Int. J. Appl. Math. Comput. Sci., 2004, Vol. 14, No. 2, 189-199 ‘ ames
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In this paper the classical detection filter design problem is considered as an input reconstruction problem. Input reconstruc-
tion is viewed as a dynamic inversion problem. This approach is based on the existence of the left inverse and arrives at
detector architectures whose outputs are the fault signals while the inputs are the measured system inputs and outputs and
possibly their time derivatives. The paper gives a brief summary of the properties and existence of the inverse for linear and
nonlinear multivariable systems. A view of the inversion-based input reconstruction with special emphasis on the aspects of
fault detection and isolation by using invariant subspaces and the results of classical geometrical systems theory is provided.
The applicability of the idea to fault reconstruction is demonstrated through examples.
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1. Introduction and Problem Formulation of theoretical complexity but also realizability. Besides
these difficulties, one of the underlying problems with
In the solution of the problem of fault detection and isola- the application of nonlinear approaches is that most of
tion (FDI), the principle of analytical redundancy is usu- the standard results established in linear systems theory
ally used when direct measurements from the system aregnust be relinquished, even if they comprise the basics for
not available. One method to infer the component fault our understanding of dynamical systems. Nevertheless, it
status and analytically detect the existence of a fault is has already been widely recognized that the formulation
to look for anomalies in the plant’s output relative to a and solution of many control and filtering problems in the
model-based estimate of that output. Plant models, how-framework of nonlinear theory of systems is much more a
ever, are generally incomplete and inaccurate. Moreover,matter of necessity than of pure mathematical virtuosity.
the fault detection and isolation algorithms often assume ] ]
the presence of a particular failure mode. These plantdy- N model-based FDI, the fault detection and isola-
namics and failure mode modelling errors can either causelion Problem can be characterized as a two-step proce-
a high false alarm rate, or make it difficult to detect or iso- dure: The firstand basic problem is the detection and iso-
late the faults. Any robust detection and isolation method lation of faults on the basis of the residual signal gener-
that is designed to overcome the problems associated witrted by a filter or detector. In some cases providing in-
these modelling errors must be able to distinguish amongformatlon about the real magnitude of the fault signal is

model uncertainties, disturbances and fault signals in or-"eéquired. This is usually referred to as fault estimation.
der to avoid excessive false alarms or missed detections. !N the second stage of the procedure the validation of the
fault effects, i.e., the evaluation of the actual failure situa-

One possible approach to robustness relies on the usgjon is accomplished by using a special logic or hypothesis
of models that describe the behaviour of the plant more testing.
precisely. This often leads to varying structure, time de-
pendent or nonlinear models whose successful treatment ~ The main objective addressed in this paper is the de-
depends on the development of new, more complex the-sign and analysis of a residual generator for classes of
ories. Starting with nonlinear system models, however, nonlinear input affine systems subject to multiple, possi-
may lead to difficulties not only from the point of view bly simultaneous faults given in the most general form in
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the state space as These approaches are used in a number of situations dif-
. fering in the assumptions about noise, disturbances, ro-
#(t) = f(z,u) +Zgi($,U)w bustness properties and in the specific design methods.
pt For comparison, see some representations in the litera-
m (1) ture such as (Mangoubi, 1998; Mangoubi and Edelmayer,
y(t) = h(z,u) + Z&(w,u)m, 2000).
i=1 It will be shown in this paper that residual genera-

tion for both linear and nonlinear systems can be viewed
as an input reconstruction process and can be solved by
using the idea of system inversion. The close relation of
input reconstruction with the inverse problem was recog-
nized by many authors earlier, see, e.g., (Hou and Patton,
1998), but the application of the idea to FDI was first con-
sidered by Szigetet al. (2000). In the past few years,
the solution of various types of inverse problems became
t particularly important in control and filtering. Inversion,
which is a key to our approach, was studied, e.g., in the

where f, g, h, ¢ are analytic functions and(t) € X C
R™, u(t) € R™, y(t) € RP being the vector valued
state, input and output variables of the system, respec-
tively, v(t) is the fault signal(vy, ..., v,,)" whose ele-
mentsy; : [0,4+00) — R are arbitrary functions of time.
The fault signalsy; can represent both actuator and sen-
sor failures, in general. The goal is to detect the occur-
rence of the components; of the fault signal indepen-
dently of each other and identify which fault componen

specifically oF:curred._ ) ) ) early works (Silverman, 1969; Hirschorn, 1979) for LTI,
Along with the discussion of this paper, linear and 5,4"\yas also considered in (Fliess, 1986: Isidori, 1995)
nonlinear problems will be treated in parallel to each ¢, \,njinear systems. On-line dynamic inversion meth-
other. Results for linear time invariant (LTI) systems will ods were successfully applied to many interesting prob-
always be viewed as special cases of the results obtainec,iemS in aerospace and aviation, such as e.g. (Krupadanam
for the nonlinear problems specified by the general systemg; al, 2002). A summarizing study on related ideas was
model (1). published in (Goodwin, 2002).
In our approach a detector, i.e., another dynamic sys-
tem is constructed with outputg and with inputsu, y
and possibly their time derivatives or integrals which, in
the most general form, can be thought of as

Input reconstruction addresses the problem of de-
signing a filter or detector which, on the basis of the in-
put and output measurements, returns the unknown inputs
of the original system by utilizing its inverse representa-

) = o(Cy s un sy ), tion, see Fig. 1. Though the solution of the inverse prob-
_ _ 2)

V(t) = w(()y7y7"'7u7u7"')7
with the state variabl€ (t) assumingy,w are arbitrary v (t) l l
analytic time functions. The filter reproduces the fault sig- — ; ;
nal at its output that is zero in the normal system opera- : L y(®) n() !
tion, while it differs from zero if a particular fault occurs. vi(t) | ) —

This detector should satisfy a number of require- % | 2| l

ments. It should distinguish among different failure | () vi(t) |
modes v;, e.g., between two independent faults in two u(t) ; !
particular actuators. Moreover, it is aimed to completely | |

decouple the faults from the effect of disturbances and
also from the input signals. Note that for LTI systems the e J

filter (2) traditionally serves as a residual generator which

assigns the fault effects and the disturbances to disjoint Fig. 1. Input (fault) reconstruction and the idea of system
subspaces in the detector output space. inversion: 3 is the plant,D is the detector which,

Various solutions are known for generating residuals. most conveniently, can be obtained as the (left) in-
The traditional methods of residual generation are based verseX., " of the original system.
on the error dynamics of a state observer, see, e.g., the ge-
ometric approach of detection filters as initiated by (Mas- lem received considerable attention in the past years, there
soumnia, 1986) for LTI systems. The parity space ap- remained a number of open problems in this area, espe-
proaches were discussed in (Gertler, 1998), the unknowncially from the point of view of fault detection problems.
input observer in (Chen and Patton, 1998), the multiple Earlier approaches to system inversion (Silverman, 1969)
model and the generalized likelihood ratio approaches in considered the properties and calculation of the inverse
(Basseville and Nikiforov, 1993), just to mention a few. as guaranteeing neither minimality (or observability, de-
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tectability) nor stability properties of the resulting inverse discussed and geometric interpretation of inversion-based
system. fault reconstruction in nonlinear systems is given in Sec-
tion 4. This geometric approach not only proved to be
useful from the point of view of better understanding the
idea, but it also creates a theoretical basis for constructing
efficient inversion algorithms. The technique is applied to

lem can be found, e.g., in (Szigeti al, 2002), as well as ) i _
in (Varga, 2002). One of the advantages of the inversion simple demonstrative examples for both LTI and nonlinear
' systems.

approach is that the extension of the idea to nonlinear sys-
tems is possible. It will be shown in this paper that, by
using this concept, linear and nonlinear problems can be2_ Input (Fault) Observability of LTI Systems
treated in the same theoretical framework. In most fault

detection and residual generation methods developed forConsider the minimal state space representation of the LTI

The applicability of system inversion to FDI in LTI
systems was first demonstrated in (Szigstal, 2001).
Additional issues of inverse computation for the FDI prob-

LTI systems this generalization cannot be made. system

The content and organization of the paper is as fol- i — Az + Bu
lows. If we want to reconstruct the unmeasured fault sig- ’ (3)
nal at the output of the detector, the property of input ob- y = Cz + Du.

servability is an important quality of the system. There-
fore, we begin with the background of input observability
of LTI systems. Some issues of input observability for
linear systems were discussed, e.g., in (Hou and Patton
1998). These preliminary results are briefly reviewed and
the idea is related to system invertibility in Section 2. Definition 1. (Hou and Patton, 1998) The input(t) is

In the past years geometric approaches proved to beSaid to beobservableif y(¢) = 0 for ¢ > 0 implies
particularly useful and successful means for the designu(t) =0 for ¢t > 0 provided thatz(0) = 0.

and analysis of FDI methods. They provided fundamen- pefinition 2. (Basile and Marro, 1973) A linear system

tal tools for the design of residual generators aimed atig cq|ledieft invertibleif the input u(t) can be recovered

providing structured and directional residuals, i.e., detec- o the knowledge of the output function(t) and the
tion filters. Most of the results obtained for the classi- initial state z(0).

cal detection filter theory were made available on the ge-
ometric platform, see, e.g., the results of (Massoumnia, Remark 1. For any known initial conditionz(0), input
1986; White and Speyer, 1987; Massoumeiial, 1989)  observability implies left invertibility.

for LTI, (Edelmayeret al., 1997) for linear time varying
(LTV), and (Hammouriet al,, 1999) for bilinear systems
based on geometric theory originated in (Wonham, 1992).

Input observability of the linear dynamical systems (3) is
closely related to their invertibility. In order to show this
property, let us summarize some important results from
the literature by considering the following proposition.

Let us denote byQ2 the set of all possible inputs
of (3) and assume that they are at leasttimes differ-

) ] entiable.
Efforts to extend geometric concepts to nonlinear

problems were made, e.g., in (De Persis and Isidori, 2001).Proposition 1. By taking the restriction of the input set

The generallzgnon_of geometric ideas to nonlinear sys- Qp={uecQ: ul0)=0,
tems, such as invariant subspaces used for LTI systems in
a standard way, may prove to be cumbersome from sev- u(0) =0,. .. 7u(n71)(0) =0}

eral points of view in practice. Our approach attempts to

avoid difficulties stemming from nonlinear invariant sub- and considering the system (3) ov&g, left invertibility
space theory and invariant distributions. It will be shown and input observability are equivalent.

that the inverse problem for nonlinear systems can be dealipyoof By successively taking the derivatives of the out-
vy|th with rele}nve ease on the basis of standard geomgt-put, one has the equations

ric concepts introduced in (Wonham, 1992) and partly in

(Isidori, 1995). y = Cx + Du,

Therefore, it makes sense to relate the inversion prob- j = C Az + CBu + Di,
lem to the classical results of geometric detection filter
theory in Section 3. Section 3.1 gives geometric interpre-
tation of the inverse problem in LTI systems. Then, we
gontinue with input observabil.ity properties in the non- Yl = CAV ' 4 CA" 2Bu + - - -
linear framework. The generalization of the concepts ob-
tained in the previous sections to nonlinear problems is + CBu™? 4 Dy Y,
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and fort = 0 on €2, we get Let us consider the left invertible LTI system
y = C.T(O), T = Ax + Bu,
The derivatives of the measurement vector can be written
as
y" = CAM 1 a(0). @ = Az + Bu,
. . y = Cu,

It follows that the output functiony(t) determines
uniquely the initial statex(0) which, according to Re- y = Ci = CAzx + CBu,
mark 1, means that left invertibility and input observabil-
ity are equivalent orf),,. (] ij = CA%x + CABu + CBu,
Remark 2. (Fault observability and invertibility.) In case
we work with fault detection problems, i.e., we consider
systems of the type y*) = CAFz + CAF'Bu+ ...+ CBuF Y,

& = Az + Bu+ Ly, wherek > 0.

Let us denote bye; the rows of the matrixC. If
y = Cxz + Du+ Lov, 4) there exist integers; > 0, such that
g
k Ti—

where the fault signals € R? may represent both actu- cA*B =0, ¢A"T'B£0Nk<ri—1, (6)
ator and sensor faults as reflected in the structure of thegnq
matrices Ly, Lo, all derivatives of the fault signals in the o
diagnostic system models will be zero for= 0, since a A" B
it is always supposed thai(t) = 0 if ¢t < ¢, > 0. It rank : =m, )
follows that the residual system is invertible iff it is in- A1
put observable. Clearly, if., is a full rank matrix, the ‘p

inverse

can be obtained by simple algebraic calculations.thenr; is called a relative degree of the system. Based on

For treating more general cases, however, we need to conthe individual components;, the vector relative degree

sider the properties of invertibility in greater detail in the r is defined as- = [ r4,...,7, ]. Then one can construct
next sections. the equations
W[ aan AT
: = T+ : u. (8)

3. Invertibility and the Relative Degree
of Linear Systems

o || an e AT

Obviously, from the representation (8) the input variable

Consider the LTI systen$ given in (3) and the construc-  ; can be obtained by inversion. The inverse system can
tion of its inverse representation. The systéhis said to be given in the possible nonminimal form:

be left invertible (i.e., it has a left inverse denoted®y*) )
if there exists a corresponding system representation such 1 = AinvN + BinyViny

that the composition, shown in Fig. 2, will result in the

u = Cznvn + Dinvvinvy

identity for each paif(u,y) (cf. Definition 1).
where
T
vi’ﬂv:[yl ygrl) e Y e yz()rp) . (9)
u(t) S y(t) S-1 u(t) If the realization of the inverse system is minimal, then
Ay gives the so-called zero dynamics ¢6f, B, C).

Throughout this paper, it will be assumed that the zero
dynamics of the system is asymptotically stable, i.e., the
residual system is minimum phase. If this condition does
not hold, the method presented here is not applicable.

Fig. 2. The composition of system§& and
S~ resulting in the identity.
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3.1. Geometrical Properties of the Inverse
in LTI Systems

In order to show the existence of a left inverse system in

LTI systems consider the following results.

Proposition 2. The systemS given in the state space
form (A, B, C) is left invertible iff B is monic and

V*(B)NIm B =0, (10)
where V* is the supremal( A, B)-invariant subspace in
ker C' and F is the feedback, such thad + BF)V* C
V*, i.e., (A+ BF) is maximally unobservable, see (Won-
ham, 1992).

An equivalent description of the invertibility can also
be given by the following proposition:

Proposition 3. The systens is invertible iff for the max-
imal controllability subspacéR* contained inker C, the
condition R* = 0 holds, see (Morse and Wonham, 1971).

Remark 3. The subspac&™* can be calculated by using
the (A, B)-invariant subspace algorithm without explic-
itly constructing F'.

Proposition 4. Consider the left invertible systei§ :
(A, B, C). The dynamics of the (left) inverse can be given
as the restriction of A + BF') on V*, i.e.,
Ainw = (A+ BF) | V™. (11)
Corollary 1. The dimension of the state-space for the in-
verse system i®;,, = dimV* = n — p(r), wheren is
the state dimension aof, r is its (vector) relative degree
and p(r) = >0, .

Proof. Let us denote byl’* the insertion map of)*,
and consider the state transform definedby= Tz =
(¢ n]T, €ev*t, neV*, where

T—lz[B A ve |, and ImAcCV. (12)

From the invertibility conditionV*N Im B = 0, it follows
that V* C (Im B)*, i.e., the transformatiorl” is well
defined.

In the new coordinate system the state matrices will
take the form of

i_ A A |} 5 By |}o
Ay Agg | }n—p’ 0 |}nop’
~—

p n—p
c=a &,

where p = dim (V*1).

Since V* C ker C, the matrix C, should be zero,
i.e.
C = [ o } :
~— =
P n—p

Also, since AV* C V* + Im B, it follows that

An
Ao

A
Aso

Im B
V*

0
V*

ApV*

i.e., there exists a unique matri%, (since B; is monic)
such that

Bng = 7%7112.
By choosing
F= [ 0 R } :
we get
i = All AIZ Bl
A+ BF = _ _ 0 F
- Ag1 Ago - 0 [ 2 ]
1411 0
AQl A22 )

To simplify the notation, the matrice®, and C; will be
referred to asB and C, respectively. By the selection of
T,onehasB =[1I, 0]%.

Applying the feedbacky = Fyn + v to the trans-
formed system, one gets the following equations:

¢ = A€ + B, (13)

ce.

Y

One can prove by induction that from A*B = 0, it fol-

lows that ¢, A}, B = 0 and ¢; A} 'B # 0 for k <
T — 1.

Since dim(V*+) = Y7, r;, see (Wonham, 1992),
one can define a state transfognfor (13) such that

T
-1
gy

S¢€,
Yp

b—1
ysr
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where
C1
g At
S = : (14)
EP
A
It follows that
v=BYS () — SA;,5  w), (15)

where SA,, S~ is exactly the observer canonical form
of Aq1. From

0 = Agon + Ay S~ 1w,

u = Fon+ v, (16)
one may get the matrix
Aoy = (A+ BF)|V* = A, (7)

in the basis represented LY, which proves Proposi-
tion 4. [ ]

Corollary 2. The inverse dynamics ofA, B,C) can
simply be obtained by calculating* using the (A, B)-
invariant subspace algorithm. Choose a basis gt
and compute the state transformation matfixas defined
by (12).

Let us introduce the vector v;,, =
[ wT ™ .. ) )T as the input of the in-
verse system where is defined by (14). Then, one can
define

/_1215_1
0 b

where (A;., Binyw) describes the zero dynamics as

Ainv = A227 Binv = (18)

N = Ainv) + BinyVine. (19)
The inputu can be obtained from the equations
U = CinyN + DinyVino, (20)
where C;,,, = F»>. Moreover,
Doy — 7 — | SA057 0 ] . 21)
0 0

The matrix 7 is given as

Zy 0 -~ 0 Ej
0 Z -~ 0 E,
0 0 Z, E,
where
1 0 0
0 0
0
Zi: : ) EZ: eT 7(23)
000 - 10 '
0

with e; being thei-th unit vector inR?.

To conclude this section let us recall the characteri-
zation of the transmission zeros of linear systems:

Proposition 5. (Transmission zeros.) The transmission
zeros of(A, B, C) are the poles of the inverse dynamics,
i.e., the eigenvalues dfA + BF)|V* = A|V*.

Example 1. In order to demonstrate the inverse calcula-
tion in LTI systems based on geometric characterization of
the procedure presented in the previous section, consider
the system representation (4) given by the matrices

-1 0 -1 1 0 0
1 -2
e 0 0 . B= 10 ’
0 1 0 -1 0 1
0 0 2 0 0 0
0 0
I_ 0 0 o 00 10 7
1 1 00 01
1 -1

assuming thatD and M are zero. It is simple to ar-
rive at V* = kerC, i.e.,dim V* = 2. Since dim V* =

n — p, it follows that the relative degree of the system is
p=4—2=2. Indeed, a simple calculation reveals that
the relative degree =1 1],ie,r =1, ra = 1
and, thereforep = 1+ 1 = 2. SinceV* N ImL = 0,
(A, L,C) is leftinvertible.

The calculation ofY*+ can be carried out from the
span of the rows of”, i.e.,

V*L_[

1
0 0 0]_0

0 0 0 1
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and one can choose

Lt =

1000
0 1 '

Sincer; = 1, ro = 1 and S is the identity matrix, by
(15) the unknown inputg;, and v, can be derived from
the first two equations of (24) as

-1
121 1 1 Z1 O -1 Z1
The state transform can be written as a simple change of Vs I %o Tl o9 0 2

coordinatesz;:

0 010
*
T % _ 0 0 0 1
Lt 1 0 0 O
01 0 0

Then the coordinate transforms= Tz, B = TB and

L =TL are written as

I3 0 1 1 1
_ - 1 -1
z = x4 5 B = O O s L =
T 0 0 0 0
To 1 0 0 0
Moreover, with
_ 1
C=CT"'=0T" = 000
01 00
and A = TAT ! = TATT
0 -1 0 1
< Ay Aps B 2 0 0 0
B AQl AQQ B -1 1 -1 O 7
0 0 0 -2

one arrives atA;,, = A|V* = Ass. Then the trans-
formed state space system can be written in the form

z1 0 -1 O 1 Z1
V) o 2 0 0 0 Z2
X -1 1 -1 0 23
Z4 0 0 0o -2 zZ4
0 1 1 1
0 0 1 -1
+ U — v. (24)
0 0 0 0
1 0 0 0

As the zero dynamics ig = |23, z4]7, the inverse
system can be represented as

o I BB

ol

which, by using the identitieg; = 21, yo = 22, 23 = 11
and z4, = 2, can be expressed in the form

.
v = —5(—211 — U2ty — 24— u),

1, . .
vy = —5(—y1 + 92 + 2y1).

4. Geometric Characterization of
Inversion-Based Input Reconstruction
for Nonlinear Systems

To create a basis for further discussions, let us recall some
elementary facts and definitions from nonlinear system
theory as found, e.g., in (Isidori, 1995; Nijmeijer and
van der Schaft, 1991).

Consider the nonlinear input affine system written in
the form

i = f@)+g(@)u,  glz) =D gil@)u,
i=1
u e Rm7 Yy S Rp7

y;j = hij(z), j=1,...,p. (25)

A smooth connected submanifoltf which contains the
point z, is said to bdocally controlled invariantat z,
if there exists a smooth feedback(x) and a neigh-
borhood U, of z, such that the vector fieldf(z) =
f(z) + g(x)a(x) is tangent toM for all z € M N U,,
i.e., M is locally invariant underf.

A smooth connected submanifoltf that is locally
controlled invariant atz, and with the property that
M C h=1(0) is called an output-zeroing submanifold of
Y. This means that for some choice of the feedback con-
trol a(z) the trajectories of which start in M stay
in M for all ¢ in a neighborhood of, = 0 while the
corresponding output is identically zero.

A submanifold M is said to be an integral subman-
ifold of a distribution A if for every x € M and the
tangent spacd, M to M at x one hasT, M = A(z).
The maximal locally controlled invariant output-zeroing
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submanifold for a systen}. can be determined by the
following zero dynamics algorithm

Let U, be a neighborhood aof, and
1. M,=h"10)NnU,,

2. assume thatM;, is a submanifold through:, and
define My, as

M1 = {z € My | f(x) € span{g;(z)} + T, My}.

If there is aU, such that)M,, is a smooth submanifold
through z, for eachk > 0, then z, is called a reg-
ular point of the algorithm and there is /& such that
My = My« forall [ > 0. If, in addition,
dimspan{g,;(x(,) |Z = 17m} =m, (26)
and
dimspan{ g;(z) | i = 1,m} N T, M.

is constant for allz € M}, then the maximal connected
component of M-, denoted byZ*, is the locally maxi-
mal output-zeroing submanifold df. Moreover, if

dimspan { g;(z) ¢ =1,m} N T, M. =0, (27)
then there is a unique smooth feedback contrdl such
that f*(z) := f(z) + g(x)a*(x) is tangent toZ*.

An algorithm for computingZ* in general cases can
be found in (Isidori, 1995) and (Nijmeijer and van der
Schaft, 1991). However, in some casg$ can be de-
termined easily by relating it to the maximal controlled
invariant distributionA* contained inker (dh), given by
the following controlled invariant codistribution algorithm
(ClcDA):

0y = span{dh;|i = 1,p}

m

Qer1 = U+ LU ngh) + ZLgi(Qk Nng"). (28)

=1
Moreover, A* = Q.

Theorem 1. (Isidori, 1995) Suppose that, is a regu-
lar point regarding the controlled invariant codistribution
algorithm anddim g(x,) = m. Also suppose that

Lgi (Qk N gL) C Qk

forall £k > 0. Then, for all z in a neighborhood ofr,,
one has

A (z) =T, Z".

Remark 4. Conditions of Theorem 1 are trivially satisfied
for linear systems, therefore/* = Z*, which provides
the result of Proposition 10 in a straightforward way.

4.1. Nonlinear Systems with a Vector Relative Degree

The conditions of Theorem 1 are satisfied for nonlinear
systems having a vector relative degree. A multivariable
nonlinear system is said to have a vector relative degree
r={ry, -+ ,rp} atapointz, if
Ly, Lihi(z) =0 (29)
forj=1,....,mandi=1,...
assuming that the matrix

,pforall k < r; —1,

Ly L}~ hy(x) L, Lt b ()
Az) ==
Ly Ly hy(a) Ly, Ly hy(x)
is nonsingular atc = =, or, equivalently,

(30)

rank A(z,) = m.

If condition (30) does not hold but there exist numbeys
satisfying the property (29), thery are called theelative
ordersof the system (25).

Remark 5. It is easily seen that for linear systems rep-
resented in the formi = Ax 4+ Bu, y = Cx, the
conditions (29) and (30) inherently include the condition
(6) since, in this case, we writ¢(x) = Az, g(x) =

B, h(x) = Cwz, which implies Ljh(z) = CA*z and
therefore L, L h(z) = CA*B.

Lemma 1. Let us suppose that the system (25) has a rel-
ative degree. Then the row vectors

dhy (o), ., AL} " ha(x,), .., dhy(x0),

1

oy dL T ()

are linearly independent.

Remark 6. From the proof of the lemma, see (Isidori,
1995), it is clear that (30) constitutes a necessary condi-
tion, i.e., the existence of the finite relative orders alone
does not ensure linear independence of the entire system.

Remark 7. Since for any real valued function there
holdsdL¢\(xz) = LydA(x) and, by the algorithm CIcDA
one has that all the codistributiontL’}hi(x), satisfying
the propertngjL’]ihq;(x) = 0, are contained 2., i.e.,
in A*+, it follows that A* C span {dL;%hi |k =0,r; —
L,i=1,p}t.

The conditions (26) and (27) can be interpreted as a
special property of thimvertibility of the system (25). Our
interest in the determination of the output-zeroing man-
ifold is motivated by the role played by these issues in
the principle of invertibility and the construction of the
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reduced order inverse of linear and nonlinear controlled
systems.

As has been already statedyifnk A(x) = m, then

Z*={a|Lkh;=0,i=1,...,p

and k=0,...,m;, —1} (31)
and
A*! = ker span {dL’;hi, i=1,...,p
and k=0,...,r;, — 1}, (32)

see also (Nijmeijer and van der Schaft, 1991). Moreover,
the control feedback*(z) = a(x) is the solution of the
equation

A(x)a(z) + B(z) =0

by using the notation

(33)

L}lhl (,T)
B(x) :
L;php(x)

Let ¢ = Z(z) denote the diffeomorphism formed by

(€")i=1,p defined by &' = (Lihi(x))k=0.r,—1- Itis @
standard computation that

éii — Ai£i+Biyz(Ti)7

(34)

where A* and B are of the Brunowsky canonical form.
Let us note that! = y;.

Let us complete=(z) to be a diffeomorphism

U A(z)
on X. Sinced, = = [dLh;], one has
¢ = [dLEh:) flo— + [ALRs]gle-1u, (36)
i.e., maintaining the nonzero rows
[€5.] = Blo-1 + Alg-1u (37)
and
7 = 0z Aflo—1 + O Aglo—1u. (38)
The zero dynamics can be obtained by
0= 0:Aflo-1 + OxAgale-1, (39)

putting ¢ = 0. If ¢ is involutive, then one can choose
dA C g+, and then

i) = OpAf|g-1. (40)

Example 2. Let us consider the following nonlinear input
affine system subject to multiple faults:

q

> gila)w,

=1

i = fo(x)+ Z fi(z)u; +

yj = hj(x), (41)

If one considersf (z,u) = f,(z) + > i~ fi(x)u;, then,

by introducing timet¢ as an auxiliary state, one may ap-
ply the results of the previous section to the augmented
system.

The decoupling matrixA will also depend on the
control inputsu and, similarly, on its derivatives, i.e., the
condition for having a vector relative degree will also be
dependent on the inputs. Thisis in contrastto the LTI case,
where the inputsu do not play any role in the problem
solvability.

Consider the system (41) determined by the func-
tions

7=1...,p.

To 1
0 —XT2
folx)=f(x)=| mzy |, qu(@)=| 0 |, (42)
—1.223 —Ty
T 1
0
0
ga(x) = 1 , hi(x) =1, he(x) =23, (43)
€

i.e., for the sake of the greatest possible simplicity, we
consider an autonomous system subject to failure modes
v; and vy, Then

|

Let us define the diffeomorphism

1 0
0 1

A(z) = , B(x)= 2

] L (44

T1T4

D(x)

with

0, (45)

o O O O =
S O = O O
o O O = O
oS = O O O
_ o O O O
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It follows that with
B(p) = Bo + p1B1+ -+ pnBn,
0 - 0 Lj(p) = Ljo+p1Lj1 + -+ pnLjn,
= | -12% |+ | —m |t | & | _ _
13 1 _ng where thep,’s are time-varying parameters for the LPV

case and parameters that depend on measurable outputs
and y = ¢. One can obtain the inverse system by using for the qLPV case, respectively (Bokor and Balas, 2004).
the relation It is assumed that each paramejgr and its derivatives
range between known extremal values. Let us denote by
B P this parameter set.
§1m2
From ¢ = y, one get the failure modes

To apply the ideas presented in the previous sections
to the systems (48), it is necessary to introduce the param-
eter varying counterpart of the invariant subspate

+9. (46)

U2 — Y12 (47) spaceV is called a parameter-varyingA4, B)-invariant
subspace (or, briefly, thed( B)-invariant subspace) if for
with all p € P one has$, A(p)V C V + B(p).$,

[ U1 — ] Definition 3. Let B(p) denote Im B(p). Then a sub-
V=

The set of all parameter varyingA, B)-invariant sub-
spaces containing a given subspdtds an upper semi-
lattice with respect to the intersection of subspaces. This
b 1 semilattice admits a maximum, denoted by

0 —
n= 1 -12ys |+ | —m2 | (11 —m)

0 V* = max V(A(p), B(p), C).
+ | oy | (2 —yane).

-3 |

This subspace can be computed by a finite algorithm for
systems of the type (48), see, e.g., (Bahal, 2003) and
(Szaboet al, 2003) for details. Using this subspace, the
computation of the inverse system can be done following
the same steps as in the LTI case.

For a general nonlinear system which cannot be rep-
resented in the form of (25), the question of the existence
and computation of the codistributiof* is far form be-
ing trivial. Moreover, the computation of the state trans-
formgtio_n map thgt is necessary .to deter.mine the zero .dy—5_ Conclusions
namics involves, in general, the integration of partial dif-
ferential equations. Therefore, the general treatment of thein this paper the fault detection and isolation problem has
problem in the framework of geometric nonlinear systems been studied in view of the fault reconstruction process by
theory is not often computationally tractable and some means of dynamic system inversion. Along the discussion
useful progress requires an intermediate level of complex-of this problem, linear time invariant as well as input affine
ity. nonlinear systems with stable zero dynamics were consid-

Linear parameter varying (LPV) modelling tech- ered. It was shown that the detector relying on the inverse
niques have proven to be useful in this application do- representation of the original system reconstructs the fail-
main. The idea is that a lot of nonlinear systems can beure modes at its output on the basis of the standard in-
converted into a quasi-linear form, obtaining the so-called put/output (sometimes state variable) measurements. The
quasi-linear parameter varying (qLPV) system models in paper was devoted to the exposition of geometrical prop-
which the state matrix depends affinely on a parametererties of the inverse and attempted to provide a better un-
vector. These classes of systems subjected to faults can béerstanding of the conditions of the inversion procedure
described as with a special focus on the aspects of fault detection and
isolation. A procedure for the construction of the inverse
system based on the concept of invariant subspaces and on
the related coordinate transformations was given. It was
shown that the solution methods obtained for nonlinear
problems can be directly applied to the linear framework

m

i(t) = Alp)a(t) + Blp)u(t) + ) Lj(p)v;(t), (48)

j=1

y(t) = Cax(1),
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and the linear solutions can be viewed as special cases ofsidori A. (1995): Nonlinear Control Systems, 3rd Eé— Lon-

the nonlinear ones. The procedure resulted in a minimal
dimensional inverse system supposing that (i) it is given

in the state space form, (ii) the representation has a rel-

ative degree and (iii) the representation is left invertible.
The availability of state variable measurements (in certain

don: Springer Verlag.

Krupadanam A.S., Annaswamy A.M. and Mangoubi R.S.
(2002): Multivariable adaptive control design with ap-
plications to autonomous helicopters- AIAA J. Guid.
Contr. Dynam., Vol. 25, No. 5, pp. 843-851.

cases, a direct access to derivatives) is assumed. Considviangoubi R.S. (1998)Robust Estimation and Failure Detection

ering the recent progress of advanced measurements tech-

nology and the wide availability of sensors capable of pro-
viding the derivatives of a measured variable (see, e.g.,
some applications in aviation technology), this condition

is not difficult to satisfy.
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