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This paper mainly deals with the design of an advanced control law with an observer for aspecial class of nonlinear systems.
We design an observer with again asafunction of speed. We study the solution to the output feedback torque and rotor flux-
tracking problem for an induction motor model given in the natural frame. We propose a new robust nonlinear observer and
prove the global stability of the interlaced controller-observer system. The control algorithm is studied through simulations
and applied in many configurations (various set points, flux and speed profiles and torque disturbances), and is shown to be
very efficient.
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1. Introduction In Section 4, we give simulation results and comment on
them with implementations in Matlab-Simulink.

Induction motors are nonlinear, coupled, multivariable

processes. Nevertheless, they become more and more ap-

pealing because of their reliability, robustness and low 2. Moddl of the Induction Motor

cost of maintenance (Van Raumer, 1994). We built aglob-

ally stable nonlinear control law with real effectivenessfor The model used isatraditional induction model of Park in

the adopted strategies and we describe a speed dependent astator (a, 8) fixed reference frame related to the stator,

observer. We based the initial strategy on input-output given by (Mansouri et al., 2004):

linearization (Chiason, 1997; De Luca and Ulivi, 1989;

Isidori, 1989). Here we redesign the observer based on &= f(z)+gu, @

a control law in order to ensure the global stability of

the process-observer-controller system (Lubineau et al.,

1999). The main contributions of the paper are the fol-

lowing: First, we propose a new observer modified for a

with

T = [isa,isg,cpm,gorg,ﬂ]T, u = [usm“s,ﬁ]T

special class of nonlinear systems applied to the induc- Here z contains four electrical states (flux and current
tion motor (Busawon et al., 1998; Gauthier and Bornard, components, respectively ¢, s and isq,iss) and
1981). Secondly, a globally stable nonlinear observer one mechanical state 2 governed by a mechanical equa-
based on a control law is designed. Lastly, intensive sim- tion. The motor is driven by two voltage components,
ulationsin different conditions are performed to show that Usa and u,s. We define the control input matrix by
the general strategy proposed is very efficient.

We organize the paper asfollows: we present in Sec- 1 0 00 0 T
tion 2 theinduction motor model. In Section 3, we present oL
a nonlinear observer, an application to the induction mo- 9= 1

tor, the control algorithm and the global stability proof. 0 oL,
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with we define
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"T R, T LsL, oLsL,’ o .
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R, R,M? } A
7T oL, " oL, Fe = we — Fe,
_ K - where z., &, and &, arerespectively therea state, esti-
—Yisa + T Pra +pQKo,s mated state and observation error vectors. We have
T _ K _
. K — 0 — 0K
—Yisp — PUK 0pq + T_TQOTB v T, p
M 1 PV kel
flz) = T lsa — 7 Pra — Plprg ) 0 Y pRK
T, T, T, = " T
e — M 1 e
M . 1 — 0 —— —pQ
s +pQ(Proz — 5 ¥PrB TT TT
Tr Ir M 1
P (Praiss = praisa) = L2~ T U U
L™ I Ly ratst ritsa JIm JIm L r L
2 } i
where L,, Lg, M are rotor, stator and mutual induc- —k 0
tances, respectively, R, and R, are rotor and stator re- 0 —ky . fia
sistances, o is the scattering coefficient, T'. is the time Isa fis
constant of the rotor dynamics, .J,, is the rotor inertia, tgu—| _k2 POk ||| o |’ 4
fm 1sthe mechanical viscous damping, p is the number 1 30
of polepairs, 71, isthe external load torque. ko 0

3. Nonlinear Control with Global Stability

We can solve the global stability problem using global
tools such as Lyapunov functions. In this section, we first
design an observer. It is an observer for a special class of
nonlinear systems, applied to the induction motor and en-
riched for a further analysis. Secondly, we design a con-
trol law. We base this control law on linearizing control
and we modify it in order to ensure global stability. We
then establish global stability using a Lyapunov function
(Lubineau et al., 1999).

3.1. Nonlinear Observer and Application
to the Induction Motor

In this section, based on extensions of the observer design
strategy to the multi-output case (Busawon et al., 1998)
and the application to the induction motor, we propose a
new observer with nonlinear terms. We are going to apply
the result given in the preceding part to construct a full-
order observer for an induction motor writteninthe «, 3

Park frame (Verghese and Sanders, 1988). The proposed
observer uses the measurements of the stator voltage and
current, and the rotor speed. More precisely, we design
the observer up to an injection of the speed measurements
so that only the electrical equations are considered. First,

where f;, and f;z will be defined in Section 3.3, and

ki =20,

1262 ®)
K[1+ (pQT;)*]
This leads to the following error equations:

- K -

—v—k 0 T_r PQK ;

K i

i Mok 7=k —pfiK T . fis
f_T_i P ko T —pfl 2
(6)

We show the diagram block of this observer in Fig. 1.

We shall perform the stability study in the next
part by considering the whole system process-observer-
controller.

3.2. Control Algorithm

We design a control algorithm based on feedback lin-
earization (Marino et al., 1993). The two controlled out-
puts of the system form the square of the flux norm in
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Fig. 1. Nonlinear observer block diagram.

the machine. Thisis to avoid magnetic saturation and to
work in the mode of overspending where the limitation of
the tension norm imposes the reduction in the flux norm
hs (x) and the electromagnetic torque h; (z) (Grellet
and Clerc, 1996). We express them as

M . .
hy (z) = P (is8Pra — isara) @

he (.’L’) = cpf‘oz + cpf“ﬁ

Both the variables are unknown. We define the ob-
served outputs as

N M /n TN
hy (z) = pL_r (Zsﬂtproz - Zsa‘)orﬂ) ) (8)

~

o () = G2 + B2

We define the derivates of h; and hy as (Van
Raumer, 1994; Lubineau et al., 1999):

iLl = Lfill + Lglhlusa + Lg2iL1’U/s,3,

. R )
hy = L jha,
where
Lfﬁl = pLA:[ (—fl@ﬁ+<ﬁmf2+£sﬁf3—£saf4) , (10)
LgliLl = _pé\f ULLSLPTB7
Ly = B2, (1)

Lihy = 2¢rafs + 200sfs,

with

5 K P ;
fi = —Yisa + T_Qaroc +PQKPrp + 20050 + fia,
I

- . K ~
f2 = —Yisg — pQK(PTa + T‘Prﬁ + 20@56 + fiﬁ:

A M . 1 . . ko ~ ~
Elsa - E‘Prox _pQQOTB + Tilsoc - pﬂkzlsﬁa

M., 1 I
= i QAroz__Ar Qk: sar —ls3.
fa TTZ’8+p ® TTSO,B‘FP 20 +TTZ’3

Since L fﬁz is not a function of the control inputs,

one should derive them once again. However, L :hs cON-
tains terms which are functions of currents. The differ-
entiation of those terms introduces terms of flux, which
are unknown. To overcome this problem, we write this as
(Isodori, 1989):

N 2 - A
thz = —Eh2+h3+A, (12)
where
~ M o ~ 2 A
hs = 2E (stﬁm + zsﬁ‘prﬁ) ) (13)

ko . ~
A=2 (T_2<proc + k2pﬂ<pr6> lsa

~ k ~ ~
+2 (—k2PQ<Pr,6’ + _2<prﬂ+> LsB,
T,

fzg isan a[tificial auxiliary output to control. Let us dif-
ferentiate hs:

}AL3 = Lfilg + LgliLg’U/sa + ngilgusg (14)

with

Ly =05 (frafi 4 Guafa + hunda + g ), (15)
Lg1;7/3 = 21{\? JLLS()OTC“

Ly,hy = 21{\? O_L-LSQOT[?'

Thisleads, finally, to
}ALl = Lfill + Lglhlusa + Lg2iL1’U/s,3,
ha = Lz, (16)

iL3 = Lfil3 + Lglh3usoz + Lg2il3us,37
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- Lfibl + Lglfllusa + ngllusg

2 4 A
——hs+hs +A - (17)
T,
L]gib3 + Lglilgusa + ngib3u55

The errors between the desired tragjectory of the outputs
and the estimated outputs are

€1 hi — By ret
€2 = hz - h2 ref
€3 hs — h3 et

Let us design the control inputs as

Usa
Usp

| Lgihi Lyohy
Lgihs Lgshs

—1 . .
—Ljhi—kprer+hrer
—Ljhs—ex—kpzes+hgrer

(18)
Thisleadsto
—Rp1€1
é1 9
€y | =| —m7mha+hs+A—hower |, (19
) T
€3 —€y — kp3€3

where hi.or and ho s are known references. The am
now isto define hs.er as

2 A .
h3 ref = T_h2 + ho ref — kp2627 (20)
which leadsto
€1 —kper
é2 = —kpzez + €3 + A . (21)
€3 —ez — kpzes

An appropriate choice of the positive constants k1, kp»
and k,3 ensuresthe exponential convergenceof the track-
ing errors.

We show a detailed scheme of the nonlinear control
with the observer in Fig. 2.

3.3. Proof of Global Stability

We now consider all the elements together in order to
build an ultimate observer based on the control law. Let
us define the function

gza + giﬁ + @?‘a + 9512“5
)

nE = 7

(22)

where ~- isapositive constant, and the function
Va (€) = W ,
We can choose a Lyapunov function candidatefor the
global system (process-observer-controller)as V =V +
V5. ltsderivateis

(23)

’ 2 2 2
V=- pl€1 — kp2€2 - kp3€3 + Aeg

~ ~ 1 " >
- ('7/ + kl) (Zf;oz + Ziﬁ) - m (9012“04 + 9012"[5’)

(B 2 B ) GrGra + TasBes)
Tr Tr’}/z Tr'7/2 saPra sB¥Pra

- [fiagsoz + fzﬁgzﬁ]
kz < ~ < ~
+pﬂ (K — %> [ZSa(p’[’B - Zsﬂgara] . (24)

The following three conditions form a sufficient set
of conditionsensuring V' < 0 by

— [fiaisa + figiig] + Aes =0,
2 M
4Tr72 8Tr72
kz (0,9) = K’)/z

Replacing A by itsvalue (13) leadsto the following equa-
tion:

k1 (0 ) > (25)

-y =0>

1
- 377

~ ~ ko - ~
[fiozzsoz + fzﬁzzﬂ] =2 |:T_2(Proz + ksz(PrB:| lsa €2
r

k-
+2 {—kzpﬂaﬁm + %@,ﬁ} es. (26)
Equation (26) is satisfied if f;, and f;3 arechosen as

ky .
fia =2 |:T_2(Proz + ksz(PrB:| €2,
' (27)

. ks .
fig =2 [—kwﬂ@m + %%5} €.

V' is then a Lyapunov function for the overall sys-
tem. Consequently, the whole process is stable and the
convergence is exponential. We ensure flux and torque
tracking. Then we can add a speed feedback loop to en-
sure the speed tracking.

4. Resultsand Simulations

4.1. Simulation Block Diagrams, Motor Data and a
Benchmark

We design the general block diagram as shown in Fig. 3.
In addition to that, we perform a simulation with Matlab-
Simulink by using the benchmark in Fig. 4 and the motor
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Table 1. Parameters of the induction motor.

‘ Designation ‘ Parameter ‘ Value
Rotor resistance R, 4.3047 Q
Stator resistance R 9.65 2
Mutual inductance M 0.4475 H
Stator inductance L, 0.4718 H
Stator inductance L, 0.4718 H
Rotor inertia Jm 0.0293 kg-m?
Pole pair p 2
Viscous friction coefficient fm Rlorgsssec rad—"
Mechanical power P 1L1KW
Nominal voltage Vin 220V
Nominal current I 26A
Nominal speed Qsn 1410 Nm

parameters given in Table 1 (Cauét, 2001). This bench-
mark (Bodson and Chiasson, 1992; Lubineau et al., 1992)
reveals the following profile: arise in speed, aload, in-
version speed and aload in recovery, and areturn at alow
speed.

We study the performance of the new nonlinear ob-
server in an open loop. Then we associate it in a closed
loop with the nonlinear control of the induction motor
where we choose 6 = 5. This gives the dynamics of the
observer close to those of the motor as shown in Fig. 5.

Figure 4 givesthe reference trajectories of the speed,
flux and load torque.

200 T T ‘ r T T T T

Speed (racdfs)

Flux (Wb}

Torgue {N.m}

Time (sec)

Fig. 4. Referencetrgjectories.

4.2. Study of theNonlinear Observer in an Open L oop

First, we simulate the trajectory of the poles of the motor
and the nonlinear observer, cf. (5), obtained with 8 = 5.
Secondly, in Fig. 6 we show a good observation error of
the rotor flux at different speeds (0.0125, 3.4 and 150
rad/s), simulated for ¢ = 30.
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Fig. 5. Poletrgectory of the motor and the nonlinear observer.
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Fig. 6. Observation errors of the rotor flux (¢ = 30).

Note that we initialize the rotor flux in the observer
with ¢, = ¢rg, = 0.5 Wh. Finaly, in Fig. 7 we study
sensitivity to rotor resistance disturbances for three values
of R, = (4.3047,6.4571,8.034) (2, i.e. an increase by
50% and 100%, respectively. We can show the robustness
of the proposed nonlinear observer. Nevertheless, we note
the existence of a static error, which increases with the
variation of the rotor resistance.
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Fig. 7. Sensitivity to rotor resistance disturbances.

4.3. Performanceof Linearizing Control
Associated with the Nonlinear Observer

Speed error tracking

During an increase or a decrease in the speed, an error
speed of 0.6 rad/sis observed. When the speed is con-
stant, this error is cancelled. The peaks appear at the time
of the abrupt variations in the load torque. Their ampli-
tudes depend on its value, as shownin Fig. 8.
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Fig. 8. Speed error tracking.
Torque

We notethat the drivetorque followsthe load torque when
the speed is constant. During an increase or decrease in
the speed, adifferenceof +5 Nm appears between thetwo
torques, as shown in Fig. 9.

Rotor flux errors

We note a very good tracking by looking at the two errors
of observation and regulation as shown in Figs. 10-11.

The transient response between ¢t = 0 and 0.5sis due to
the initialization of the rotor flux norm with 0.707 Wh.
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Fig. 9. Motor and load torques.
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Stator current norm

We show the plot of the norm stator current in Fig. 12.
The norm of the current is equal to 3.5A, in the interval

9

Current (A}

Fig. 12. Stator current norm.

of t = [01]s, t = [35]s because the speed increase and
the load torque are zero. Between ¢ = [1 1.5] s, [2.5 3]s,
[5 5.5]sand [8.5 9] s, the norm is minimal and equal to
1.9A. In this phase, the speed is constant and the load
torque is zero. The amplitude of the current reaches a
maximum value of 5A at ¢t = [1.5 2.5] s, because aload
torque of 7Nm appears at that point. Speed remains al-
ways constant. Between ¢ = [5.5 7]sand [8 8.5] s, the
norm reaches 2.6 A and 2.8 A, respectively, because aload
torque of 3.55Nm takes place. Again speed remains con-
stant. During this phase, and between ¢ = [7 8]s, the
norm increases sharply because of the linear variation in
Speed.

Stator voltage control

The three stator control voltages follow the profile of the
norm current, except if speed varieslinearly. Their ampli-
tude varies in the same proportions, as shown in Fig. 13.

5. Conclusion

In this paper, we presented a new robust observer based on
a nonlinear control scheme for an induction motor. The
observer proposed in this study offers the advantage of
only one tuning parameter §. The adaptation gain of the
rotor flux depends on speed. The global stability (motor,
controller, and observer) was established with a carefully
built Lyapunov function that keeps the observer dynamics
free. Intensive simulations in a wide operating domain
such as low and high speed, constant flux and various
torque disturbances were performed in Matlab-Simulink

400
200 b2

-200 -
-400

400
20002

200 |-~
-400

Valtage (V)
=)

400 T T T T T

08 I s o S D A R

Fig. 13. Stator control.

and justified the interest in such an observer based on lin-
ear control laws. The results of simulations regarding the
observation of rotor flux, the robustness of the observer,
the speed and torque tracking and the rotor flux tracking
confirm the theory suggested. We wish to validate these
resultsin real time.
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