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The purpose of this paper is to extend results on regional internal stabilization for infinite bilinear systems to the case where
the subregion of interest is a part of the boundary of the system evolution domain. Then we characterize either stabilizing
control on a boundary part, or the one minimizing a given cost of performance. The obtained results are illustrated with
numerical examples.
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1. Introduction

For distributed parameter system theory, the term ‘re-
gional analysis’ has been used to refer to control prob-
lems in which the target of interest is not fully specified
as a state, but refers only to a subregion � of the spatial
domain � on which the system is considered.

For a stabilization problem one normally considers a
control system on a time interval ������ and searches
for feedback control in such away that the state evolv-
ing on � close to its the steady state of the system when
� ���

Recently, the question of regional stabilization for
infinite-dimensional linear systems has been tackled and
developed by Zerrik and Ouzahra (2003a). It consists in
studying the asymptotic behaviour of a distributed system
only within a subregion � of its evolution domain �.
This notion includes the classical one and enables us to
analyse the behaviour of a distributed system in any sub-
region of its spatial domain. Also, it makes sense for the
usual concept of stabilization taking account of the spatial
variable and then becomes closer to real-world problems,
where one wishes to stabilize a system in a critical subre-
gion of its geometrical domain.

In real problems it is also plausible that the target
region of interest be a portion of the boundary �� of �
so that the stabilization is required only on � � ��, rather
than in an actual subregion.

In (Zerrik et al., 2004) the question of regional inter-
nal stabilization for infinite bilinear systems was consid-
ered. The properties and characterizations of control en-

suring regional stabilization in a subregion interior to the
system domain with various illustrating examples were
given.

A natural extension may be the case where the target
part is located on the boundary of the evolution domain.
Technically, the difficulty is that the relevant restriction
map is now a trace map and cannot be expected to be con-
tinuous.

The principal reason for considering this case is
that, firstly, there exist systems which are stable on some
boundary subregion but are unstable in any neighbour-
hood � � � of � satisfying � � �� (see the example
in Section 2), and, secondly, it is closer to a real situation.
(For example, the treatment of water by using a bioreac-
tor where the objective is to regulate the concentration of
the substrate at the boundary output of the bioreactor (see
Fig. 1).)
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Fig. 1. Regulation of substrate concentration at
the boundary output of the reactor.
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This paper considers the question of regional bound-
ary stabilization for an infinite bilinear system defined in
a domain � � �� � �� � �� with a regular boundary ��:

��

��
	 �� � ����	�� on 
 	 ��������

���� �� 	 �� on �� (1)

where � is the infinitesimal generator of a linear strongly
continuous semigroup ����� � � � on a Hilbert state
space � endowed with a complex inner product ��� ��
and the corresponding norm � � �, 	 is a linear bounded
operator from � to �. We suppose that for any initial
state ��, there exists a control function ���� such that (1)
has a unique mild solution ����. The problem of regional
boundary stabilization of (1) in a subregion � of �� con-
sists in choosing the control ���� in such a way that the
trace 
����� of ���� on � converges to zero in some
sense. This is the aim of this paper, which is organized as
follows: In Section 2 we will define regional boundary sta-
bilization for bilinear systems and give characterizations
of stabilizing control. In the third section, we consider the
problem of finding stabilizing control in a boundary sub-
region and minimizing a given cost of performance, and
provide a characterization of such a control. Finally, the
results are illustrated with a numerical example.

2. Regional Boundary Stabilization
for Bilinear Systems

2.1. Notation and Definitions

For � � �� (or � � � such that meas��� 	 �), we con-
sider the space ����� endowed with the complex inner
product ��� �� 	

�
� �� 
�, and the corresponding norm

	�	 	 �
�
� 	�	� 
��

�
� �
� is the surface measure defined

on � and induced by the Lebesgue measure).

The state space � is such that for a subregion �
with ���� � �, the restriction map 


�
on � is bounded.

Let 
�
�, be its adjoint operator and consider the operator

�
�
	 
�

�


�

.


��� will denote the space of bounded linear op-
erators mapping � into itself endowed with the uniform
norm of operators �	 � �	.

Definition 1. The system (1) is said to be

1. Regionally weakly boundary stabilizable (r.w.b.s.) on
�, if 


�
���� tends to � weakly, as � ��.

2. Regionally strongly boundary stabilizable (r.s.b.s.)
on �, if 


�
���� tends to � strongly, as � ��.

3. Regionally exponentially boundary stabilizable
(r.e.b.s.) on �, if 
����� tends to � exponentially,
as � ���

Remark 1.

� We are only interested in the behaviour of (1) on �
without constraints on �, so the regularity of the so-
lution ���� is needed only in a neighbourhood � of
� to obtain a trace operator 
� on �. Moreover, if
the system (1) is regionally strongly stabilizable on
a subregion � � � satisfying � � ��, then (1) is
regionally boundary stabilizable on � by the same
control.

� If the system (1) is regionally boundary stabilizable
on � � ��, then it is regionally stabilizable on � � �
� using the same control.

� The regional stabilization problem can be seen as a
special case of output stabilization for infinite dimen-
sional systems with the partial observation � 	 


�
�.

� This notion includes the case where the target part is
an internal subregion � � �, which is of null mea-
sure.

� Stabilizing a system on a boundary part � may be
cheaper than stabilizing it in any neighbourhood � �
� of ��

In the following, we shall give two examples illustrating
the above remarks.

Example 1. A feedback may be a stabilizing control in
part � of measure null, but not a stabilizing one in an
internal part � verifying �� � ��

Let us consider the system defined in � 	��� ��� by
��
�

�����

��
	 ����� � ���� in 
�

���� �� 	 �� in ��

(2)

Here we take � 	 � with Neumann boundary condi-
tions.

The eigenpairs �������� ������� of � are given by

������ 	 
��� � ������ �� � � ��

and

��������� �� 	 � 
������� 
�������� if � � �	 ��

and
��������� �� 	 �� otherwise

the feedback

���� 	 �����

	 
������ ������������� � ��������� �������������
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does not stabilize (2) in any internal subregion. But for
� 	 � ��� � ��� ��, we have �������� 	 �. Then

�
�
���� 	

�
������������

�������� ���� ���������
������

� � exponentially as � � ���

�

Example 2. Let us consider the system defined on � 	
��� ��� by

��
�

�����

��
	 ����� � ����	������ �����	���� in 
�

�� � �
(3)

evolving in the state space � �	 �� � � ���� 	 � 	
� on �� 	 ��� � ��� ���, which is a closed subspace of
����� endowed with its natural inner product, so � is a
Hilbert space, where �� 	 � �� 
 ���� ���� 	 � on ��
and � 	 ��� � ��� ���

For �� � ����, we have

��
�
��������

�����

	

� �

�

���
�
�����	����� ��	� 
� � ���

� �

�

	����� ��	� 
��

This inequality holds, by density, in �, which shows
that (3) is exponentially stable on ��

Now for any subregion � � � verifying � �
��� �� � � �� � �  � �

� �� �� 	��� ���� � �� �� �,
then �������� � ������������� , so (3) is not regionally
exponentially stable in �, where �� is the restriction map
in ��

The system (3) is exponentially stabilizable on � by
���� 	 �, but for a subregion � such that � � ��, (3)
is not exponentially regionally stable on �. Then if we
consider the functional cost !��� 	

� ��
�

�������� 
�, we
obtain ���������!��� 	 � � ���������!���. �

2.2. Stabilizing Control

In what follows we give sufficient conditions for the con-
trol ���� to be a stabilizing one for (1). For that pur-
pose we have to ensure the existence and uniqueness of
a global solution. It is known that if ���� � ������� � �,
then (1) has a unique global mild solution (Ball et al.,
1982), and if ���� is a quadratic feedback control law
���� 	 
������� �����, where � � 
���, then (1) has
a unique mild solution � � ����� ��	
���� defined on a
maximal interval ��� ��	
�. Moreover, if ���� is bounded
on ��� ��	
�, the solution ���� is global: ��	
 	 ��,

(Pazy, 1983). This is the case when ���� is a contraction
and

��
��������	�� ��� � �� �� � �� (4)

In this case, the mapping �� � ���� is continuous in
����� ��	
�� ��. (Ball et al., 1982, Zerrik et al., 2004).

Now we proceed to stabilization results for (1), and
we begin with the following result, giving sufficient con-
ditions for regional boundary weak stabilization:

Proposition 1. Suppose that ���� is a contraction and
	 is compact. If

�	����"� ����"� 	 �� � � � 	� 

�
" 	 �� (5)

then the system (1) is weakly regionally stabilizable on �
by the feedback control

���� 	 
�	����� ������
Proof. From (Ball and Slemrod, 1979) there exists " such
that �	����"� ����"� 	 �� � � �, and that ���� � "
weakly as � � ��, so by the continuity of ������ we
have ��

�
����� �� � ��

�
"� ��, as � � ����� � �, and

then the conclusion follows from (5).

For illustration, consider the system (1) governed by
the dynamics

�� 	 
 �

��

 �

��
� ���� 	 ����� ���

� ����

and

�	����� 	
�� �

�

���� �� 
�
	
�
�
���� 	 ��� �

�
������

�
�����

where in the state space ����� with � 	�������� � 	
��� � ��� �� and ���� 	 � a.e � � ��

The operator � generates in ����� a semigroup of
contractions defined by

�
����"

�
��� �� 	

��
�

"��
 �� � 
 �� if � � � and � � ��

� otherwise�

For �� � ����� we have ������� 
 ��� 	 ������� 

���	���� � ���������� 
 ����	����� But ��������

� 	
�������, and then, using the fact that ���� is a
#�
semigroup in �����, we deduce that ������� 

��� � � as � � �. Then ���� induce a #

semigroup
on �����. Moreover ����, remains a semigroup of
contraction in � ����. Indeed, for �� � ����� we
have �������� 	 ��������	���� � ���������	���� 	
����	���� � �����	���� 	 �����

Moreover, 	 is a compact operator and we have

�	����"� ����"� 	
�� ���

�

"��� �� 
�
	�

� � � � � ��
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Then

�	����"� ����"� 	 �� �� � �� "��� �� 	 �

a.e � ���� �� i.e. 
�" 	 �� Then the control

���� 	 

�� �

�

���� �� �� 
�
	�

ensures weak stabilization of the analysed system on the
boundary subregion �� This example shows in particular
that (5) can be satisfied for � � �� but not for ��

2.3. Decomposition Method

In this part we shall give an approach based on the de-
composition of a state space and a system. Let Æ � �, and
consider the subsets ����� and ����� of the spectrum
���� of A, defined by

����� 	


� � �� ��� � 
Æ

�
�

����� 	


� � �� ��� � 
Æ

�
�

Suppose that the set ����� is bounded and is separated
from the set ����� in such a way that a rectifiable, sim-
ple, closed curve can be drawn so as to enclose an open
set containing ����� in its interior and ����� in its exte-
rior, which is the case if � is selfadjoint with a compact
resolvent. In this case there are at most finitely many non-
negative eigenvalues of �, each with a finite dimensional
eigenspace (Triggiani, 1975). Then the state space � can
be decomposed (Kato, 1980) according to � 	 �� � ��

with �� 	 $� along �� 	 �% 
 $ ��, and $ � 
���
is the projection given by

$ 	
�

���

�



��% 
���� 
��

where & is a curve surrounding ����. Suppose that
	$ 	 $	, which is the case if 	 satisfies ��	�� �� 

�	��� �� 	 �� � � �����

The system (1) may be decomposed into the follow-
ing ones:

������

��
	 ������� � ����	�������

��� 	 $��� �� 	 $�� (6)

������

��
	 ������� � ����	�������

��� 	 �% 
 $ ���� �� 	 �% 
 $ ��� (7)

where �� 	 �% 
 $ ���% 
 $ �� �� 	 $�$� 	� 	
�% 
 $ �	�% 
 $ � and 	� 	 $	$�

In the internal case, if the operator �� satisfies the
spectrum growth assumption, namely,

���
����

�� �	������	
�

	 �����
�
�����

�
� (8)

then stabilizing the system (1) boils down to stabilizing (6)
(Zerrik et al., 2004). In the boundary case we have a sim-
ilar result.

Proposition 2. Let �� satisfy (8). If there exists �� �

����, such that the control

����� 	 
��������� ������ (9)

regionally weakly (strongly, exponentially) stabilizes the
system (6) on � with a bounded state �����, then the sys-
tem (1) is regionally weakly (strongly, exponentially) sta-
bilizable on � using the same control (9), and the state
���� remains bounded.

Proof. Let ����� be the solution of (7) defined on a
maximal interval ��� ��	
�. We shall show that ����� is
bounded on ��� ��	
� to conclude that ��	
 	 ���

The solution of (7) is given by

����� 	 ���������

� �

�

���'�����
 '�	����'� 
'� (10)

where ����� and ����� denote the restrictions of ����
to �� and ��, which are strongly continuous semigroups
generated respectively by �� and ���

In view of the above decomposition, one has
����� ������� � 
Æ. Hence, if �� satisfies (8), then
for some � � �� � � Æ� � Æ, we obtain ������� �
� ��Æ�� � � � � (Triggiani, 1975), and using (10) we
have

������� � ������ ��Æ
��

� ��	��
� �

�

	���'�	 ��Æ
����������'�� 
'�

By the Gronwall inequality we have

������� � ������ ���� � ������� � �	��

�
� �

�

���� 	���'�	 ����������'� 
'� (11)

Moreover, since ����� is bounded, from (9) we get
that so is �����. Then there exists (���� � �, such that
��'� � ��������

���

��' � �, then

������� �
�
����� �	������

�������
���


���� (12)

for the positive functions ����� and 	����, which shows
that the state ����� is bounded on ��� ��	
� and hence
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����� is defined for all � � �. Consequently, the state
���� 	 ����� � ����� is a bounded global solution, and


�
����� � � exponentially, as � � ��, which com-

pletes the proof.

Corollary 1. Suppose that ���� is a semigroup of con-
tractions and �� satisfies (8). If 	� is compact and sat-
isfies �	������"�� �����"�� 	 �� � � � � 


�
"� 	 �,

then the control ���� 	 
�	������� ������ regionally
weakly stabilizes (1) on �, and ���� remains bounded on
��

Corollary 2. Let � be self-adjoint with compact resol-
vent and suppose that ���� is a semigroup of contrac-
tions. If
1. �� ���)� � ��� * ��

��� �+� �� � ��� ,��� ��� ,��
�
�

�	��	 � ���
� �	 � �� � 	 )� (13)

2. there exists � � � � * such that the matrix

	� �	
��	��	 � ����

�
�������


satisfies

�	������"�� �����"�� 	 �� � � �� 

�
"� 	 ��

where ,� is the multiplicity of ��, and ��	 are the
eigenfunctions associated with ��, then (1) is regionally
boundary weakly stabilizable on ��

Proof. Here the space �� is finite dimensional, so the
operator 	� is of a finite rank and hence it is compact.
Now if �	���������� ��������� 	 �, then under the con-
dition (13) we have

��
���

���
�
�
�

�����

����� ��	 ������ �����	��	 � ���� 	 ��

�� � ��

which implies

�
�
�����

����� ��	 ������ ��� ��	��	 � ���� 	 ��

�� � � � *�

In other words, �	����� ���� 	 �� �� � � � *�
and hence 


�
��� 	 �� Then from the above corollary

the system (1) is weakly stabilizable on � by the control
���� 	 
�	������� ������.

3. Regional Stabilization Problem

The aim of this section is to determine the minimum en-
ergy control that yields regional boundary stabilization of
the system (1) on �.

A natural approach to the regional boundary sta-
bilization problem is to formally differentiate 	


�
����	�

along the trajectories of (1), which leads to

-


�
	


�
����	� 	 ��� ��

�
������ �����

� ��� ������
�
	����� ������

So if the operator �
�
� is dissipative, then an ob-

vious choice of the feedback control is ���� 	

������ ��	�����, since it yields the “dissipating energy
inequality”





�
	


�
����	� � 
������� �

�
	�������

Then let � satisfy

��
�
��� ��� ��� �

�
���� ��

�
.�� �� 	 �� � � ����

(14)

for a linear self-adjoint and positive operator .�

Our problem can be formulated as follows:

�������������
������������

��� !���� 	

� ��

�

���.����� ����� 
�

�

� ��

�

	���	����� �����	� 
�

�

� ��

�

	����	� 
��
� � ������ 	



� 	 ���� is a global solution

and !
�
��� ����

(15)

Suppose that for some non-negative constants /� 0, and
Æ, we have

	
������	 � /	
��	� � � �

and

	

�
	�	 � 0	


�
�	� � � �� (16)

and

� �

�

	���	������ ������	 
� � Æ	
��	�� � � �� (17)

We note that (16) means that the operators 

�
���� and



�
	 are continuous with respect to 


�
��
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3.1. Direct Approach

We shall characterize the solution of the problem (15)
without taking into account the internal behaviour of (1).
For this let us establish the following result, which gives a
bound on the initial state on �:

Lemma 1. Let

� �	

� �

�

	����	� 
�� 1 �	

� �

�

	��
�
	����� �����	� 
��

There exist � � 2 � � and � � � independent of ���
such that

� � 2 � 	
���	� � �
�
1�

Proof. Let 3��� 	 

�
����� 
 �������� � � � � �� We

have

3��� 	

� �

�

��4�

�
���
 4�	��4��� 
4

�

� �

�

��4�

�
���
 4�	���4�
 ��4���� 
4�

Using (16), we obtain 	3���	 � /0	

�
��	
� �
� 	��4�	 
4 �

/0
� �
� 	��4�	 � 	3�4�	 
4� Then using the triangle inequal-

ity, from (16) we obtain that there exist two non-negative
constants � and  independent of �� such that (Quinn,
1980):

� �

�

	��
�
	������� �������	 
� � �

1���
�
�� ��	


�
��	��

Taking � � � and using (17), we obtain

�
Æ 
 ���  �

�
�
�	


�
��	� � �

1�

Then

� � 2 �
�

�
���
�
��

Æ�

���  ��

	

realizes the desired estimate.

Theorem 1. Let ����� 	 
������� �
�
	������, and sup-

pose that the corresponding solution � ���� of (1) is
global. Then ����� is the unique feedback control solu-
tion of (15), which strongly stabilizes (1) on �� Moreover,
if there exists 2 � � such that

�

�
���.�� ��� 	��� ��	��	�

� 2 ��
��	�� ����� �

�
	�� 
 ���� ����

�� � ����� (18)

then the state remains bounded on �.

Proof. For �� � ����, we have





�
	


�
�����	�	
��

�
.������ ������
�	��

�
	������ ������	��

which implies
� �

�

	��
�
	���4�� ���4��	� 
4 � ��

�
��� ���� � � �� (19)

Since ����� is supposed to be continuous with respect to
the initial conditions, (19) holds for all �� � �, so !

�
���

is finite for all �� � ��

Let us show that each control � � ������ strongly
stabilizes (1) on �. To this end, let 2 be the constant
given by the above lemma and let � � 5 � 2�

Since !
�
��� is finite, there exists 6 � � such that

for � � 6 we have� ���

�

	��
�
	��4�� ��4��	� 
4 � 5

and � ���

�

	����	� 
� � 5�

Taking �� 	 ����, we get 	
�����	� � �
�
5� � � � 6 so

	

�
����	 � �, as � � ��. But





�
	


�
�����	� 	 	������ �

�
	������ ����	�


 	��
�
	����� �����	�


 	����	� 
 ���.����� ������
and then we have

!
�
��� 	 	


�
��	� �

� �

�

	������ �
�
	������ ����	� 
��

��� � �����

Setting � 	 ��, we obtain !
�
���� 	 	


�
��	�, and

then !
�
��� � !

�
����� �� � �������

Let �� � � and ��� � ���� such that ��� � ��,
as � � ��� For � � ������, we have

7
�
�����

�
7
�
�
�

�
	

� �

�

	����4�� $�
	���4�����4�	� 
4



� �

�

�	����4�� $�
	���4��	�

� 	��4�	�� 
4�
Since 7 is continuous, we have 7 ����� � 7 ����, as
� � ��, so

!��� �
�
7 ������
 7 ����

�
	

� �

�

	���4�� $
�
	��4��

� ��4�	� 
4 � �� ��� � ��
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We deduce that !
�
��� � !

�
����. Moreover, it is

clear that ����� is unique. Now, if (18) holds, then for
�� � ����, we have





�
	
�����	� � 2





�
��������

so
��

�
����� ����� � 2 ������� 
 2 ������

This inequality holds for all initial states, since its terms
are continuous in ��, and the stability of (1) on � com-
pletes the proof.

Remark 3.

1. Note that if � is dissipative, 	 is a monotone
operator and commutes with �

�
� then the operator

� 	 �
�
	 satisfies (4), which implies that the so-

lution ����� is bounded and global.

2. ����� is a feedback of �
�
�����, which can be seen as

a feedback of the trace 

�
������

In the following result we give an estimate of
	
��

����	 for “conservative systems”:

Proposition 3. Let �
�
. 	 �� If the solution ����� is

global, then for any initial state �� such that 

�
�� �	 �,

we have

	
��
����	 	 8���

�
� � as � � ���

Proof. Let us consider the sequence

7� 	
�

�
	


�
�����	�� � � ��

For �� � ���� we have

7� 
 7��� 	

� ���

�

	���	������ ������	� 
�

	

� ���

�

	�����	� 
��

Taking �� 	 ���� in the above lemma, we obtain

7� 
 7��� � 2 or 7��� 
 7� �

�
��
	


�
��	�� (20)

If 
��� �	 �, then (20) gives 7��� 
 7� � 
�����7
�
� ,

where ����� 	 �����9��� 297 �
� �� Then since 7� is a

positive non-increasing sequence, we have

7� � 7�
������7��� � �

� � � ��

which implies the estimate (Quinn, 1980):

	

�
�����	� � �7�

������7���� �
� � � ��

Using the same techniques as in the above proposition, we
show that this inequality holds for all �� � �. Then we
obtain the desired estimate.

3.2. Internal Approach

In this part we give a link between the boundary stabi-
lization problem (15) and the internal one. Then we show
that one may consider the internal regional stabilization
problem to stabilize the system on a boundary part. On
each point � of � we consider the ingoing normal vec-
tor


�
* � to � on which we take a segment of length �9�

as illustrated in Fig. 2 Then we obtain a non-increasing

Fig. 2. Target boundary part � and the neighbourhood ��.

sequence ���� of the subsets of �, which converges to
� 	

�
��� ��� Let set � 	 �����. The bilinear form

� � ��� �� � ���
�� ��
��	���� is an hermitian positive
and continuous map in � ����������. Then there exists
a self-adjoint and positive what denoted by ��
 � 
���
such that

���
�� �� 	 ����
���	����� �� � ��

Assume that

���
��� ��� ��� ��
���� ���
.�� �� 	 ��

� � ���� (21)

and � /� 0 and Æ non-negative numbers such that for all
� � � we have � � � �� �� � ��������

�
���
������ � /���
���
���
	�� � 0���
���

(22)

and� �

�

	���
	������ ������	 
� � Æ���
����

� � ������ (23)

Consider the cost

!���� 	 �

� ��

�

���
.����� ����� 
�

� �

� ��

�

	���
	����� �����	� 
�

�

� ��

�

	����	� 
��
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and the problem
����
���

��� !�����

� � ������� 	 ��� ���� is a global solution and

!���� ����
(24)

This problem has only one solution given by � ����� 	

������� ��
	����� (Zerrik et al., 2004), and we have the
following result:

Proposition 4. The sequence ������ converges to ����� 	

�
��

����� 
�	������ which is the solution of (15).

Proof. For �� � � � the average �
�
�


�� 
� converges
to
�
� �� 
� as � � �� (Chilov, 1970). Multiply-

ing (21) by � and setting � � ��, we obtain (14).
In much the same way, we obtain conditions (17) and (16)
from (23) and (22). Then by the unicity of � ����� ������
converges to �����.

3.3. Numerical Example

Here we discuss a numerical example illustrating the
above results. They concern a system evolving in circu-
lar domains. We shall examine the convergence of the
sequence of optimal controls ������ on �� to the optimal
control ����� on �.

Consider the system defined on � 	 ���� �� 	 �� �
�� � �� by
��
�

�����

��
	 :��� ������ � �����

�
���� in 
�

���� 	 ���

(25)

with ; 	 ���� �� 	 ��� � �� � �� � ��,

:��� �� 	

���
��

� if ��� �� � ;�

�

��
��� � �� 
 ����� otherwise�

Consider the problem of stabilizing (25) on � 	 ���� �� 	
�� � �� 	 ��, and minimizing !

�
��� in the case when

. 	 �� We shall use direct internal approaches.

Direct approach

The semigroup ���� satisfies (16) and (17). Then
����� 	 
	


�
�����	�, the solution of (15), regionally

strongly stabilizes (25) on �� and ����� is fulfiled as
	


�
�����	 	 8��9

�
�� as � � ���

For �� 	 � we have

����� 	 
 ��

���� �
�

and !
�
���� 	 	


�
��	� 	 ���� 	 ���

Figures 3 and 4 describe the evolution of (25).

 
Fig. 3. Initial state �� � ��.

 
Fig. 4. Stabilized state on �.

Internal approach

Consider the subsequence

�� 	
�
��� �� � � 	 �� � �� �

�
�
 �

�

	��

of the neighbourhoods of �,

 
Fig. 5. Sequence of neighbourhoods �� of �.
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and consider the problem of stabilizing the system (25) on
�� and minimizing the cost

!���� 	 �

� ��

�

���
������ 
��
� ��

�

	����	� 
��

For � � ��, the semigroup ���� and the operator 	
satisfy (22). Then the control ������ 	 
����
�������
minimizes !���� and regionally strongly stabilizes (25)
on ��. The solution corresponding to �� 	 � is given by

����� 	

����
���

��
����
 �

�� ��� �
on ;�

�
�
�� ��

�������
�� otherwise�

The system (25) is then stabilized on �� by

������ 	 
 ����
 �
�� �

����
 �
�� ��� �

�

(cf. Figs. 6 and 7), which converges to � ����, and

!���
�
�� 	 ���
 �

�
�� !

�
���� as � � ���

 

Fig. 6. Stabilized state on ���.

 

Fig. 7. Stabilized state on ���.

Figure 8 illustrates the convergence of ������ to �����.

 
Fig. 8. Evolution of controls �

���� and �
�

�
���.

4. Conclusion

In this paper we have extended the results established in
(Zerrik et al., 2004) for internal regional stabilization for
infinite-dimensional bilinear systems to the case where the
target part is located on the boundary of the geometric do-
main where the system is considered. The obtained results
characterize either stabilizing control or the one minimiz-
ing a cost of performance. Also they give rise to other
questions. This is the case of semi-linear systems.
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