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A controller architecture for nonlinear systems described by Gaussian RBF neural networks is proposed. The controller
is a stabilising solution to a class of nonlinear optimal state tracking problems and consists of a combination of a state
feedback stabilising regulator and a feedforward neuro-controller. The state feedback stabilising regulator is computed on-
line by transforming the tracking problem into a more manageable regulation one, which is solved within the framework
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1. Introduction

The model-based nonlinear tracking control problem has
attracted considerable attention from the control research
community. Amongst the various choices for modelling a
nonlinear system, artificial neural networks have emerged
as a powerful tool capable of approximating any contin-
uous function or any input-output mapping of a nonlin-
ear process, to any desired degree of accuracy (Hornik
et al., 1989), and, since the pioneering work by Naren-
dra and Parthasarathy (1990), to use neural networks in
nonlinear control, many different control strategies have
been proposed. Predictive control, also called receding
horizon control, is a model-based control technique that
periodically uses a model of the controlled system to cal-
culate the control action based on optimal input-state or
input-output predictions over a time horizon (Becerra et
al., 1998; 1999; Eaton and Rawlings, 1992; Garcia et al.,
1989; Morari and Lee, 1999; Richalet, 1993; Richalet et
al., 1978).

This paper proposes to solve a nonlinear optimal
state-tracking control problem by using a hybrid controller

consisting of a nonlinear stabilising state feedback con-
troller together with a feedforward neuro-controller. This
class of optimal tracking problems was introduced by Park
et al. (1996), who proposed a combination of feedback
and feedforward neuro-controllers computed off-line and
applied in parallel. The feedback controller generates
the transient control input to stabilise the error dynamics
while minimising a cost function. In order to meet this
functional requirement by the feedback controller, in this
paper it is proposed to transform the optimal state-tracking
control problem into a simpler regulation one which can
be solved on-line within the framework of a nonlinear re-
ceding horizon regulation scheme with guaranteed asymp-
totic stability. The feedforward neuro-controller is com-
puted off-line through the inversion of nonlinear input-
state mapping. Thus the philosophy of this hybrid con-
trol architecture is to allow the stabilising benefits of a
nonlinear neural-model based predictive regulator to be
combined with a forward neural controller to provide good
tracking performance and computational simplicity.
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The stability analysis of nonlinear model predictive
controllers is now believed to have reached a relatively
mature stage (Mayne et al, 2000). Some algorithms are
now available which ensure closed-loop stability by em-
bedding a terminal inequality constraint in the optimi-
sation problem and employing a stabilising local linear
state-feedback controller to determine terminal penalties
and terminal constraints (Chen and Allgöwer, 1998; Chen
and Shaw, 1982; De Nicolao et al., 1997; Keerthi and
Gilbert, 1988; Magni et al., 2001; Mayne and Michal-
ska, 1990; Michalska and Mayne, 1993; Parisini and Zop-
poli, 1995; Parisini et al., 1998). The nominal nonlinear
system in this paper is described by Gaussian radial basis
function neural networks (GRBFNN). An interesting fea-
ture of the proposed GRBFNN description is that it allows
for an easy transformation of the nonlinear tracking prob-
lem into an associated regulation problem. The stabiliz-
ing state feedback regulator which asymptotically steers
the state-error to the origin is computed using the method
of Parisini et al. (1998) for deriving stabilising nonlinear
predictive regulators. The feedforward control signal that
maintains the system state at a reference value is gener-
ated by an inverse GRBFNN model of the nonlinear sys-
tem under control.

The paper is organised as follows: Section 2 presents
the description of the nominal nonlinear system and the
formulation of the tracking problem. Section 3 gives a de-
scription of the hybrid predictive-neural controller archi-
tecture, recalls the stabilising nonlinear predictive regula-
tor theorem of Parisini et al., and presents the training al-
gorithm for the feedforward neuro-controller. A Gaussian
radial basis function neural network model for the state-
error dynamics is derived, and a summary of the control
algorithm is presented in Section 4. A simulation exam-
ple using a single-link robotic manipulator to illustrate the
effectiveness of the proposed controller is included in Sec-
tion 5, and some conclusions are drawn in Section 6.

2. System Description and Control Problem
Definition

2.1. System Description

The nominal nonlinear system considered in this paper is
described by the following discrete-time equations:

x(t + 1) = f
(
x(t), u(t)

)
, t = 0, 1, 2, . . . ,

y(t) = h
(
x(t)

)
, (1)

where x(t) ∈ X ⊂ R
n is the state vector, u(t) ∈ U ⊂

R
m represents the control vector and y(t) ∈ Y ⊂ R

r is
the output vector. The mappings f(·, ·) and h(·) are C1

functions of their arguments, and the regions X , U and

Fig. 1. Nominal GRBFNN model structure.

Y are compact subsets of R
n, R

m and R
r, respectively,

each containing the origin in its interior.

Moreover, the n elements of the input-state vec-
tor mapping f(·, ·) are assumed to be outputs of single-
hidden-layer feedforward neural networks with the input
vector (x(t), u(t)) as illustrated in Fig. 1. The output of
the i-th network can be expressed as

fi

(
x(t), u(t)

)
= qi0 +

Ki∑
k=1

qikΦik

(∥∥(x(t), u(t)
)− cik

∥∥ , σik

)
,

t = 0, 1, . . . (2)

The functions Φik are Gaussian radial basis functions
(GRBF) defined as

Φik

(
x(t), u(t)

)
= exp

(
−
∥∥(x(t), u(t)

)− cik

∥∥2

σ2
ik

)
,

(3)

where cik ∈ R
n+m are the GRBF centres, σik denote

the widths and ‖·‖ denotes the Euclidean norm. The
number of hidden units in the i-th network is Ki and the
connecting weights are qik , with qi0 as a bias term.
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It is further assumed that:

A1. f : R
n×R

m → R
n is a one-to-one mapping of state

equations.

A2. For any equilibrium state (xe, ue) ∈ X×U , the lin-
ear system xl(t + 1) = Axl(t) + Bu(t) obtained
via the linearisation of the system (1) in the neigh-
bourhood of (xe, ue), i.e.,

A =
∂f(x, u)

∂x

∣∣∣∣x=xe
u=ue

, B =
∂f(x,u)

∂u

∣∣∣∣x=xe
u=ue

is stabilisable.

2.2. Tracking Problem

Given the system (1)–(3), a reference state trajectory
xd(t) ∈ Y , an initial state x0 = x(t0), we wish to deter-
mine a control law u(t) = κtr(t) such that for all t ≥ t0
the following conditions are satisfied:

1. The quadratic cost function

J =
t+Nc∑
i=t

(
x(i) − xd(i)

)T
Q
(
x(i) − xd(i)

)

+
(
u(i) − ud(i)

)T
R
(
u(i) − ud(i)

)
(4)

is minimised, where Q > 0, R > 0.

2. The nominal system x(t + 1) = f(x(t), u(t)) is
asymptotically stable.

3. lim
t→∞ |x(t) − xd(t)| = 0.

In the formulation of the tracking problem given
above, the target state xd can undergo step-like changes
between constant steady-state values, ud is the nomi-
nal input corresponding to xd, and Nc a positive integer
known as the prediction horizon.

Now, define the following vector shifts:

x̃ = x − xd, (5a)

ũ = u − ud, (5b)

ỹ = y − yd. (5c)

Using these equations, the quadratic cost function in (4)
can be rewritten as

J =
t+Nc∑
i=t

x̃(i)T Qx̃(i) + ũ(i)T Rũ(i), (6)

where x̃ ∈ X̃ , ũ ∈ Ũ and ỹ ∈ Ỹ . The sets X̃ , Ũ and
Ỹ are compact subsets of R

n, R
m and R

r, respectively,
each having the origin as an internal point.

Using (1), (5a) and (5b), the state error can be written
as

x̃(t + 1) = f
(
x(t), u(t)

)− f
(
xd(t), ud(t)

)
= f

(
x̃(t) + xd(t), ũ(t) + ud(t)

)
− f

(
xd(t), ud(t)

)
= f̃

(
x̃(t), ũ(t)

)
. (7)

The linearisation of this error around the origin leads to

x̃l(t + 1) = Ãx̃l(t) + B̃ũ(t),

with

Ã =
∂f̃(x̃, ũ)

∂x̃

∣∣∣∣∣ x̃=0
ũ=0

, B̃ =
∂f̃(x̃, ũ)

∂ũ

∣∣∣∣∣ x̃=0
ũ=0

.

Letting

f̃
(
x̃(t), ũ(t)

)
= f

(
x(t), u(t)

)− f
(
xd(t), ud(t)

)
, (8)

with f(xd(t), ud(t)) being treated as an offset, the dif-
ferentiation of both sides of (8) with respect to x(t) and
u(t) at the target reference point (xd, ud) yields

∂f̃(x̃, ũ)
∂x̃

∣∣∣∣∣ x̃=0
ũ=0

=
∂f(x, u)

∂x

∣∣∣∣x=xd
u=ud

, (9a)

∂f̃(x̃, ũ)
∂ũ

∣∣∣∣∣ x̃=0
ũ=0

=
∂f(x, u)

∂u

∣∣∣∣x=xd
u=ud

. (9b)

From Assumption A2 it follows that the stabilisability
of the linearised system (A, B) at the reference point
(xd, ud) implies that of the linearised state-error system
(Ã, B̃) at the origin.

3. Controller Architecture

To solve the above control problem, a hybrid control ar-
chitecture consisting of a nonlinear stabilising state feed-
back controller together with a feedforward controller is
adopted. To this end, the optimal tracking problem de-
fined by (4) is converted into a simpler nonlinear regula-
tion problem involving a state error described by a Gaus-
sian radial basis function network. The nonlinear regula-
tion problem can be solved within the framework of a non-
linear receding horizon regulation scheme with guaran-
teed asymptotic stability to obtain a stabilising state feed-
back controller. The feedforward controller is computed
off-line through the inversion of the mapping f(·, ·). Thus
the philosophy of this hybrid control architecture is to al-
low the stabilising benefits of a nonlinear neural-model-
based predictive regulator to be combined with a forward
neural controller to provide good tracking performance
and computational simplicity.
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3.1. State-Feedback Receding Horizon Regulator

In the case of a linear system, the solution of the optimal
regulator problem defined by (6) with Nc = ∞ is a sta-
bilising linear state feedback control law that steers the
state error x̃ to zero, and is given by

ũ(t) = Kx̃(t), (10)

where K is the feedback gain matrix obtained by solv-
ing an algebraic matrix Riccati equation (Kwakernaak and
Sivan, 1972).

For a nonlinear system, however, the following finite-
horizon optimal control problem is defined: Minimise the
cost function

J
(
x̃(t), t, ũt,t+Nc+1, Nc

)

=
t+Nc−1∑

i=t

{
x̃(i)T Qx̃(i) + ũ(i)T Rũ(i)

}

+ Vf

(
x̃(t + Nc)

)
(11)

with respect to ũt,t+N−1 = {ũ(t), ũ(t + 1), . . . , ũ(t +
N − 1)}, subject to (1). Notice that (1) is assumed to be
a GRBF network. The terminal cost function Vf (x̃(t +
Nc)) bounds the infinite horizon cost of the nonlinear
system beyond the prediction horizon Nc (Chen and All-
göwer, 1998; Parisini and Zoppoli, 1995):

Vf

(
x̃(t + Nc)

)

≥
∞∑

i=t+Nc

x̃(i)T Qx̃(i) + ũ(i)T Rũ(i). (12)

The receding horizon control law κfb(x̃(t)) = ũ(t) de-
rived by solving the finite-horizon optimal control prob-
lem (11) is required to drive the state error x̃(t) to the
origin asymptotically, thus ensuring the stability of (1).

The stability analysis of this class of optimal regula-
tors has been carried out by a number of authors and the
closed-loop stability conditions have been established. In
this paper, stability is achieved by ensuring the satisfaction
of the assumptions and conditions required by Parisini and
Zoppoli (1995) and Parisini et al. (1998).

Let the terminal cost function be Vf (x̃(t + Nc)) =
a‖x̃(t + Nc)‖2

P , where a ∈ R is a positive scalar and
P ∈ R

n×n signifies a positive-definite symmetric matrix.
The objective function in (11) becomes

J(x̃(t), t, ũt,t+Nc+1, Nc)

=
t+Nc−1∑

i=t

{
x̃(i)T Qx̃(i) + ũ(i)T Rũ(i)

}

+ a ‖x̃(t + Nc)‖2
P . (13)

Assume that the following condition is satisfied:

A3. There is a compact set X̃0 ⊂ X̃ containing
the origin in its interior, with the property that
there exists an integer Mc ≥ 1 such that
there is a sequence of admissible control vec-
tors {ũ(i) ∈ Ũ , i = t, . . . , t + Mc − 1} that
yields an admissible state trajectory
{x̃(i) ∈ X̃, i = t, . . . , t + Mc} ending in the
origin of the state space (i.e., x̃(t + Mc) = 0) for
any initial state error x̃(t) ∈ X̃0.

Denote by

J0
(
x̃(t), Nc, a, P

)
= J

(
x̃(t), ũ0

t,t+Nc−1, Nc, a, P
)

=
t+Nc−1∑

i=t

{
x̃0(i)T Qx̃0(i) + ũ0(i)T Rũ0(i)

}

+ a
∥∥x̃0(t + Nc)

∥∥2

P

the cost corresponding to the optimal N -stage trajectory
starting from x̃(t), with ũ0

t,t+Nc−1 being the optimal so-
lution sequence of the receding horizon regulator problem
characterised by the control horizon Nc.

Theorem 1. (Parisini and Zoppoli, 1998) If Assump-
tions A2 and A3 are satisfied, then there exist a posi-
tive scalar a∗ and a positive-definite symmetric matrix
P ∈ R

n×n such that, for any Nc ≥ Mc and any
a ∈ R, a ≥ a∗, the following properties hold:

(a) The predictive control law stabilises asymptotically
the origin, which is an equilibrium point of the re-
sulting closed-loop system.

(b) There exists a positive scalar β such that the com-
pact set

W̃ (Nc, a, P ) = {x̃ ∈ X̃ : J0(x̃, Nc, a, P ) ≤ β}

is an invariant subset of X̃0 and a domain of attrac-
tion for the origin, i.e., for any x̃(t) ∈ W̃ (Nc, a, P ),
the state trajectory generated by the predictive reg-
ulator remains entirely contained in W̃ (Nc, a, P )
and converges to the origin.

3.2. Feedforward Neuro-Controller

In designing a nonlinear tracking controller, it is also re-
quired that the system state be maintained at a reference
state value by producing the corresponding reference in-
put. For this purpose, assuming that f(·, ·) is a one-
to-one mapping (c.f. Assumption A1), a neural network
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Fig. 2. Feedforward controller training structure—a direct method.

is trained to represent the inverse dynamics of the sys-
tem (1).

When the system (1) reaches its steady state (i.e.,
x(t) = xd(t)), the receding horizon component of the
controller vanishes as the state error reaches the origin,
and thus (1) can be written as

xd(t + 1) = f
(
xd(t), ud(t)

)
. (14)

Starting from (14), which relates a reference state to the
corresponding reference input, the nonlinear relation de-
scribing the system’s inverse can be written as

ud(t) = f−1
(
xd(t), xd(t + 1)

)
. (15)

Here, the inverse function f−1 requires knowledge of the
current and next reference state vectors to generate the
current reference input.

Using Gaussian RBF neural networks to design the
feedforward controller, the prediction of the j-th element
of the reference input vector can then be written as fol-
lows:

udj(t) = f−1
j

(
xd(t + 1), xd(t)

)
= wj0

+
Kj∑
k=1

wjkΦjk

(
‖(xd(t+1), xd(t))−μjk‖ , δjk

)
,

j = 1, 2, . . . , m, (16)

with the Gaussian radial basis functions defined as

Φjk

(
xd(t + 1), xd(t)

)
= exp

(
−
∥∥(xd(t + 1), xd(t)

)− μjk

∥∥2

δ2
jk

)
, (17)

where μjk ∈ R
2n are the GRBF centres and δjk ∈ R

stand for the widths. The number of hidden units in the

j-th network is Kj and the connecting weights are wjk ,
with wj0 as a bias term.

The training of the inverse model can be done using
the direct inverse modelling approach (Hunt et al., 1992),
where a synthetic input signal is applied to the nonlinear
system. Then the corresponding states are measured and
used as training data (Fig. 2).

3.3. Training Algorithm

The training algorithm for the feedforward controller,
which can be used to choose the number and distribu-
tion of the GRBFs centres and to adjust the weights and
widths, is one of the numerous algorithms available. In
this paper an algorithm similar to the resource allocat-
ing network with extended Kalman filtering (RANEKF)
is used (Kadirkamanathan and Niranjan, 1993; Yingwei
et al., 1997).

The algorithm uses a set of N state-input measure-
ments collected from the response of the nominal system
for various reference inputs. At the k-th training iteration,
the algorithm receives the vector (xd(k + 1), xd(k)) as
an input and the corresponding reference input ud(k) as
a target. The algorithm starts with a blank network with
no Gaussian units. When training the j-th input uj(·),
the bias term is initialised to the first target value udj (1),
and the first centre is selected randomly from the training
data. As more data vectors are received, new centres are
allocated based on the novelty of the data. The following
two conditions must be satisfied before the input vector
(xd(k + 1), xd(k)) is taken as the new centre:∥∥(xd(k + 1), xd(k)

)− μj,nr

∥∥ > εj(k), (18)

ejr(k) =

∣∣∣∣∣udj(k) − f−1
j

(
xd(k + 1), xd(k)

)
udj(k)

∣∣∣∣∣ > ηj ,

(19)
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where μj,nr is the nearest centre to (xd(k + 1), xd(k))
in the input space, ejr is the relative error in the network
output, and εj(k) and ηj are appropriately chosen posi-
tive thresholds. The value of εj(k) is iteratively reduced
from a maximum value εmax until it reaches a minimum
allowed value εmin:

εj(k) = max{εmaxγ
k, εmin}, 0 < γ < 1. (20)

When a new centre is selected, the parameters of the
associated Gaussian unit are assigned as follows:

wj,Kj+1 = udj(k) − f−1
j

(
xd(k + 1), xd(k)

)
, (21)

μj,Kj+1 =
(
xd(k + 1), xd(k)

)
, (22)

σj,Kj+1 = ρ
∥∥(xd(k + 1), xd(k)

)− μj,nr

∥∥ , (23)

where ρ > 0 is an overlap factor.

When the observation {(xd(k+1), xd(k)), udj(k)}
does not satisfy the novelty criteria, the extended Kalman
filter is used to update the weights and widths of the net-
work described by the parameter vector

ωj = [wj0, wj1, . . . , wjKj , δj1, δj2, . . . , δjKj ]
T

as follows:

ωj(k) = ωj(k − 1)

+ gj(k)
(
udj(k) − f−1

j

(
xd(k + 1), xd(k)

))
, (24)

where gj(k) is the Kalman gain vector given by

gj(k) = Sj(k−1)aj(k)
[
Rj(k)+aT

j (k)Sj(k−1)aj(k)
]−1

,
(25)

aj(k) being the gradient vector of the following form:

aj(k) = ∇ωj f
−1
j

((
xd(k + 1), xd(k)

))
. (26)

Here Rj(k) is the variance of the measurement noise and
Sj(k) is the error covariance matrix which is updated in
accordance with

Sj(k) =
[
I − gj(k)aT

j (k)
]
Sj(k − 1) + Q0I. (27)

The error covariance matrix Sj(k) is an s × s positive
definite symmetric matrix, where s is the number of the
parameters being updated. Q0 is a scalar that determines
the allowed random step in the direction of the gradient
vector. Whenever a new Gaussian unit is allocated, the
matrix Sj(k) is augmented as follows:

Sj(k) =

(
Sj(k − 1) 0

0 S0I

)
. (28)

This training algorithm can be summarised as follows:

Step 0.

0.1 Set k = 1, ηj, εmax, εmin, γ, ρ, N, R0, S0, Q0.

0.2 Obtain the first observation {(xd(k + 1), xd(k)),
udj(k)} and set wj0 = udj(1).

0.3 Select a random integer k0, 1 ≤ k0 ≤ N , and set
μj,1 = (xd(k0 + 1), xd(k0)).

0.4 Set Kj = 1.

Step 1.

1.1 Obtain a new observation {(xd(k + 1), xd(k)),
udj(k)}.

1.2 Compute εj(k) using (20).

Step 2.
2.1 If (18) and (19) do

2.1.1 Allocate a new Gaussian unit as in (21)–
(23).

2.1.2 Augment Sj(k) as in (28).

2.1.3 Set Kj = Kj + 1.

Else do
2.1.4 Compute vector aj(k) using (26).

2.1.5 Compute the Kalman gain gj(k) as in
(25).

2.1.6 Update the parameter vector ωj(k) using
(24).

2.1.7 Update Sj(k) using (27).

Step 3.
Set k = k + 1.
If k ≤ N do

go to Step 1
else stop iteration

4. Controller Implementation

This section shows how a state-error expression can be
explicitly derived in the form of a GRBF neural network,
thus allowing the nonlinear tracking problem (4) to be
converted into a nonlinear regulation problem which can
be treated within the stabilising framework of Theorem 1.
Secondly, an implementation of this hybrid predictive-
neural tracking controller is presented.

4.1. Tracking–Error Model

By using (2) and the definition of the Gaussian RBF in (3),
the i-th element of the state-error vector (7) can be written
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down as follows:

x̃i(t + 1) = fi

(
x(t), u(t)

)− fi

(
xd(t), ud(t)

)

=
Ki∑

k=1

qik

[
exp

(
− ‖(x(t), u(t)

)− cik‖2

σ2
ik

)

− exp
(
− ‖(xd(t), ud(t)

)−cik‖2

σ2
ik

)]
(29)

by manipulating the term ‖(x(t), u(t)) − cik‖2 in (29).
Adding and subtracting the column vector (xd(t), ud(t))
yield

∥∥(x(t), u(t)
)− cik

∥∥2

=
∥∥(x(t), u(t)

)− (xd(t), ud(t)
)

+
(
xd(t), ud(t)

)− cik

∥∥2

=
∥∥(x̃(t), ũ(t)

)− (cik − (xd(t), ud(t)
))∥∥2

. (30)

Let c̃ik(t) be the shifted centre defined by

c̃ik(t) = cik − (xd(t), ud(t)
)
. (31)

Then the dynamics of the i-th element of the state-error
vector can be written as

x̃i(t + 1) = f̃i

(
x̃(t), ũ(t)

)

=
Ki∑

k=1

qik

[
exp

(
− ‖(x̃(t), ũ(t)

)− c̃ik(t)‖2

σ2
ik

)

− exp
(
− ‖c̃ik(t)‖2

σ2
ik

)]
(32)

for i = 1, 2, . . . , n. Thus for every reference state value
xd(t), a nonlinear state-error model represented by the
nonlinear vector mapping f̃ = [f̃1, f̃2, . . . , f̃n]T is ex-
plicitly expressed based on the parameters of the GRBF
neural network nominal system. From (32), it is possible
to conclude that the state-error model is a GRBF neural
network with centres c̃ik(t), widths σik and bias terms

q̃i0 = −
Ki∑
k=1

qik exp

(
−‖c̃ik(t)‖2

σ2
ik

)
. (33)

4.2. Architecture of the GRBF-Based Predictive
Tracking Controller

The general architecture of the stabilising hybrid
predictive-neural tracking controller based on GRBF neu-
ral networks is illustrated in Fig. 3. The state-error model

generator takes the current values of the state reference
vector xd(t) and the output ud(t) of the feedforward
controller as its input to produce the associated state-error
model parameters, namely the shifted centres c̃ik . Then
the error model is used by the optimisation function to
generate the stabilising optimal predictive control compo-
nent ũ(t) which ensures closed-loop stability.

The minimisation of the objective function
J(x̃(t),ũt,t+Nc−1, Nc, a, P ) at any sampling time
t, involves the use of a predicted state-tracking-error
sequence

x̃t,t+Nc =
{
x̃(t|t), x̃(t + 1|t), . . . , x̃(t + Nc|t)

}
over the prediction horizon Nc to generate the optimal
predicted control sequence

ũt,t+Nc−1 =
{
ũ(t|t), ũ(t + 1|t), . . . , ũ(t + Nc − 1|t)}.

The vector x̃(t|t) denotes the current state error and is
given by

x̃(t|t) = x(t) − xd(t). (34)

Using the recursive technique and the one-step-ahead pre-
dictor expression in (32), the d-step-ahead recursive pre-
dictor of the state-tracking-error at time t is

x̃i(t + d) =
Ki∑
k=1

qik

{
exp

(
−
∥∥(x̃(t+d−1|t), ũ(t+d−1|t))−c̃ik(t+d−1|t)∥∥2

σ2
ik

)

− exp
(
−
∥∥c̃ik(t + d − 1|t)∥∥2

σ2
ik

)}
(35)

for d = 1, 2, . . . , Nc and i = 1, 2, . . . , n. The set of
future shifted centres is obtained by transforming (31) into

c̃ik(t + d − 1|t)
= cik − (xd(t + d − 1|t), ud(t + d − 1|t)). (36)

Clearly, the future shifted centres depend on the future ref-
erence state values and future reference inputs. The fu-
ture reference inputs in (36) are generated, at each sample
time, by the feedforward controller. From (35) and (36)
it is noted that information about the present and future
values of the reference state trajectory is embedded into
the state-error predictors through the shift of the GRBF
centres in the input-state space (Fig. 3).

Unlike other nonlinear model based predictive con-
trollers where the model of the controlled process is di-
rectly used to compute the control profile based on op-
timal input-state predictions over a prediction horizon,
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Fig. 3. Block diagram for the nonlinear hybrid predictive-neural tracking controller.

here the nominal process model is used to generate an-
other model that describes the dynamics of the tracking
error for a particular reference state or set-point. It is this
tracking-error model that is used to predict future track-
ing errors and minimise a performance objective function
to yield the predictive control action that steers the state-
tracking-error to zero. The implementation of the hybrid
predictive-neural tracking control algorithm can be sum-
marised as follows:

Step 0.

0.1 Load the nominal system and its inverse.

0.2 Set the desired state trajectory.

0.3 Set Nc and x0.

0.4 Set the initial guess of the predicted control se-
quence to zero.

Step 1.

1.1 Obtain the future reference state vector sequence

xd|t,t+Nc
=
{
xd(t|t), xd(t + 1|t), . . . ,

xd(t + Nc|t)
}
.

1.2 Use the inverse model (16) to compute the future
reference input sequence

ud|t,t+Nc
=
{
ud(t|t), ud(t + 1|t), . . . ,

ud(t + Nc − 1|t)}.
1.3 Set d = 1, use (36) to compute the shifted centre

c̃ik(t|t), and generate the one-step-ahead predictor
model of the state-error as given by (35).

Step 2.
2.1 Linearise the state-error model around the origin.

2.2 Use Parisini and Zoppoli’s procedure to determine
the matrix P and the scalar a∗ in the objective
function (13).

Step 3.
3.1 Compute the current state shift

x̃(t|t) = x(t) − xd(t).

3.2 Use (36) to compute the sequence of centres{
c̃ik(t + 1|t), c̃ik(t + 2|t), . . . ,

c̃ik(t + Nc − 1|t)},
and then use (35) to recursively determine the
state-error predictions x̃(t+j|t) for 1 ≤ j ≥ Nc.

Step 4.
Form the objective function (13)

Step 5.
5.1 Use the optimisation algorithm to generate the

control sequence

{ũ(t|t), ũ(t + 1|t), . . . , ũ(t + Nc − 1|t)} .

5.2 Apply the hybrid control input u(t) = ũ(t|t) +
ud(t) to the nominal system, and measure the cur-
rent state x(t).

Step 6.
6.1 Set the next initial guess of the predicted control

sequence to

{ũ(t|t), ũ(t + 1|t), . . . , ũ(t + Nc − 1|t)} .

6.2 Set t = t + 1 and go to Step 1.
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5. Case Study

This section illustrates how the proposed approach to de-
sign a stabilising hybrid predictive-neural tracking con-
troller is implemented for a nonlinear system. The nom-
inal system considered in this simulation is an identified
GRBF neural netwok model for a single link robotic ma-
nipulator (SLM) (Garces et al., 2003; Kambhampati et al.,
1997; Zhihong et al., 1998) described by the following
second-order nonlinear differential equation:

ml2θ̈(t) + νθ̇(t) + mgl sin θ(t) = u(t), (37)

where the mass m = 1.0 kg, the length of the manip-
ulator l = 1.0 m, the coefficient of the viscous fric-
tion ν = 1.0 kg m2/s, the acceleration due to gravity
g = 9.8 m/s2, θ(t) is the angle (in radians) the manipu-
lator makes with the vertical line, and u(t) is the applied
torque in Nm.

Using the second-order Taylor expansion to dis-
cretise the continuous state-space representation of (37)
yields the following discrete-time model:

x1(t + 1) = x1(t) +
[
T − T 2

2

]
x2(t)

− 9.8
T 2

2
sinx1(t) +

T 2

2
u(t),

(38)

x2(t + 1) =
[
1 − T − T 2

2
− 9.8

T 2

2
cosx1(t)

]
x2(t)

− 9.8
[
T − T 2

2

]
sinx1(t)

+
[
T − T 2

2

]
u(t),

where the state variables are x1(t) = θ(t), x2(t) = θ̇(t),
i.e., the angular position and angular velocity, respec-
tively, and T = 0.01 s is the sampling period.

Two GRBF neural networks (each having 78 Gaus-
sian units) are identified to represent the states x1(t)
and x2(t) over the operation domains X ⊂ R

2 and
U ⊂ R

1 with X =
{
x = [x1, x2]T : |x1| ≤ 0.7 rad,

|x2| ≤ 2.5 rad/s
}

and U = {u : |u| ≤ 7 Nm}. The input
vector to each network is

col
(
x(t), u(t)

)
=
[
x1(t), x2(t), u(t)

]T
. (39)

Note that this GRBF model was used for computing
the predictions associated with the receding horizon reg-
ulator. The nominal system has to fulfil the stabilisability
requirement set in Assumption A2. Thus, the lineariza-
tion of the GRBF neural network in the neighbourhood of

the origin gives

A =

[
0.99597 0.01108

−0.09821 0.98783

]
,

B =

[
−0.00055

0.01074

]
.

The eigenvalues of A are

ξA =

[
0.9919 + 0.03274i

0.9919− 0.03274i

]
.

Therefore, the linearization of the nominal system is sta-
bilisable at the origin with the eigenvalues of the A ma-
trix satisfying |ξA(j)| < 1. The stabilisability of the lin-
earization of the nominal system at equilibrium points far
from the origin is also indicated in Table 1, and it can be
seen that all eigenvalues are inside the unit circle.

Table 1. Eigenvalues of the A matrix for the linearised nominal
system at different equilibrium points.

Set point

xd = [x1, x2]
T

Eigenvalues of

matrix A

Radius

|ξA(j)|, j = 1, 2

[0, 0]T 0.9919 ± 0.032747i 0.9924

[0.2, 0]T 0.99537 ± 0.022741i 0.9956

[0.4, 0]T 0.99589 ± 0.025258i 0.9962

[0.6, 0]T 0.99359 ± 0.037889i 0.9943

[−0.2, 0]T 0.98903 ± 0.04378i 0.9899

[−0.4, 0]T 0.98145 ± 0.022426i 0.9817

[−0.6, 0]T 0.98872 ± 0.029596i 0.9891

Assuming that the nonlinear system described above
is a one-one mapping of its arguments, the feedforward
controller can be designed as described in Subsections 3.2
and 3.3. The training data for the inverse model are gen-
erated by applying different sine inputs, and collecting the
states x1 and x2. The measurement noise is assumed to
be a Gaussian white process with zero mean and 0.01 vari-
ance. All inputs are bounded to be in the operation region
of ±7 Nm. The parameters of the training algorithm are
selected as follows:

εmin = εmax = 0.175, γ = 1, η = 0.07, ρ = 0.85,

Q0 = 0.025, R0 = S0 = 1.

When training the inverse, it appeared that a good perfor-
mance can be achieved with the input vector reduced to
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(a)

(b)

Fig. 4. Training results for feedforward GRBFNN controller:
(a) desired state trajectories, (b) computed control using
feedforward network (bold) versus the desired control.

the next state [x1(t + 1), x2(t + 1)]T only. The perfor-
mance of the inverse GRBFNN, consisting of 46 Gaussian
functions, is illustrated in Fig. 4.

To show the asymptotic closed-loop stability of the
hybrid predictive-neural controller, a number of simu-
lations were carried out using the function fmincon for
constrained optimisation from the MATLAB Optimisa-
tion Toolbox. Given (5b) and the input operation domain
U defined above, the shifted input ũ(t) is constrained
to vary inside the set Ũ = {ũ = u − ud : |ũ| ≤ 14 Nm}.
In the first simulation, the goal was to use the nominal
GRBFNN model in a classic receding horizon regulation
scheme with initial states outside the training range. Here
xd(t) = ud(t) = 0 and the GRBFNN model was di-
rectly used to compute the control signal. The matrices
in the cost function (13) were selected as Q = α1I and

(a)

(b)

Fig. 5. Closed-loop results for tracking a zero reference state:
(a) state trajectories, (b) control signals.

R = α2I with α1 = 0.001 and α2 = 0.5. The control
horizon Nc was set to 5, and the matrix P and the scalar
a∗ were computed using the procedure from (Parisini et
al., 1998), which led to

P = 103

[
141.98 3.9460
3.9460 9.6054

]

and a∗ = 0.008982. The state trajectories and the control
profiles for different initial states are shown in Figs. 5(a)
and (b).

The second simulation illustrates the performance of
the proposed controller architecture (Fig. 3) while track-
ing both fixed and changing reference states. The pre-
dictive regulator signal ũ(t) of the tracking controller
was computed by successive minimisation of the objec-
tive function (13) with the weight parameters α1 and α2
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(a)

(b)

Fig. 6. Tracking response for fixed reference trajectories:
(a) angle trajectories, (b) control signals.

selected as 0.001 and 0.025, respectively. The tracking re-
sponse of the controller for several set points is illustrated
in Figs. 6(a) and 6(b), with the starting point outside the
training area. The control horizon is set to Nc = 9 and
the computed values for the scalar a∗ and the matrix P
are presented in Table 2 for all set points.

The case of tracking a changing reference trajec-
tory is shown in Fig. 7(a), and the control profiles of the
feedforward and predictive (bold) components of the con-
troller are depicted in Fig. 7(b). The control horizon for
this latter simulation is set to Nc = 9, and having a-priori
knowledge of the changing set point, the values of the
scalar a∗ and the matrix P are computed off-line using
the same method as indicated previously.

Table 2. Cost function matrix P and scalar
a∗ for different set points.

Set point
xd = [x1, x2]

T Matrix P Scalar a∗

[0.65, 0]T 107

"
1.4671 0.0561

0.0561 0.1554

#
5.4414 × 10−6

[0.35, 0]T 107

"
2.0465 0.0909

0.0909 0.0988

#
9.2380 × 10−6

[0, 0]T 109

"
1.8984 −0.0334

−0.0334 0.2407

#
4.2685 × 10−8

[−0.25, 0]T 106

"
5.1442 0.0083

0.0083 1.7891

#
1.3407 × 10−5

[−0.55, 0]T 107

"
1.6600 −0.0710

−0.0710 0.2404

#
2.1231 × 10−6

6. Conclusions

A controller architecture for nonlinear systems described
by Gaussian radial basis function neural networks has
been proposed. The controller solves a nonlinear optimal
state-tracking control problem by a combination of a sta-
bilising nonlinear state feedback regulator and a feedfor-
ward neuro-controller. The state feedback regulator was
derived by converting the nonlinear tracking problem into
a nonlinear regulation problem for state-error dynamics.
The regulation problem was solved using a nonlinear pre-
dictive control approach with guaranteed asymptotic sta-
bility. The feedforward neuro-controller was designed us-
ing the concept of inverse mapping. The proposed con-
trol scheme was applied to a single-link robotic manipu-
lator. Simulation results demonstrated good tracking per-
formances and the stability of the hybrid control scheme.
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