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The currently dominant speech recognition technology, hidden Markov modeling, has long been criticized for its simplistic
assumptions about speech, and especially for the naive Bayes combination rule inherent in it. Many sophisticated alternative
models have been suggested over the last decade. These, however, have demonstrated only modest improvements and
brought no paradigm shift in technology. The goal of this paper is to examine why HMM performs so well in spite of its
incorrect bias due to the naive Bayes assumption. To do this we create an algorithmic framework that allows us to experiment
with alternative combination schemes and helps us understand the factors that influence recognition performance. From
the findings we argue that the bias peculiar to the naive Bayes rule is not really detrimental to phoneme classification
performance. Furthermore, it ensures consistent behavior in outlier modeling, allowing efficient management of insertion
and deletion errors.
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1. Introduction

Although speech recognition requires the fusion of several
information sources, it is rarely viewed as an expert com-
bination problem. Such approaches were abandoned in
favor of the hidden Markov modeling technique (HMM)
(Huang et al., 2001), which treats speech as a stochas-
tic process. The source of the success of HMM is that it
offers a sound mathematical framework along with effi-
cient training and evaluation. The price is that the sim-
plistic mathematical assumptions of the model do not ac-
cord with the real behavior of speech. One of these as-
sumptions is the conditional independence of the spectral
vectors. Several alternative models have been proposed
to alleviate this flaw, but these have brought only mod-
est improvements at the cost of a considerable increase in
complexity. Rather than seeking to eliminate the incor-
rect modeling bias, here we hope to gain a better insight
into why HMM performs so well in spite of the unrealistic
naive Bayes assumption.

The structure of the paper is as follows: First of all,
we define an algorithmic framework that treats speech
recognition as a classifier combination problem. It will
help us to understand the recognition process from a clas-
sifier combination point of view, and also allow us to ex-
periment with alternative combination schemes. After this
we show that HMM is just a special case of our algo-
rithm, obtained when applying the naive Bayes rule. We
also briefly present a family of alternative technologies,
the segmental modeling framework. In Sections 4 and 6

we assess the pros and cons mentioned in the literature
regarding the use of naive Bayes in classification. In Sec-
tion 7 we show that the recognition of speech requires an
additional step, namely, the modeling of outliers, and ar-
gue that naive Bayes surmounts this obstacle very well.
Lastly, in Section 8 we discuss experiments conducted on
a small speech corpus to support our assertions, and then
provide a summary of the results in Section 9.

2. Speech Recognition as a Classifier
Combination Problem

Although speech recognition is obviously a pattern classi-
fication task, the most successful solution, hidden Markov
modeling, is not a classification algorithm in the strict
sense, but a generative model for stochastic random pro-
cesses. This is because speech recognition does not fit
the usual pattern classification framework. That is, most
classification algorithms assume that the items to be clas-
sified are always represented by the same number of fea-
tures. In addition to that, both the dimension of the feature
space and the number of classes must be reasonably small.
In contrast, speech is a continuous stream of acoustic in-
formation. Even if we assume that the talker must stop
sometimes, the possible utterances vary in length and their
number is practically unlimited. A possible solution is to
trace the problem back to the recognition of some properly
chosen building blocks. During recognition these building
blocks have to be found, identified, and the information
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they provide needs to be combined. This approach turns
speech recognition into a task of classifier combination in-
tegrated in a search process.

In the following we present a general speech decod-
ing scheme in the spirit of classifier combination. Firstly,
it makes it possible to experiment with alternative com-
bination schemes which could not easily be done within
the traditional HMM framework. Secondly, it provides a
more intuitive picture of how the whole recognition pro-
cess works.

Algorithm 1 shows the pseudocode of our general-
ized speech decoder. Expressed simply, the algorithm
works in the following way: Let us assume that our build-
ing blocks are denoted by the elements of the symbol set
� . Let the speech signal be given by the series of measure-
ments � � ��� � � � � �� . The goal of recognition is to map
the speech signal � to a series of symbols � � �� � � � ��,
where �� � � . The algorithm works from left to right,
and stores its partial results in a priority queue. Having
processed the signal up to a certain point �, the algorithm
looks ahead in time and, from the corresponding measure-
ments, it collects evidence that the next symbol belongs
to the time interval being inspected. As neither the ex-
act length nor the identity of the next segment is known,
we examine every time index �� � � � �� � � �� � � � that
might be the end point of the segment. Each element �

of the symbol set is matched to the interval ��� � ��, and
from each ���� �� pair a new hypothesis is formed and put
in the hypothesis queue. As every hypothesis has several
extensions, this means creating a search tree. By adjust-
ing the hypothesis selection strategy, the pruning and the
stopping criteria, one can control how the search space is
traversed and pruned.

When the whole signal has been processed, the best
scoring leaf is returned as the result. The score of a hy-
pothesis is calculated in two steps. First, there is a func-
tion (��) to combine the evidences for each symbol as col-
lected from the local information sources. Second, this
local evidence is combined (via ��) with the prefix of the
hypothesis to obtain a global score. So, in effect, classifier
combination occurs at two levels.

Obviously, we obtain quite different decoders de-
pending on how the measurements � �, the symbol set �
and the functions �� and �� are chosen. Researchers
agree only in that �� and �� should work on probabilis-
tic grounds. In this case Bayes’ decision theorem guaran-
tees optimal performance, and statistical pattern recogni-
tion provides methods for approximating the probabilities
from training corpora.

The acoustic information sources �� display the
greatest variation from system to system. Traditionally,
the acoustic signal � is processed in small uniform-sized
(20–50 ms) chunks called “frames”, and the spectral rep-

Algorithm 1. Generalized Speech Decoding Algorithm

solutions := �

hypothesis queue := ������ ��� ��

// a hypothesis consists of a time index, a phoneme string, and
// a score
while there is an extendible hypothesis do

select an extendible hypothesis ���� �� �� according to
some strategy
if � � � then

if only the first solution is required then
return �

else
put � on the list of solutions

end if
end if
for �� � �� �� �� �� � � � do

for all � � � do
�� �� ����� ��� �

��� // where �� estimates the cost of
fitting � to ��� ���

// based on the relevant 	� mea-
surements
�� �� ������� � // where �� calculates the cost of
attaching � to the

// hypothesis prefix �
if pruning-criterion (�� � �

�) then
construct a new hypothesis ������ � �� ��� and put it
in the hypothesis queue

end if
end for
if stopping-criterion(��� ���) then

break
end for

end for
end while

resentation of these serves as a direct input for the model.
It has been observed, however, that better results are ob-
tained if this representation is augmented with features of
longer time-spans so the feature vectors in current systems
are a combination of the local and the neighboring 5–50
frames (Huang et al., 2001).

As regards the selection of the building units, the
most reasonable choice is the phoneme, since phonemes
are the smallest pieces of information carrying units of
speech (in the sense that the insertion/deletion/substitution
of a phoneme can turn a word into another one). Further-
more, in many languages there is an almost a one-to-one
correspondence between phonemes and letters, so work-
ing with phonemes is an obvious choice when convert-
ing sound to writing. Nevertheless, smaller or larger units
could be used as well. For example, there are arguments
that syllables give a more suitable representation of (the
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English) language. Going the other way, current recog-
nizers mostly decompose phonemes into three articulation
phases (Huang et al., 2001).

Linguistic information, for example, phone or word
N-grams, pronunciation dictionaries or formal grammars
can be incorporated into the recognition process via � �, as
this component is responsible for concatenating the build-
ing units into a string of symbols. Probabilistic language
models will take the form of multiplying factors, while
formal grammars appear as constraints that reject certain
unit combinations.

3. Special Case: Hidden Markov Models

In spite of its unusual appearance, Algorithm 1 is not so
different from the standard technologies. In particular, its
components can be chosen so that it becomes mathemat-
ically equivalent to phoneme-based left-to-right hidden
Markov modeling preferred in large vocabulary speech
recognition. In this setup the set of states of the Markov
model will play the role of the symbol set in our algorithm.

Instead of modeling the class posteriors � �� ��� di-
rectly, in speech recognition the product � ���� �� �� �
is normally modelled instead, which leads to the same re-
sult but allows one to separate the priors � �� �. Build-
ing words from states and assessing their prior probabil-
ity � �� � is the problem of language modeling. So let us
first deal only with the acoustic component � ���� �. This
factor will be estimated by HMM in the way described be-
low1.

During operation HMM goes through a sequence of
state transitions. This determines a segmentation based
on how long the model stayed in a given state. The proba-
bility corresponding to a given segmentation is calculated
as follows: The probability corresponding to a given seg-
ment 	� � ��� ��� and state � is calculated as

� ���� ������ � 

������
�

���

���

� ������� (1)

where 
� is a constant between 0 and 1.

The probability corresponding to the whole segmen-
tation is obtained by multiplying the segmental probabili-
ties:

� ���	�� � �

��

���

� �	������ (2)

1 Note that we slightly deviate from the standard decomposition into
language and acoustic models as, in our notation, the state tran-
sitions between the states of a multi-state acoustic model are also
included in the language factor, while only the self-transitions of
a state are included in the acoustic model.

As the last step, the product � ���� �� �� � is obtained
by multiplying � ���	�� � with the language model fac-
tor � �� � and removing 	 by searching and maximiz-
ing over all possible segmentations during the recognition
process of Algorithm 1.

Let us assume for a moment that no linguistic infor-
mation is available, i.e., � �� � is the same for any symbol
string, and thus this component plays no role during de-
coding. Then, in terms of our model, Eqn. (1) corresponds
to �� while Eqn. (2) corresponds to ��. This means that
�� is simply a multiplication, while �� consists of two

factors. The term 

������
� is an exponentially decaying du-

ration model. The product
���

��� � ������ is a spectral
factor that renders a state-conditional likelihood for each
measurement of the segment, and then combines these by
multiplication—that is, by applying the naive Bayes as-
sumption. This factor is the focus of the paper that we
intend to examine in greater detail.

As we wanted to concentrate on the acoustic com-
ponent in the experiments, we chose the simplest possi-
ble setup where the states simply represent phonemes and
� �� � is either a unigram model that permits any pos-
sible phoneme string, or a pronunciation dictionary that
simply restricts the accepted phoneme strings to a small
set. If we were using a more stochastic language model,
its scores should be incorporated into the evaluation of
��. Moreover, one may ask what would happen if one
were to work with acoustic units other than simple 1-
state phoneme models, as we do here. Clearly, in prac-
tice, better results are normally obtained if the phonemes
are decomposed into three states—one corresponding to
the middle steady-state part, and the others describing the
transitional phase before and after. If we were to use
such a three-state model, then multiplication by the inter-
state transition probabilities should be incorporated into
��. Improving the model further by applying context-
dependent models such as diphones or triphones would
correspond to a refinement of the symbols set and, natu-
rally, the associated phonetic transcripts or other language
components. Although all these modifications could im-
prove the performance of the system, they all affect � �
and not the acoustic component �� we are dealing with
here. Thus, all our arguments regarding the naive Bayes
assumption remain valid irrespective of the symbol set
and the language model used, as far as the acoustic in-
formation sources are frame-based likelihoods combined
by multiplication.

4. Naive Bayes: the Cons

The hidden Markov technique is a general mathematical
framework for modeling stochastic sequences. Its main
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power is its mathematical tractability—that it can be eval-
uated very quickly by dynamic programming, and that its
(locally) optimal parameters can be found relatively sim-
ply (Huang et al., 2001). However, whether these optimal
parameters provide a good performance also depends on
how well the modeling assumptions fit the given appli-
cation. HMM has a very serious inductive bias as it as-
sumes the state-conditional independence of the acoustic
vectors. In contrast, the neighboring frames are obviously
correlated as speech is produced by a continuous move-
ment of the articulators. Moreover, many signal process-
ing methods applied in the feature extraction step increase
the correlation as they linearly combine the neighboring
data vectors. As a coup de grâce, we extend out feature set
with the so-called delta features, which are again obtained
as a combination of a few neighboring frames (Huang et
al., 2001).

Based on speech perception experiments, we can also
argue against combination by multiplication. Namely, it
is known that humans can recognize speech quite well
even when large portions of the spectral information are
removed. In comparison, the production combination rule
is too restrictive in the sense that any frame can ‘veto’ the
classification by making the product zero.

As a final argument, the classifier combination litera-
ture suggests that, in general, the production rule performs
well when the classifiers work on independent features.
When the features contain similar information—as in our
case—then other schemes like combination by averaging
are likely to yield better classification results (Tax et al.,
2000).

5. Alternative Technology: Segmental
Models

The contradiction between the model that assumes inde-
pendence and the feature extraction method that makes it
patently false has been understood and criticized by many
authors (Ostendorf et al., 1996; Van Horn, 2001). Sev-
eral cures were suggested, some only patching the orig-
inal HMM algorithm, some totally abandoning it. The
family of segmental models (Ostendorf et al., 1996) rec-
ommends modeling phonemes ‘in one’, instead of esti-
mating their probabilities by multiplying the frame-based
scores. In our framework this means that �� (Eqn. (1))
is replaced by some more sophisticated approximation2.
One possibility might be to create special models that, for
example, fit parametric curves on the feature trajectories
(Holmes and Russel, 1999; Ostendorf et al., 1996). An-
other option is to convert the variable-length segmental

2 In contrast to ��, combination by multiplication at the level of
�� seems quite reasonable because the presence of all phonemes
is required for the identity of a word. This makes an AND-like
combination logical.

data into a fixed number of segmental features (Clarkson
and Moreno, 1999; Glass, 1996; Tóth et al., 2000). What
makes the latter tempting is that this way all the stan-
dard classification algorithms become applicable to the
phoneme classification task.

Whatever technique we choose, the results are sim-
ilar. Searching in the literature we find that these mod-
els result in a 10–30% reduction in the phoneme classifi-
cation error compared to HMM (see, e.g., (Clarkson and
Moreno, 1999; Holmes and Russel, 1999)). Although this
is significant, it is rather modest considering that we have
replaced an incorrectly biased model with a much better
one.

6. Naive Bayes: the Pros

Many have critized the use of the naive Bayes assump-
tion in HMM. But we are unaware of anyone in the speech
community putting the question the other way round: why
does it work so remarkably well when, in theory, it should
not? Fortunately, we can find partial answers in the ma-
chine learning literature. Most pertinently, it has been
pointed out that in many cases naive Bayes provides opti-
mal classification even though it incorrectly estimates the
probabilities (Domingos and Pazzani, 1997). One such
case is when there is full functional dependency between
the features (Rish et al., 2001). Even when the depen-
dency is not completely deterministic, the naive Bayes
classification was found to perform nearly optimally in
(Rish et al., 2001). The explanation is that in these cases
all features yield approximately the same probability es-
timates, so when we combine them by multiplication it is
like raising one output to the number of classifiers com-
bined. The resulting estimation tends to underestimate the
real probabilities. Besides this, the probability value of the
winning class dominates over that of the others. Quoting
Hand, “the model will have a tendency to be too confi-
dent in its predictions and will tend to produce modes at
the extremes 0 and 1” (Hand and Yu, 2001). However,
these values lead to the same classification as raising the
estimates to a power preserves the rank order.

Knowing that the feature vectors in speech recogni-
tion are highly correlated, we might suspect that a sim-
ilar effect must occur with HMMs. It has indeed been
reported that HMMs are “overconfident of their recog-
nition results” (Van Horn, 2001), and that “primarily
due to invalid modelling assumptions, the HMM under-
estimates the probability of acoustic vector sequences”
(Woodland and Povey, 2000). This supports our argument
and taken together may explain why HMMs perform well
in phoneme classification in spite of the manifestly false
independence assumption.
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7. From Classification to Recognition

Thus far we seem to have overlooked the fact that, as part
of the recognition system, the role of phoneme models is
not classification, but rather probability estimation! At
first sight this seems to invalidate all our arguments for
naive Bayes, making the explanation of its efficient classi-
fication irrelevant. In the following we are going to argue
that during recognition the phoneme classification task is
simply extended with outlier modeling, and the bias of
naive Bayes is not harmful to the latter step either.

First of all, let us clarify what happens when we
move from classification to recognition. During clas-
sification we assume that the start and end points of
the phonemes—that is, the correct segmentation of the
signal—were known. Consequently, the only task was to
identify the segments. During recognition, however, the
proper segmentation also has to be found. This requires
discriminating real phoneme segments from fake ones.
Note that we neither have a model dedicated to these non-
phonemic segments, nor training examples for them. This
means that we are faced with an outlier modeling problem.
If our phoneme model is not able to reject these outliers,
it will then be prone to commit insertion and deletion er-
rors. That is, it is going to cut the phonemes into more
segments or fuse the frames of a segment with neighbor-
ing segments.

Let us now examine how the hidden Markov model
behaves when it is allowed to evaluate all state sequences
and segmentations. Obviously, the model gives the high-
est value if the signal is cut into 1-frame long segments,
and for each of these the state with the highest likelihood
is selected. This is avoided by the language model that
punishes unlikely state transitions and/or excludes impos-
sible ones. In this way we can force the model to fuse
neighboring frames, but even in this case it will have a
strong preference for short segments. This is because the
frame-based likelihoods are very small (non-negative) val-
ues, so when we multiply them we will get progressively
smaller values for progressively longer segments. Another
factor is, of course, the exponentially decaying duration
component. However, because the spectral likelihoods are
usually many orders of magnitudes smaller than 
� , it has
been reported by many researchers that it has virtually no
effect on the recognition performance. This means that it
is practically the naive Bayes combination rule that drives
the system towards short segments.

When forced to fuse neighboring frames, the model
will prefer those subsegments in which one of the states
provides consistently high values. It is fulfilled if the sys-
tem performs reasonably well at the frame level. It is also
known that the frame-level classification tends to be more
stable in the middle of the segments and more inconsistent
at the segment boundaries. This will ‘push’ the model to-

wards fusing the central parts of the phonemes and posi-
tion the state transitions near the real segment boundaries.

8. Experiments

To justify our conclusions we conducted experiments to
assess the influence of naive Bayes on both classification
and recognition performance. For this purpose we re-
placed the naive Bayes product rule with alternative com-
bination formulas. Comparing these results gave an indi-
cation of how beneficial or detrimental naive Bayes is on
classification and on outlier modeling.

In the experiments the “Oasis-Numbers” speech cor-
pus was used. Its data were collected at our institute and
consist of spoken numbers, recorded with several types
of microphones at a sampling rate of 22050 Hz in the
16-bit quality. The whole corpus is manually segmented
and labeled at the phoneme level. Altogether 29 different
phonemic labels occur in the transcripts. 2185 and 1247
utterances were randomly selected for training and testing
purposes, respectively.

For feature extraction we utilized the HCopy routine
of the HTK toolkit (Young et al., 2004). We extracted 13
MFCC coefficients from each frame, along with their first
and second derivatives. This feature set is the most widely
used one in speech recognition (Huang et al., 2001).

Modeling whole segments in one requires an addi-
tional step. The variable-length frame-based representa-
tion has to be converted into a fixed-dimensional feature
set. To achieve this we used the simple method proposed
in the SUMMIT system (Glass, 1996), but also success-
fully applied by us (Tóth et al., 2000) and others (Clarkson
and Moreno, 1999). The segments were divided into three
parts along the time axis, and each frame-based feature
was averaged over these thirds. Additionally, the length
of the segment was also included in the segmental feature
set.

For modeling the frame-level and segmental likeli-
hoods, Gaussian mixtures were applied, which is again
a standard technology in speech recognition. The model
parameters were initialized by K-means clustering and
trained with Expectation Maximization. 15 Gaussian
components performed the best in the frame-level and 10
in the segmental modeling task. In both cases the covari-
ance matrices were kept diagonal.

8.1. Classification

In the classification experiments we utilized the manual
segmentation information of the database. This means
that the search part of our decoding algorithm was de-
activated by restricting the decoder to evaluate only the
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Table 1. Classification and recognition accuracies

Phoneme model
Classification Recognition acc.

accuracy Unigram Vocabulary

Frame-based,
product rule

92.33% 82.05% 96.87%

Frame-based,
averaging rule

78.04% — 86.28%

Frame-based,
product rule, 
-th root

92.33% — 41.78%

Segmental 94.58% 46.25% 87.00%

Segmental,

-th power

94.58% 57.99% 88.29%

correct segmentation. All phoneme priors were assigned
equal values in these experiments.

The percentage of correctly classified segments is
shown in the first column of Table 1. Besides the segmen-
tal representation and the one that combines the frame-
level likelihoods by multiplication, out of curiosity we
also tried combination by averaging. Furthermore, we
tested two further possibilities. The first one was to com-
pensate for the bias of the product rule by taking the �-th
root of its likelihood estimations, where � is the number
of frame-based scores multiplied (as suggested in (Hand
and Yu, 2001)). The other idea was to introduce a similar
bias into the segmental model by raising its estimates to
the �-th power. These manipulations clearly do not influ-
ence classification. However, they result in quite different
likelihood estimates that may seriously affect the search
process.

We have to emphasize that our goal here was not
to achieve high-performance classification but to compare
the two approaches. The product rule combination of the
frame-based likelihoods corresponds to a 1-state hidden
Markov model, which could be outperformed by the usual
3-state representation. The segmental model could also be
improved by adding further features. The results neverthe-
less reflect quite well the usual findings when comparing
segmental models with HMMs, which is the modest supe-
riority of the segmental representation.

We did not mention that the frame-based Gaussian
models were able to classify 71.54% of the frames cor-
rectly. The product rule brought substantial improvement
compared to this, while averaging outperformed it only
modestly. A possible explanation is that when a frame is
classified correctly, the likelihood of the correct class is
much higher than those of the competing ones. And if a
frame is misclassified, the likelihood of the correct class
is still relatively high. As a consequence, the product rule
does not get fooled by the erroneous frames, but the dom-
inance of the correct ones tilts the product in the right di-
rection. Averaging profits less from the high confidence

of the correct decisions, and so is more vulnerable to the
incorrect ones.

8.2. Recognition

In the recognition experiments the algorithm was allowed
to evaluate every possible segmentation. The segmental
probabilities were calculated exactly as described in the
previous section, but now as a part of the whole search
process.

As regards language modeling—that is, the prior
probabilities of phoneme sequences—two extreme cases
were tried. In one case every phoneme was allowed to fol-
low a phoneme, and with equal probability. This could be
called a ‘unigram’ language model. In the other case the
possible phoneme sequences were restricted to a 26-word
vocabulary, each word being equally probable. This cor-
responds to a very small vocabulary isolated word recog-
nition task.

The scores reported when using the dictionary are
simply the percentage of words recognized correctly. In
the case of the unigram model, however, the result of
recognition is a phoneme sequence that, besides misclas-
sifications, can contain insertion and deletion errors as
well. The standard evaluation method is to match the re-
sult with the manual phonemic transcription by calculat-
ing their edit distance (Young et al., 2004). Having ob-
tained the best match, all three types of error are counted
and included in the accuracy score.

When testing the product rule with the uni-
gram model we found that—in accordance with our
expectations—insertion errors tended to overwhelm the
result. We compensated for this by raising the language
model probabilities to an empirically tuned factor. Fol-
lowing (Lee and Hon, 1989), this factor was adjusted so
that the insertion errors went down to about 10% of the
number of test instances. A similar language model com-
pensation was applied in every case when insertion or
deletion errors became seriously unbalanced.

The results are listed in the last two columns of Ta-
ble 1. The most important finding is that the frame-based
model with the product rule performed the best with both
language models, and the segmental model could not even
come close. This shows that better phoneme classification
does not automatically warrant better recognition. Be-
cause the segmental model is not designed to refuse out-
liers, a segmental recognizer needs a further component to
handle them. Although with such modifications the seg-
mental technology may outperform HMM, this means a
further algorithmic and computational burden compared
to HMM that ‘automagically’ handles this problem.

A further observation was that the product rule dis-
played very consistent behavior regarding insertion and
deletion errors. This means that by adjusting the weight of
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the language model we could easily tune the ratio of inser-
tions and deletions in the Unigram experiments. In com-
parison, with the averaging rule we were unable to obtain
reasonable results because certain phonemes tended to
‘eat up’ their neighbors, while some others were cut into
lots of small segments. The segmental model displayed
quite similar rhapsodic behavior, although to a lesser ex-
tent. Besides insufficient outlier modeling, weak duration
modeling may also contribute to this. Although the seg-
mental duration was among the features and, in theory,
the model had the option of making use of it, we noticed
that the model still allowed ridiculously long or short seg-
ments.

As regards the compensation experiment, taking the
�-th root had a fatal result on recognition, leading to the
chaotic behavior just mentioned. However, we have prob-
ably overcompensated for the bias of the product rule, so
the experiment where we introduced a similar bias into the
segmental model might be expected to yield more conclu-
sive results. It showed that raising to a power did not cause
any harm. Actually, it led to a slight improvement. It in-
dicates that an incorrect bias that severely punishes long
segments performs better in finding the correct segmenta-
tion than a model that has no idea of fake segments and is
not really good at duration modeling anyway.

Finally, we should also mention that segmental mod-
els are more prone to variance problems due to insuffi-
cient data, as of course there are many more frames than
phonemes. This may also contribute to the instability of
the segmental system.

9. Conclusions

This paper sought to gain an insight into why HMM
speech recognizers, built on the naive Bayes assumption,
perform so well. We argued that speech recognition con-
sists of two subtasks, namely, phoneme classification and
outlier modeling, and that the naive Bayes rule does well
in both tasks. As regards classification, we have pointed
out that the data frames are not independent, but in fact
just the opposite: they are highly correlated. However, we
found evidence from the literature that this condition, al-
though being detrimental on the resulting probability es-
timates, does not necessarily lead to poor classification.
But this still does not explain why the recognition process
is not fooled by the naive Bayes assumption, since dur-
ing recognition the probability estimates are used, and not
simply the classification results. We explained this here
by pointing out that the probability estimates of the naive
Bayes rule are such that they get smaller and smaller for
longer and longer segments. This biases the model to-
wards a strong preference for short segments, especially
where the probability of one class is consistently high.

This was clearly justified by the fact that in practice, when
only a phone-unigram was used, a phone insertion penalty
term had to be introduced, otherwise insertion errors over-
whelmed the result. However, by carefully tuning this pa-
rameter or by using a pronunciation dictionary, this bias of
the model could be nicely counterbalanced, so altogether
we can say that naive Bayes manifests itself in consistent
and nicely manageable behavior from an outlier modeling
point of view.

To underpin our arguments, a small set of experi-
ments were also carried out where we compared the prod-
uct rule with a segmental representation. We found that
the segmental model performed only slightly better in
classification and, in spite of acting better as a classifier,
provided much worse recognition. Overall this shows that
the simple product rule, although suboptimal, warrants
stable and reliable behavior along with a decent recog-
nition performance. In comparison, segmental recogniz-
ers have to take more care of outliers in order to ob-
tain similar or better recognition results. Although the
phoneme models themselves could also be improved to re-
ject fake segments, it is probably more effective to model
them explicitly. This can be done by introducing an ‘anti-
phoneme’ model (Glass, 1996; Tóth et al., 2000) or by
assessing probabilities for the different segmentations and
incorporating this factor into the formulas (Verhasselt et
al., 1998). Although with such extensions the segmental
representation is known to be able to produce a modestly
better performance than the traditional HMM models, the
complications and inconveniences introduced by the need
for such a factor makes the segmental modeling paradigm
even less attractive. We hope that our arguments and ex-
periments helped to shed light on why HMMs—built on
the very simple naive Bayes assumption—behave so well
in practice that quite complex alternative models like the
segmental model can hardly compete with them.
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