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The main contribution of this work is to provide two algorithms for the computation of the minimal polynomial of univariate
polynomial matrices. The first algorithm is based on the solution of linear matrix equations while the second one employs
DFT techniques. The whole theory is illustrated with examples.
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1. Introduction

It is well known from the Cayley Hamilton theorem that
every matrix A ∈ R

r×r satisfies its characteristic equa-
tion (Gantmacher, 1959), i.e., if p (s) := det (sIr − A) =
sr+p1s

r−1+· · ·+pr, then p (A) = 0. The Cayley Hamil-
ton theorem is still valid for all cases of matrices over
a commutative ring (Atiyah and McDonald, 1964), and
thus for multivariable polynomial matrices. Another form
of the Cayley-Hamilton theorem, also known as the rela-
tive Caley-Hamilton theorem, is given in terms of the fun-
damental matrix sequence of the resolvent of the matrix,
i.e., if (sIr − A)−1 =

∑∞
i=0 Φis

−i then Φk +p1Φk−1 +
· · · + prΦk−r = 0. The Cayley-Hamilton theorem was
investigated for the matrix pencil case A (s) = A0 +A1s
in (Mertzios and Christodoulou, 1986), and the respective
relative Cayley-Hamilton theorem in (Lewis, 1986). The
Cayley-Hamilton theorem was extended to matrix polyno-
mials (Fragulis, 1995; Kitamoto, 1999; Yu and Kitamoto,
2000), to standard and singular bivariate matrix pencils
(Givone and Roesser, 1973; Ciftcibaci and Yuksel, 1982;
Kaczorek, 1995a; 1989; Vilfan, 1973), M-D matrix pen-
cils in (Gałkowski, 1996; Theodorou, 1989) and n-d poly-
nomial matrices (Kaczorek, 2005). The Cayley-Hamilton
theorem was also extended to non-square matrices, non-
square block matrices and singular 2D linear systems with
non-square matrices (Kaczorek, 1995b; 1995c; 1995d).
The reason behind the interest in the Caley-Hamilton the-
orem is its applications in control systems, i.e., the calcu-
lation of controllability and observability grammians and
the state-transition matrix, electrical circuits, systems with
delays, singular systems, 2-D linear systems, the calcula-
tion of the powers of matrices and inverses, etc.

Of particular importance for the determination of the
characteristic polynomial of a polynomial matrix A (s) =
A0 + A1s + · · · + Aqs

q ∈ R
r×r[s] are: (a) the Faddeev-

Leverrier algorithm (Faddeev and Faddeeva, 1963; Helm-
berg et al., 1993) which is fraction free and needs r3(r −
1) polynomial multiplications, (b) the CHTB method pre-
sented in (Kitamoto, 1999), which needs r3 (q + 1) poly-
nomial multiplications (its shortcomings are that it can-
not be used for a polynomial matrix A (s) when A0 has
multiple eigenvalues, and it needs to compute first the
eigenvalues and eigenvectors of A0), and (c) the CHACM
method presented in (Yu and Kitamoto, 2000), which
needs 7

12r4+O
(
r3
)

polynomialmultiplications (a CHTB
method given with an artifical constant matrix in order to
release the restrictions of the CHTB method, which needs
no condition on the given matrix, does not have to solve
any eigenvalue problem and is fraction free). Except for
the characteristic polynomial of a constant matrix, say
p (s), with the nice property p (A) = 0, there is also an-
other polynomial, known as the minimal polynomial, say
m (s), which is the least degree monic polynomial that
satisfies the equation m (A) = 0 (Gantmacher, 1959).
Since the minimal polynomial has a lower degree than the
characteristic polynomial, it helps us to solve faster prob-
lems such as the computation of the inverse or power of a
matrix.

A number of algorithms have been proposed for the
computation of the minimal polynomial of a constant ma-
trix (Augot and Camion, 1997), but there is not much in-
terest in polynomial matrices of one or more variables.
Therefore, the aim of this work is to propose two algo-
rithms for the computation of the minimal polynomial of
univariate polynomial matrices. The first one is presented
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in Section 2 and is based on the solution of linear ma-
trix equations, while the second one is based on Discrete
Fourier Transform (DFT) techniques and is presented in
Section 3. The proposed algorithms are illustrated via ex-
amples.

2. Computation of the Minimal Polynomial
of Univariate Polynomial Matrices

Consider the polynomial matrix

A(s) =
q∑

i=0

Ais
i ∈ R

r×r[s], (1)

where q is the greatest power of s in A (s).

Definition 1. Every polynomial

p (z, s) = zp + p1 (s) zp−1 + · · · + pp (s)

for which

p
(
A(s), s

)
= A (s)p + p1 (s)A (s)p−1 + · · · + pp (s) Ir = 0 (2)

is called the annihilating polynomial for the polynomial
matrix A (s) ∈ R

r×r[s]. The monic annihilating poly-
nomial with a lower degree in z is called the minimal
polynomial.

It is well known that the characteristic polynomial
p (z, s) = det (zIr − A (s)) is an annihilating polyno-
mial, but not necessarily a minimal polynomial.

Example 1. Let

A (s) =

⎡
⎢⎣ s 1 0

0 s 0
0 0 s

⎤
⎥⎦ .

Then

p (z, s) = det (zI3 − A (s))

= det

⎡
⎢⎣ z − s −1 0

0 z − s 0
0 0 z − s

⎤
⎥⎦

= (z − s)3 = z3 − 3sz2 + 3s2z − s3

and

p
(
A
(
s
)
, s
)

= (A (s) − sI3)
3

=

⎡
⎢⎣ 0 1 0

0 0 0
0 0 0

⎤
⎥⎦

3

= 03,3.

�

The coefficients of the characteristic polynomial can
be computed in a recursive way by an algorithm presented
in (Fragulis et al., 1991; Kitamoto, 1999; Yu and Kita-
moto, 2000). As we shall see below, the characteristic
polynomial of the above example is not the only poly-
nomial of the third order that satisfies (2), and does not
coincide with the minimal polynomial. Let now

B(s) =
p∑

i=0

Bis
i ∈ R

r×r[s],

where p is the greatest power of s in B (s). Then the
product of B(s)A(s) is given by

B(s)A(s) =
p+q∑
l=0

(
l∑

i=0

BiAl−i

)
sl.

Note that the coefficient matrices with indices greater
than p (resp. q) for B (s) (resp. for A (s)) are taken to
be zero. If B (s) = Φ0,0 := Ir, then

A(s) =:
q∑

l=0

Φ1,ls
l ≡ Φ0,0A(s) =

q∑
l=0

(
l∑

i=0

Φ0,iAl−i

)
sl,

where Φ0,l = 0, ∀l �= 0, and thus

Φ1,l =
l∑

i=0

Φ0,iAl−i = Al.

Similarly, if we set B (s) =
∑q

i=0 Φ1,is
i = A (s),

where Φ1,i = Ai, i = 0, 1, . . . , q, then

A2(s) =:
2q∑

l=0

Φ2,ls
l ≡ A(s)A(s)

=
2q∑

l=0

(
l∑

i=0

Φ1,iAl−i

)
sl,

and thus

Φ2,l =
l∑

i=0

Φ1,iAl−i.

In the general case, where Φk,i is the matrix coeffi-
cient of si in the matrix A (s)k, we have

Ak(s) =

⎧⎪⎪⎨
⎪⎪⎩

Ir if k = 0,

kq∑
l=0

Φk,ls
l if k ≥ 1,

(3)

where

Φk,l =
l∑

i=0

Φk−1,iAl−i with l = 0, 1, . . . , kq (4)

and Φ1,l = Al, Φ0,0 = Ir .
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Let now the minimal polynomial of A (s) be of the
form

p (z, s) = zm + pm−1(s)zm−1 + · · · + p1(s)z + p0(s),

where m ≤ r, with

pi(s) =
(m−i)q∑

k=0

pi,ksk, pi,k ∈ R. (5)

Then (2) can be rewritten as

p (A(s), s) = A(s)m + pm−1(s)A(s)m−1

+ · · · + p1(s)A(s) + p0(s)Ir = 0r,r, (6)

or, equivalently,

pm−1(s)A(s)m−1 + · · · + p1(s)A(s)

+ p0(s)Ir = −A(s)m. (7)

Equation (7) can be rewritten as

mq∑
i=0

fis
i = −

mq∑
i=0

Φm,is
i. (8)

Using (3), (4) and (7) in (8), we get the formula

fk =
m−1∑
i=0

max(0,k−iq)∑
j=min(k,(m−i)q)

Φm−i,jpm−i,k−j (9)

for k = 0, 1, . . . , mq. Define now the matrices

Fm =

⎡
⎢⎢⎢⎢⎣

f0

f1

...

fmq

⎤
⎥⎥⎥⎥⎦ , Φm =

⎡
⎢⎢⎢⎢⎣

−Φm,0

−Φm,1

...

−Φm,mq

⎤
⎥⎥⎥⎥⎦ ,

Pm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pm−1,0Ir

pm−1,1Ir

...

pm−1,qIr

pm−2,0Ir

...

pm−2,2qIr

...

p0,0Ir

...

p0,mqIr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and Φm, cf. Eqn. (10), where

n1 = r (mq + 1) ,

m1 = r

m∑
i=1

(iq + 1) =
(

1
2
qm(m + 1) + m

)
r,

and Φ0,0 = Ir , Φ1,i = Ai. From (9) and (10) we have

Fm = ΦmPm = Φm. (11)

Let Φm
i be the matrix that contains i mod r

columns of the matrix Φm and Km
i be the matrix that

contains i columns of the matrix Φm. Then (11) can be
rewritten as

⎡
⎢⎢⎢⎢⎣

Φm
1

Φm
2

...

Φm
r

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Fm

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pm−1,0

pm−1,1

...

pm−1,q

pm−2,0

...

pm−2,2q

...

p0,0

...

p0,mq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Pm

=

⎡
⎢⎢⎢⎢⎣

Km
1

Km
2

...

Km
r

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Km

, (12)

where Fm ∈ R
n2×m2 , n2 = r2(qm + 1), m2 =

1
2qm(m + 1) + m, with m ≤ r. Note that

λ =
n2

m2
=

r2(qm + 1)
1
2qm(m + 1) + m

≥ r(qm + 1)
1
2q(m + 1) + 1

= 2
r(qm + 1)

(mq + 1) + (q + 1)

m≥1

≥ 2m
r(qm + 1)
2(mq + 1)

= rm ≥ 1,

and thus, in general, the number of rows of Fm is greater
than or equal to the number of its columns, with equal-
ity in the case where r = m = 1. Note that the rela-
tion (9) and the matrices presented in (10), and therefore
in (12), are used in (Fragulis, 1995) for the computation
of the characteristic polynomial of a polynomial matrix,
but in a wrong form. By using known numerical proce-
dures, such as the Gauss elimination method, the QR fac-
torization or the Cholesky factorization, we can easily de-
termine the values of pi,j and therefore the polynomials
pi (s) , i = 0, 1, . . . , m − 1. It is easily checked that the
upper bound for m is r, i.e., the degree of the character-
istic polynomial. An algorithm for the computation of the
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Φm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φm−1,0 0 · · · · · · 0
Φm−1,1 Φm−1,0 · · · · · · 0
Φm−1,2 Φm−1,1 Φm−1,0 · · · 0

...
...

...
. . .

...

Φm−1,q Φm−1,q−1 Φm−1,q−2 · · · 0
...

...
...

. . .
...

Φm−1,(m−1)q Φm−1,(m−1)q−1 Φm−1,(m−1)q−2 · · · Φm−1,(m−2)q

0 Φm−1,(m−1)q Φm−1,(m−1)q−1 · · · Φm−1,(m−2)q+1

0 0 Φm−1,(m−1)q · · · Φm−1,(m−2)q+2

...
...

...
. . .

...

0 0 0 · · · Φm−1,(m−1)q︸ ︷︷ ︸
q+1

· · ·

Φ2,0 0 · · · · · · 0
Φ2,1 Φ2,0 · · · · · · 0

...
...

. . . · · · 0
Φ2,2q Φ2,2q−1 · · · · · · 0

0 Φ2,2q · · · · · · 0

0 0
. . . · · · 0

...
... · · · . . .

...

0 0 · · · · · · Φ2,0

...
... · · · · · · ...

...
... · · · · · · Φ2,2q−1

0 0 · · · · · · Φ2,2q︸ ︷︷ ︸
(m−2)q+1

Φ1,0 0 · · · · · · 0
Φ1,1 Φ1,0 · · · · · · 0

...
...

. . . · · · 0
Φ1,q Φ1,q−1 · · · · · · 0
0 Φ1,q · · · · · · 0

0 0
. . . · · · 0

...
... · · · . . .

...

0 0 · · · · · · Φ1,0

...
... · · · · · · ...

...
... · · · · · · Φ1,q−1

0 0 · · · · · · Φ1,q︸ ︷︷ ︸
(m−1)q+1

Φ0,0 0 0 · · · 0 0
0 Φ0,0 0 · · · 0 0
0 0 Φ0,0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · Φ0,0 0
0 0 0 · · · 0 Φ0,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
mq+1

∈ R
n1×m1 , (10)
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minimal polynomial or otherwise for the coefficients pi,j

for i = 0, 1, . . . , m − 1 and j = 0, 1, . . . , mq is given
below.

Algorithm 1. Computation of the minimal polynomial of
a polynomial matrix

Step 1. x = 0.

Step 2. Do
x = x + 1
Define the matrix Φx ∈ R

n1×m1 (see (10)), with n1 =
r (xq + 1) and m1 = r

∑x
i=1 (iq + 1).

Rewrite the equations ΦxPx = Φx as FxPx = Kx (see
(12)).
While NOT FxPx = Kx has a solution.

Step 3. The coefficients of the minimal polynomial are
given by the solution of the system FxPx = Kx.

The above algorithm can be easily modified in or-
der to find an annihilating polynomial of the same degree
with the characteristic polynomial of the polynomial ma-
trix A (s) as follows:

Algorithm 2. Computation of an annihilating polynomial
of the same degree with the characteristic polynomial of a
polynomial matrix

Step 1. Construct the matrices
Φi,0, Φi,1, . . . , Φi,iq, i = 0, 1, . . . , r − 1.

Step 2. Define the matrix Φr (see (10)).

Step 3. Construct the matrices Fr and Kr that contain
i mod r columns of Φr and Φ, respectively.

Step 4. The coefficients of the annihilating polynomial are
given by the solution of the system (12) with m = r, i.e.,
FrPr = Kr.

The main advantage of the above method of de-
termining of the coefficients pi,j is the use of numeri-
cally stable procedures for the solution of the linear sys-
tem (12), while the main disadvantage is the use of large-
scale matrices. The upper bound for the complexity of the
algorithm for the computation of the minimal polynomial
is O

(
1
10q3r9

)
(q is the greatest power of s in A (s), r

stands for the dimension of the matrix A (s) ) and this is
the case where the minimal polynomial coincides with the
characteristic polynomial. The lower bound for the com-
plexity of the above algorithm is O

(
1
2q3r4

)
. The com-

plexity can also be reduced by using fast matrix multi-
plication techniques (Coppersmith and Winograd, 1990)
with the complexity O

(
n2.376

)
and fast linear matrix

solvers that exploit the sparsity of the matrices, i.e., a
conjugate-gradient linear system solver, with the com-
plexity O

(
n2
)

instead of O
(
n3
)
, which we have used

for the computation of the complexity of Algorithm 2.
Now, if we take into account the fact that the upper bound

for the complexity of polynomial multiplication of poly-
nomials with degree at most rq is O (rq log (rq)) (by
using FFT transforms), then the CHACM method for the
computation of the characteristic polynomial (Yu and Ki-
tamoto, 2000) needs r3 (q + 1) polynomial multiplica-
tions or otherwise the upper bound for its complexity is
O
(
r4q (q + 1) log (rq)

)
, which is better than those in Al-

gorithm 2. However, Algorithm 2 may gives better results
than those in (Yu and Kitamoto, 2000) in the case where
the minimal polynomial has a much smaller degree in z
than the characteristic polynomial.

Example 2. Let

A (s) =

⎡
⎣ s 1 0

0 s 0
0 0 s

⎤
⎦

=

⎡
⎣ 0 1 0

0 0 0
0 0 0

⎤
⎦

︸ ︷︷ ︸
A0

+

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
A1

s ∈ R [s]3×3
.

Step 1. x = 0.

Step 2. x = 1.
Define the compound matrices

Φ1 =
[

I3 0
0 I3

]
∈ R

6×6,

P1 =
[

p0,0I3

p0,1I3

]
, Φ1 =

[ −Φ1,0

−Φ1,1

]
,

where

Φ1,0 = A0 =

⎡
⎣ 0 1 0

0 0 0
0 0 0

⎤
⎦ , Φ1,1 = A1 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ .

We can easily check that the matrix equation Φ1P1 =
Φ1 or equivalently P1 = Φ1 has no solution and thus
we proceed to the next step i.e. x = x + 1. Define the
compound matrices

Φ2 =

⎡
⎣ Φ1,0 0 I3 0 0

Φ1,1 Φ1,0 0 I3 0
0 Φ1,1 0 0 I3

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
0 0 0
0 0 0

0
1 0 0
0 1 0
0 0 1

0 0

1 0 0
0 1 0
0 0 1

0 1 0
0 0 0
0 0 0

0
1 0 0
0 1 0
0 0 1

0

0
1 0 0
0 1 0
0 0 1

0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
9×15,
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P2 =

⎡
⎢⎢⎢⎢⎣

p1,0I3

p1,1I3

p0,0I3

p0,1I3

p0,2I3

⎤
⎥⎥⎥⎥⎦ , Φ2 =

⎡
⎣ −Φ2,0

−Φ2,1

−Φ2,2

⎤
⎦ ,

where

Φ2,0 =

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦ , Φ2,1 =

⎡
⎣ 0 2 0

0 0 0
0 0 0

⎤
⎦ ,

Φ2,2 =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ .

Rewrite the equations Φ2P2 = Φ2 as F2P2 = K2

(see (12)) with

F2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 1
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P2 =

⎡
⎢⎢⎢⎢⎣

p1,0

p1,1

p0,0

p0,1

p0,2

⎤
⎥⎥⎥⎥⎦ , K2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
−1
0
0
0
0
0
−2
0
0
0
−1
0
0
0
0
0
0
0
0
0
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and get the unique solution⎡
⎢⎢⎢⎢⎢⎢⎣

p1,0

p1,1

p0,0

p0,1

p0,2

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−2
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Step 3. The coefficients of the minimal polynomial are
given by the solution of the system F2P2 = K2

p (z, s) = (z − s)2 = z2 − 2sz + s2.

In case we would like to apply the Algorithm 2, then we
need to proceed one step more i.e. x = r = 3. Define the
compound matrices

Φ3 =

⎡
⎢⎢⎢⎢⎣

Φ2,0 0 Φ1,0 0 0 I3 0 0 0

Φ2,1 Φ2,0 Φ1,1 Φ1,0 0 0 I3 0 0

Φ2,2 Φ2,1 0 Φ1,1 Φ1,0 0 0 I3 0

0 Φ2,2 0 0 Φ1,1 0 0 0 I3

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

0
0 1 0

0 0 0

0 0 0

0 0 I 0 0 0

0 2 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 1 0

0 0 0

0 0 0

0 0 I 0 0

1 0 0

0 1 0

0 0 1

0 2 0

0 0 0

0 0 0

0
1 0 0

0 1 0

0 0 1

0 1 0

0 0 0

0 0 0

0 0 I 0

0
1 0 0

0 1 0

0 0 1

0 0
1 0 0

0 1 0

0 0 1

0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

P3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p2,0I3

p2,1I3

p1,0I3

p1,1I3

p1,2I3

p0,0I3

p0,1I3

p0,2I3

p0,3I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Φ3 =

⎡
⎢⎢⎢⎢⎣

−Φ3,0

−Φ3,1

−Φ3,2

−Φ3,3

⎤
⎥⎥⎥⎥⎦

where

Φ3,3 =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦ , Φ3,2 =

⎡
⎢⎢⎣

0 3 0

0 0 0

0 0 0

⎤
⎥⎥⎦ ,

Φ3,1 =

⎡
⎢⎢⎣

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦ , Φ3,0 =

⎡
⎢⎢⎣

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦ .
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Then we construct the matrices F3,K3 and P3 as de-
fined above:

F3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0

1 0 0
0 0 0
0 0 0

0 1 0
0 0 0
0 0 0

0 1 0
0 0 0
0 0 0

0 1 0
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 0

2 0 0
0 0 1
0 0 0

1 0 0
0 0 0
0 0 0

0 0 0
1 0 0
0 0 0

0 2 0
1 0 0
0 0 0

0 1 0
1 0 0
0 0 0

0 0 0
0 1 0
0 0 0

0 0 0
0 1 0
0 0 0

0 0 0
0 1 0
0 0 0

0 0 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
0 1 0

0 0 0
0 0 0
0 1 0

0 0 0
0 0 0
0 1 0

0 0 0
0 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, K3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
3
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

P3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p2,0

p2,1

p1,0

p1,1

p1,2

p0,0

p0,1

p0,2

p0,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and solve the equations F3P3 = K3. The coefficients of
the annihilating polynomial of degree 3 in z are given by
the solution of the above system of equations:

P3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p2,0

p2,1

p1,0

p1,1

p1,2

p0,0

p0,1

p0,2

p0,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
6
z1 +

1
3
z4 − 1

6
z8

−4
3
− 1

6
z2 +

1
3
z5 − 1

6
z9

0
1
3
z1 − 2

3
z4 +

1
3
z8

−1
3

+
1
3
z2 − 2

3
z5 +

1
3
z9

0
0

−1
6
z1 +

1
3
z4 − 1

6
z8

2
3
− 1

6
z2 +

1
3
z5 − 1

6
z9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus the annihilating polynomial of order 3 in z will
have the following form:

p (z, s) = z3 +
[(

− 4
3
− 1

6
z2 +

1
3
z5 − 1

6
z9

)
s

+
(
− 1

6
z1 +

1
3
z4 − 1

6
z8

)]
z2

+
[(

− 1
3

+
1
3
z2 − 2

3
z5 +

1
3
z9

)
s2

+
(1

3
z1 − 2

3
z4 +

1
3
z8

)
s
]
z

+
[(2

3
− 1

6
z2 +

1
3
z5 − 1

6
z9

)
s3

+
(
− 1

6
z1 +

1
3
z4 − 1

6
z8

)
s2
]
,

or, equivalently, if we set x = z2 − 2z5 + z9 − 10 and
y = z1 − 2z4 + z8,

p
(
z, s
)

= z3 +
((

− 9
3
− 1

6
x
)
s +

(
− 1

6
y
))

z2

+
((9

3
+

1
3
x
)
s2 +

(1
3
y
)
s
)
z

+
((

− 1 − 1
6
x
)
s3 +

(
− 1

6
y
)
s2
)

= (z − s)2
(
z − (6 + x)s + y

6

)
.

Note that (a) p (A (s) , s) = 0 and (b) the char-
acteristic polynomial is a special case of p(z, s) for
x = 0, y = 0. Any other polynomial of the form
p′ (z, s) = (z − s)2 (z − a (x1, x2, . . . , xn, s)) is also an
annihilating polynomial of degree 3 in z since, as we have
shown above, the minimal polynomial of the matrix A (s)
is (s − z)2. �
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3. DFT Calculation of a Minimal Polynomial

The main disadvantage of the algorithm presented in the
previous section is its complexity. In order to overcome
this difficulty, we can use other techniques such as interpo-
lation methods. Schuster and Hippe (1992) use interpola-
tion techniques to find the inverse of a polynomial matrix.
The speed of interpolation algorithms can be increased
by using Discrete Fourier Transforms (DFT) techniques
or better Fast Fourier Transforms (FFT). Some of the ad-
vantages of DFT-based algorithms are that there are very
efficient algorithms available both in software and hard-
ware, and that they are parallel in nature (through symmet-
ric multiprocessing or other techniques). Paccagnella and
Pierobon (1976) use FFT methods for the computation of
the determinant of a polynomial matrix. In this section we
present an algorithm based on the Discrete Fourier Trans-
form (DFT) which is by an order of magnitude faster than
the algorithm presented in the previous section.

Multidimensional Fourier Transforms arise very fre-
quently in many scientific fields such as image process-
ing, statistics, etc. Let us now present the strict definition
of a DFT pair. Consider the finite sequences X(k1, k2)
and X̃(r1, r2), ki, ri = 0, 1, . . . , Mi. In order for the
sequence X(k1, k2) and X̃(r1, r2) to constitute a DFT
pair, the following relations should hold:

X̃(r1, r2) =
M1∑

k1=0

M2∑
k2=0

X(k1, k2)W−k1r1
1 W−k2r2

1 , (13)

X(k1, k2) =
1
R

M1∑
r1=0

M2∑
r2=0

X̃(r1, r2)W k1r1
1 W k2r2

1 , (14)

where

Wi = e
2πj

Mi+1 , ∀i = 1, 2, (15)

R = (M1 + 1) (M2 + 1) , (16)

and X, X̃ are discrete argument matrix-valued func-
tions. The relation (13) is the forward Fourier transform
of X(k1, k2), while (14) is the inverse Fourier transform
of X̃(r1, r2).

The great advantage of FFT methods is their reduced
complexity. The complexity of 1D DFT on a matrix
M ∈ R

1×R is O(R2), while the FFT has a complex-
ity of O(R log R). Similarly, the complexity of the DFT
of a matrix M ∈ R

m1×m2 is O(
∏2

i=1 m2
i ) which, using

the FFT, reduces to O((
∏2

i=1 mi)(
∑2

i=1 log mi). The in-
verse DFT is of the same complexity as the forward one.

In the following, we propose a new algorithm for the
calculation of the minimal polynomial of A (s) using dis-
crete Fourier transforms. From (5) it is easily seen that the

greatest powers of the variables s and z in the minimal
polynomial p(s, z) are

degz (p(z, s)) = b0 := m (≤ r) ,

degs (p(z, s)) ≤ b1 := mq (≤ rq) .
(17)

Thus, the polynomial p(z, s) can be written as

p(z, s) =
b0∑

k0=0

b1∑
k1=0

(pk0k1)
(
zk0sk1

)
(18)

and numerically computed via interpolation using the fol-
lowing R1 points:

ui(rj) = W
−rj

i , i = 0, 1 and rj = 0, 1, . . . , bi, (19)

Wi = e
2πj

bi+1 , (20)

where

R1 = (b0 + 1)(b1 + 1). (21)

In order to evaluate the coefficients pk0k1 , define

p̃r0r1 = p (u0(r0), u1(r1)) , (22)

where we use an O
(
r3
)

algorithm for the computation
of the minimal polynomial of the above constant matrix
A(u1(r1)) (Augot and Camion, 1997). From (18), (20)
and (22) we get

p̃r0r1 =
b0∑

l0=0

b1∑
l1=0

(pl0l1)
(
W−r0l0

0 W−r1l1
1

)
.

Notice that [pl0l1 ] and [p̃r0r1 ] form a DFT pair and thus
using (14) we derive the coefficients of (18), i.e.,

pl0l1 =
1

R1

b0∑
r0=0

b1∑
r1=0

p̃r0r1W
r0l0
0 W r1l1

1 , (23)

where li = 0, . . . , bi and i = 0, 1.

Having in mind the above theoretical deliberations,
we will continue by describing the algorithm as an outline
for computation.

Algorithm 3. DFT computation of the minimal polyno-
mial

Step 1. Calculate the number of interpolation points bi

using (17).

Step 2. Compute R1 points ui(rj) for i = 0, 1 and
rj = 0, 1, . . . , bi in (19).

Step 3. Determine the values at u0(r0) of the minimal
polynomials of the constant matrices A (u1(r1)) and thus
construct the values p̃r0r1 in (22).

Step 4. Use the inverse DFT (23) for the points p̃r0r1 in
order to construct the values pl0l1 .



On the computation of the minimal polynomial of a polynomial matrix 347

The above algorithm can also be used for the compu-
tation of the characteristic polynomial of a matrix polyno-
mial by making necessary changes in Step 3 (the compu-
tation of characteristic polynomial of A (u1(r1)) instead
of the minimal polynomial). The upper bound for the com-
plexity of the above algorithm is O

(
r4q2

)
if we use DFT

techniques or O
(
r4q log (q)

)
if we use FFT techniques,

and is better than the CHACM method for the characteris-
tic polynomial of A (s) while being comparable to Algo-
rithm 2 when the minimal polynomial has a much smaller
degree in z than the characteristic polynomial.

Example 3. Consider the polynomialmatrix A (s) of Ex-
ample 2. Then by applying Algorithm 3 we have the fol-
lowing results:

Step 1. Calculate the number of interpolation points bi

by (17).

b0 = degz p(z, s) ≤ r = 3,

b1 = degs a(z, s) ≤ rq = 3.

Step 2. Compute

R1 =
1∏

i=0

(bi + 1) = (3 + 1) (3 + 1) = 16

points ui(rj) = W
−rj

i , Wi = e
2πj

bi+1 , i = 0, 1 and rj =
0, 1, . . . , bj in (19). We get

u0 (0) = W 0
0 = 1,

u0 (1) = W−1
0 = e−

2πj
3+1 = e−

πj
2 ,

u0 (2) = W−2
0 = e−2 2πj

3+1 = e−πj ,

u0 (3) = W−3
0 = e−3 2πj

3+1 = e−
3πj
2 ,

u1 (0) = W 0
1 = 1,

u1 (1) = W−1
1 = e−

2πj
3+1 = e−

2πj
4 ,

u1 (2) = W−2
1 = e−2 2πj

3+1 = e−
4πj
4 ,

u1 (3) = W−3
1 = e−3 2πj

3+1 = e−
6πj
4 .

Step 3. Determine the minimal polynomials of the con-
stant matrices A (u1(r1)):

p (z, u1 (0)) = z2 − 2z + 1,

p (z, u1 (1)) = z2 + 2jz − 1,

p (z, u1 (2)) = z2 + 2z + 1,

p (z, u1 (3)) = z2 − 2jz − 1,

and then the values of each polynomial at u0(r0),

p̃0,0 = p (u0 (0) , u1 (0))

=
(
z2 − 2z + 1

)
z=1

= 0,

p̃1,0 = p (u0 (1) , u1 (0))

=
(
z2 − 2z + 1

)
z=e−πj/2 = 2j,

p̃2,0 = p (u0 (2) , u1 (0))

=
(
z2 − 2z + 1

)
z=e−πj = 4,

p̃3,0 = p (u0 (3) , u1 (0))

=
(
z2 − 2z + 1

)
z=e−3πj/2 = −2j,

p̃0,1 = p (u0 (0) , u1 (1))

=
(
z2 + 2jz − 1

)
z=1

= 2j,

p̃1,1 = p (u0 (1) , u1 (1))

=
(
z2 + 2jz − 1

)
z=e−πj/2 = 0,

p̃2,0 = p (u0 (2) , u1 (1))

=
(
z2 + 2jz − 1

)
z=e−πj = −2j,

p̃3,1 = p (u0 (3) , u1 (1))

=
(
z2 + 2jz − 1

)
z=e−3πj/2 = −4,

p̃0,2 = p (u0 (0) , u1 (2))

=
(
z2 + 2z + 1

)
z=1

= 4,

p̃1,2 = p (u0 (1) , u1 (2))

=
(
z2 + 2z + 1

)
z=e−πj/2 = −2j,

p̃2,2 = p (u0 (2) , u1 (2))

=
(
z2 + 2z + 1

)
z=e−πj = 0,

p̃3,2 = p (u0 (3) , u1 (2))

=
(
z2 + 2z + 1

)
z=e−3πj/2 = 2j,

p̃0,3 = p (u0 (0) , u1 (3))

=
(
z2 − 2jz − 1

)
z=1

= −2j,

p̃1,3 = p (u0 (1) , u1 (3))

=
(
z2 − 2jz − 1

)
z=e−πj/2 = −4,

p̃2,3 = p (u0 (2) , u1 (3))

=
(
z2 − 2jz − 1

)
z=e−πj = 2j,

p̃3,3 = p (u0 (3) , u1 (3))

=
(
z2 − 2jz − 1

)
z=e−3πj/2 = 0,

and thus construct the values p̃r0r1 in (22).
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Step 4. Use the inverse DFT (23) for the points
p̃r0r1 in order to construct the values pl0l1 =
1
16

∑3
r0=0

∑3
r1=0 p̃r0r1W

r0l0
0 W r1l1

1 .

p0,0 = 0, p0,1 = 0, p0,2 = 1, p0,3 = 0,

p1,0 = 0, p1,1 = −2, p1,2 = 0, p1,3 = 0,

p2,0 = 1, p2,1 = 0, p2,2 = 0, p2,3 = 0,

p3,0 = 0, p3,1 = 0, p3,2 = 0, p3,3 = 0,

and thus the minimal polynomial is

p (z, s) = s2 − 2sz + z2 = (z − s)2 .

In the case when we are interested in the character-
istic polynomial of the matrix A (s), we have to change
Steps 3 and 4 as follows:

Step 3a. Determine the characteristic polynomials of the
constant matrices A (u1(r1)):

p (z, u1 (0)) = z3 − 3z2 + 3z − 1,

p (z, u1 (1)) = z3 − 3z2e−
1
2πj + 3ze−πj − e−

3
2πj ,

p (z, u1 (2)) = z3 − 3z2e−πj + 3ze−2πj − e−3πj ,

p (z, u1 (3)) = z3 − 3z2e−
3
2πj + 3ze−3πj − e−

9
2πj ,

and then the values of each polynomial at u0(r0),

p̃0,0 = 0, p̃1,0 = 2 − 2j,

p̃2,0 = −8, p̃3,0 = 2 + 2j,

p̃0,1 = −2 + 2j, p̃1,1 = 0,

p̃2,0 = 2 + 2j, p̃3,1 = −8j,

p̃0,2 = 8, p̃1,2 = −2 − 2j,

p̃2,2 = 0, p̃3,2 = −2 + 2j,

p̃0,3 = −2 − 2j, p̃1,3 = 8j,

p̃2,3 = 2 − 2j, p̃3,3 = 0,

and thus construct the values p̃r0r1 in (22).

Step 4a. Use the inverse DFT (23) for the points
p̃r0r1 in order to construct the values pl0l1 =
1
16

∑3
r0=0

∑3
r1=0 p̃r0r1W

r0l0
0 W r1l1

1 ,

p0,0 = 0, p0,1 = 0, p0,2 = 0, p0,3 = −1,

p1,0 = 0, p1,1 = 0, p1,2 = 3, p1,3 = 0,

p2,0 = 0, p2,1 = −3, p2,2 = 0, p2,3 = 0,

p3,0 = 1, p3,1 = 0, p3,2 = 0, p3,3 = 0,

and thus the characteristic polynomial is

p (z, s) = z3 − 3z2s + 3zs2 − s3.

Note that, when using the DFT method or the CHACM
method, it is not easy to find the family of annihilating
polynomials of degree 3 in z, as we have already done in
Example 2. �

4. Conclusions

Two algorithms for the computation of the minimal poly-
nomial and the characteristic polynomial of univariate ma-
trices have been developed. The proposed algorithms are
easily implemented on a digital computer and are very
useful in many problems, such as the computation of the
powers of polynomial matrices, the evaluation of the con-
trollability and observability grammians of polynomial
matrix descriptions, the calculation of the state-transition
matrix, which is used for the evaluation of the solution
of homogeneous matrix differential equations of the form
A (ρ)β (t) = 0 with A (ρ) ∈ R [ρ]r×r. The algorithm
presented in Section 2 is based on the solution of linear
matrix equations. Its main advantage is that (a) it creates
a family of annihilating polynomials of the same degree
with the characteristic polynomial, and (b) has a complex-
ity comparable with the DFT method presented in Sec-
tion 3 in the case where the degree of the minimal polyno-
mial in z is lower enough in contrast to the degree of the
characteristic polynomial. Its main disadvantage is that
the upper bound for its complexity is big enough since
it uses large-scale matrices. The algorithm presented in
Section 3 is based on DFT techniques and has a lower
upper bound complexity than the ones in Section 2. An
extension of these algorithms to the n-variable case can
be easily done (Tzekis and Karampetakis, 2005).
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