inputsu and, similarly, on its derivatives, i.e., the
condition for having a vector relative degree will also be
dependent on the inputs. This is in contrast to the LTI case,
where the inputsu do not play any role in the problem
solvability.

Consider the system (41) determined by the func-
tions

fo(x) = f(x) =


x2

0
x1x4

−1.2x3

x1

 , g1(x) =


1
−x2

0
−x4

1

 , (42)

g2(x) =


0
0
1
x1

−x5

 , h1(x) = x1, h2(x) = x3, (43)

i.e., for the sake of the greatest possible simplicity, we
consider an autonomous system subject to failure modes
ν1 and ν2. Then

A(x) =

[
1 0
0 1

]
, B(x) =

[
x2

x1x4

]
. (44)

Let us define the diffeomorphism

Φ(x) =


x1

x3

x2

x4

x5

 ,

with

∂xΦ =


1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 . (45)
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It follows that[
ξ̇

η̇

]
= ∂xΦ(f + gν)|Φ−1

=

 0
−1.2ξ2

ξ1

+

 −η1

−η2

1

 ν1 +

 0
ξ1

−η3

 ν2

and y = ξ. One can obtain the inverse system by using
the relation

ν = −

[
η1

ξ1η2

]
+ ẏ. (46)

From ξ = y, one get the failure modes

ν =

[
ẏ1 − η1

ẏ2 − y1η2

]
(47)

with

η̇ =

 0
−1.2y2

y1

+

 −η1

−η2

1

 (ẏ1 − η1)

+

 0
y1

−η3

 (ẏ2 − y1η2).

For a general nonlinear system which cannot be rep-
resented in the form of (25), the question of the existence
and computation of the codistribution∆∗ is far form be-
ing trivial. Moreover, the computation of the state trans-
formation map that is necessary to determine the zero dy-
namics involves, in general, the integration of partial dif-
ferential equations. Therefore, the general treatment of the
problem in the framework of geometric nonlinear systems
theory is not often computationally tractable and some
useful progress requires an intermediate level of complex-
ity.

Linear parameter varying (LPV) modelling tech-
niques have proven to be useful in this application do-
main. The idea is that a lot of nonlinear systems can be
converted into a quasi-linear form, obtaining the so-called
quasi-linear parameter varying (qLPV) system models in
which the state matrix depends affinely on a parameter
vector. These classes of systems subjected to faults can be
described as

ẋ(t) = A(ρ)x(t) + B(ρ)u(t) +
m∑

j=1

Lj(ρ)νj(t), (48)

y(t) = Cx(t),

with

A(ρ) = Ao + ρ1A1 + · · ·+ ρNAN ,

B(ρ) = Bo + ρ1B1 + · · ·+ ρNBN ,

Lj(ρ) = Lj,o + ρ1Lj,1 + · · ·+ ρNLj,N ,

where theρi’s are time-varying parameters for the LPV
case and parameters that depend on measurable outputs
for the qLPV case, respectively (Bokor and Balas, 2004).
It is assumed that each parameterρi and its derivatives
range between known extremal values. Let us denote by
P this parameter set.

To apply the ideas presented in the previous sections
to the systems (48), it is necessary to introduce the param-
eter varying counterpart of the invariant subspaceV∗.

Definition 3. Let B(ρ) denote ImB(ρ). Then a sub-
spaceV is called a parameter-varying(A,B)-invariant
subspace (or, briefly, the (A,B)-invariant subspace) if for
all ρ ∈ P one has$, A(ρ)V ⊂ V + B(ρ).$,

The set of all parameter varying(A,B)-invariant sub-
spaces containing a given subspaceC is an upper semi-
lattice with respect to the intersection of subspaces. This
semilattice admits a maximum, denoted by

V∗ = maxV(A(ρ), B(ρ), C).

This subspace can be computed by a finite algorithm for
systems of the type (48), see, e.g., (Balaset al., 2003) and
(Szabóet al., 2003) for details. Using this subspace, the
computation of the inverse system can be done following
the same steps as in the LTI case.

5. Conclusions

In this paper the fault detection and isolation problem has
been studied in view of the fault reconstruction process by
means of dynamic system inversion. Along the discussion
of this problem, linear time invariant as well as input affine
nonlinear systems with stable zero dynamics were consid-
ered. It was shown that the detector relying on the inverse
representation of the original system reconstructs the fail-
ure modes at its output on the basis of the standard in-
put/output (sometimes state variable) measurements. The
paper was devoted to the exposition of geometrical prop-
erties of the inverse and attempted to provide a better un-
derstanding of the conditions of the inversion procedure
with a special focus on the aspects of fault detection and
isolation. A procedure for the construction of the inverse
system based on the concept of invariant subspaces and on
the related coordinate transformations was given. It was
shown that the solution methods obtained for nonlinear
problems can be directly applied to the linear framework
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and the linear solutions can be viewed as special cases of
the nonlinear ones. The procedure resulted in a minimal
dimensional inverse system supposing that (i) it is given
in the state space form, (ii) the representation has a rel-
ative degree and (iii) the representation is left invertible.
The availability of state variable measurements (in certain
cases, a direct access to derivatives) is assumed. Consid-
ering the recent progress of advanced measurements tech-
nology and the wide availability of sensors capable of pro-
viding the derivatives of a measured variable (see, e.g.,
some applications in aviation technology), this condition
is not difficult to satisfy.
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