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In this paper we introduce a new modeling paradigm for developing a decision process representation called the Colored
Decision Process Petri Net (CDPPN). It extends the Colored Petri Net (CPN) theoretic approach including Markov decision
processes. CPNs are used for process representation taking advantage of the formal semantic and the graphical display. A
Markov decision process is utilized as a tool for trajectory planning via a utility function. The main point of the CDPPN is
its ability to represent the mark-dynamic and trajectory-dynamic properties of a decision process. Within the mark-dynamic
properties framework we show that CDPPN theoretic notions of equilibrium and stability are those of the CPN. In the
trajectory-dynamic properties framework, we optimize the utility function used for trajectory planning in the CDPPN by a
Lyapunov-like function, obtaining as a result new characterizations for final decision points (optimum point) and stability.
Moreover, we show that CDPPN mark-dynamic and Lyapunov trajectory-dynamic properties of equilibrium, stability and
final decision points converge under certain restrictions. We propose an algorithm for optimum trajectory planning that
makes use of the graphical representation (CPN) and the utility function. Moreover, we consider some results and discuss
possible directions for further research.

Keywords: decision process, colored Petri nets, colored decision process Petri nets, stability, Lyapunov methods, optimiza-
tion, game theory

1. Introduction

Colored Petri nets (CPNs) provide a framework for the de-
sign, validation and verification of systems. CPNs com-
bine the strength of place-transition Petri nets with the
strength of programming languages. In this sense, place-
transitions Petri nets provide primitives for describing
the synchronization of concurrent processes, while a pro-
gramming language provides primitives for defining data
types (color sets) and manipulating data values. The for-
mal definition of the syntax and semantics of CPNs can be
found in (Jensen, 1981; 1986; 1994; 1997a; 1997b).

This paper introduces a modeling paradigm for
developing decision process representation (Clempner,
2005) called the Colored Decision Process Petri Net
(CDPPN). It extends the Colored Petri net theoretic ap-
proach including Markov decision processes, using a util-
ity function as a tool for trajectory planning. On the one
hand, Colored Petri nets are used for process representa-
tion, taking advantage of the well-known properties of this
approach, namely, formal semantic and graphical display,
giving a specific and unambiguous description of process

behavior. On the other hand, Markov decision processes
have become a standard model for decision theoretic plan-
ning problems, having as key drawbacks the exponential
nature of dynamic policy construction algorithms. Al-
though both perspectives are integrated in a CDPPN, they
work on different execution levels. That is, the opera-
tion of a CPN is not modified and the utility function is
used exclusively for establishing a trajectory tracking in a
place-transition Petri net.

The main point of the CDPPN is its ability to repre-
sent mark-dynamic and trajectory-dynamic properties of
a decision process application. We will identify the mark-
dynamic properties of the CDPPN as properties related
only with the Colored Petri net, and we will define the
trajectory-dynamic properties of the CDPPN as properties
related to the utility function at each place that depends on
a probabilistic routing policy of the Colored Petri net.

Within the mark-dynamic properties framework we
show that CDPPN theoretic notions of stability are those
of the Colored Petri net. In this sense, we define the equi-
librium point as a place in a CDPPN whose marking is
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bounded and does not change, and it is the last place in
the net (a place without outgoing arcs).

In the trajectory-dynamic properties framework we
define the utility function as a Lyapunov-like function
(Massera, 1949). The core idea of our approach uses a
utility function that is nonnegative and converges to an
equilibrium point. For instance, in the arm race the level
of defense of a nation is nonnegative. In economic models
there are variables that correspond to, e.g., goods quan-
tities that remain nonnegative. In a followers population
model each variable remains nonnegative and corresponds
to the population in a followers type.

By an appropriate selection of appropriate
Lyapunov-like functions under a certain desired cri-
terion it is possible to optimize the utility (Clempner
et al., 2005). Optimizing the utility amounts to the
maximum or the minimum utility (depending on the
concave or the convex shape of the application space
definition). In addition to that, we used the notions of
stability in the Lyapunov sense to characterize stability
properties of the CDPPN. The core idea of our approach
uses a non-negative utility function that converges in a
decreasing form to a (set of) final decisions states. It is
important to point out that the value of the utility function
associated with the CDPPN implicitly determines a set
of policies, not just a single policy, in the case of having
several decision states that could be reached. We define
the optimum point as the best choice selected from a
number of possible final decisions states that may be
reached (to select the optimum point, the decision process
chooses the strategy that optimizes the utility).

As a result, we extend the mark-dynamic framework
including trajectory-dynamic properties. We show that
CDPPN mark-dynamic and trajectory-dynamic properties
of the equilibrium, stability and optimum point conditions
converge under certain restrictions: if the CDPPN is finite
and nonblocking, then a final decision state is an equilib-
rium point iff it is an optimum point.

An algorithm for optimum trajectory planning used
to find an optimum point is presented. It consists in find-
ing a firing transition sequence such that an optimum de-
cision state is reached in the CDPPN. For this propose
the algorithm uses the graphical representation provided
by the Colored Petri net and the utility function. It is
important to note that algorithm complexity depends on
the Lyapunov-like function chosen to represent the utility
function.

The paper is structured in the following manner: The
next section presents the necessary mathematical back-
ground and terminology needed to understand the rest of
the paper. Section 3 discusses the main results of this pa-
per, providing a definition of the CDPPN and giving a de-
tailed analysis of the equilibrium, stability and optimum

point conditions for the mark-dynamic and the trajectory-
dynamic parts of the CDPPN. An algorithm for calculat-
ing the optimum trajectory used to find the optimum point
is proposed. For illustration purposes we show how the
standard notions of stability in CDPPN theory are applied
to a practical example. Finally, some concluding remarks
and suggestions for future work are provided in Section 4.

2. Preliminaries

In this section, we present some well-established defini-
tions and properties (Lakshmikantham et al., 1990, 1991),
which will be used later. We set N = {0, 1, 2, . . .}, R+ =
[0,∞), Nn0+ = {n0, n0 + 1, . . . , n0 + k, . . . } , n0 ≥ 0.
Given x, y ∈ R

d, we use the relation “≤ ” to denote
componentwise inequalities with the same relation, i.e.,
x ≤ y is equivalent to xi ≤ yi, ∀i. A function f(n, x),
f : Nn0+ × R

d → R
d is called nondecreasing in x

if, given x, y ∈ R
d such that x ≥ y and n ∈ Nn0+,

we have f(n, x) ≥ f(n, y). A function f(n, x), f :
Nn0+ × R

d → R
d is called strictly increasing in x if,

given x, y ∈ R
d such that x > y and n ∈ Nn0+, we

have f(n, x) > f(n, y).

Consider the system of first-order difference equa-
tions given by

x(n+ 1) = f
[
n, x(n)

]
, x(no) = x0, (1)

where n ∈ Nn0+, x(n) ∈ R
d and f : Nn0+ ×R

d → R
d

is continuous in x(n).

Definition 1. The vector-valued function Φ(n, n0, x0) is
said to be a solution of (1) if Φ(n0, n0, x0) = x0 and
Φ(n+ 1, n0, x0) = f(n,Φ(n, n0, x0)) for all n ∈ Nn0+.

Definition 2. The system (1) is said to be (Lakshmikan-
tham et al., 1990):

(i) practically stable, if given (λ,A) with 0 < λ < A,
we have

|x0| < λ⇒ |x(n, n0, x0)| < A, ∀n ∈ Nn0+, n0 ≥ 0;

(ii) uniformly practically stable, if it is practically stable
for every n0 ≥ 0.

The following class of functions is defined:

Definition 3. A continuous function α : [0,∞) → [0,∞)
is said to belong to a class K if α(0) = 0 and it is strictly
increasing.
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2.1. Methods for Practical Stability

Consider (Lakshmikantham et al., 1991) the vector func-
tion v(n, x(n)), v : Nn0+ × R

d → R
p
+ and define the

variation of v relative to (1) by

Δv = v
(
n+ 1, x(n+ 1)

) − v
(
n, x(n)

)
. (2)

Then the following result concerns the practical stability
of (1):

Theorem 1. Let v : Nn0+ × R
d → R

p
+ be a contin-

uous function in x. Define the function v0(n, x(n)) =∑p
i=1 vi(n, x(n)) such that it satisfies the estimates

b(|x|) ≤ v0 (n, x (n)) ≤ a(|x|) for a, b ∈ K,
Δv

(
n, x(n)

) ≤ w
(
n, v

(
n, x(n)

))
for n ∈ Nn0+, x(n) ∈ R

d, where w : Nn0+×R
p
+ → R

p

is a continuous function in the second argument. As-
sume that g(n, e) � e + w(n, e) is nondecreasing in e,
0 < λ < A are given and, finally, that a(λ) < b(A) is
satisfied. Then the practical stability properties of

e(n+ 1) = g
(
n, e(n)

)
, e

(
n0

)
= e0 ≥ 0, (3)

imply the corresponding practical stability properties of
System (1).

Corollary 1.
1. If w(n, e) ≡ 0, we get uniform practical stabil-

ity of (1) which implies structural stability (Murata,
1989).

2. If w(n, e) = −c(e) for c ∈ K, we get uniform prac-
tical asymptotic stability of (1).

2.2. Colored Petri Nets

In this section, we present the concepts of colored Petri
nets (Jensen, 1981; 1986; 1994; 1997a; 1997b), multi-set,
marking, step, firing rule and incidence matrix.

Definition 4. A multiset m over a nonempty set S is a
function m : S → N which we represent as a formal sum

∑
s∈S

m(s)s.

We denote by Sms the set of all multisets over S. The
nonnegative integers {m(s) : s ∈ S} are the coefficients
of the multiset, s ∈ S iff m(s) 
= 0.

Definition 5. Addition, scalar multiplication, comparison
and size of multisets are defined in the following way, for
all m1,m2, m3 ∈ Sms and all n ∈ N :

(i) m1 +m2 =
∑

s∈S(m1(s) +m2(s))s (addition),

(ii) n ∗m =
∑

s∈S(n ∗m(s))s (scalar multiplication),

(iii) m1 
= m2 = ∃s ∈ S : m1(s) 
= m2(s) (compari-
son),

(iv) m1 ≤ m2 = ∀s ∈ S : m1(s) ≤ m2(s) (≥ and =
are defined analogously to ≤),

(v) |m| =
∑

s∈S m(s) (|m| = 0 iff m = ∅ the empty
multiset) (size).

When |m| = ∞, we say that m is infinite. Otherwise, m
is finite. When m1 ≤ m2, we also define the subtraction:

(vi) m2 −m1 =
∑

s∈S(m2(s)−m1(s))s (subtraction).

Remark 1. The weighted sets over a set S, Sws, are de-
fined as multisets, but over Z , allowing negative coeffi-
cients. The operations for the weighted sets Sws are the
same for the operations with multisets but scalar multipli-
cation is defined for negative integers and subtraction is
defined also for all weighted sets.

Definition 6. A colored Petri net is the septuple CPN =
(Σ, P,Q,K,A+, A−,M0), where

• Σ is a finite set of nonempty sets, called colors,

• P is the set of places,

• Q is the set of transitions,

• P ∩Q = ∅ and P ∪Q 
= ∅,

• K : P ∪Q −→ Σ is the color function, where Σ is
the set of finite nonempty sets,

• A+ : K(p) × K(q) → N is the forward incidence
matrix of P ×Q,

• A− : K(p) ×K(q) → N is the backward incidence
matrix of P ×Q,

• M0, the initial marking, is a vector indexed by the
elements of P , where M0(p) : K(p) → N.

Remark 2. A+ and A− are matrices of size P×Q with
coefficients in N which define linear applications from
K(q) to K(p)ms. The initial marking M0(p) takes its
values in K(p)ms.

Definition 7. A marking of CPN is a function M defined
on P , such that M(p) ∈ K(p)ms for all p ∈ P.

Definition 8. A step of CPN is a function X defined on
Q, such that X(q) ∈ K(q)ms for all q ∈ Q.
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Definition 9. The transition firing rule is given by the fol-
lowing:

• A step X is enabled in a marking M iff the
following property holds: ∀p ∈ P , M(p) ≥∑

q∈QA
−(p, q)(X(q)), which can also be written as

M ≥ A− ∗ X , where ∗ denotes generalized ma-
trix multiplication. We then say that q is enabled or
firable under the marking M .

• Firing a transition q leads to a new marking M1

defined as follows: ∀p ∈ P ,

M1(p) = M(p) +
∑
q∈Q

A+(p, q)
(
X(q)

)

−
∑
q∈Q

A−(p, q)
(
X(q)

)

or, in general,

M1 = M +A+ ∗X −A− ∗X.

Remark 3. The condition M(p) ≥∑
q∈QA

−(p, q)(X(q)) tells us that the multiset of
all the colors which are removed from p when q occurs
(for all q ∈ X) is required to be less than or equal to the
marking of p. It is important to mention that general-
ized matrix-multiplication, when is defined, behaves in
relation to the size operation as follows:

|A1 ∗A2| = |A1| ∗ |A2|.

Definition 10. The incidence matrix of a colored Petri net
is defined by

A = A+ −A−, A(p, q) ∈ K(q) → K(p)ws, (4)

where A(p, q) is a linear mapping whose associated ma-
trix P ×Q takes values in Z .

Remark 4. If a transition q is fired with respect to a color
κq ∈ K(q), then for every color κp ∈ K(p), A(κp, κq)
gives the number of colors κp to be added to (if the num-
ber is positive) or to be removed from (if the number is
negative) place p. Notice that if M ′ can be reached from
a marking M , i.e., there exists a sequence of enabled steps
whose associated transitions have been fired, then we ob-
tain

M ′ = M +A ∗X. (5)

Definition 11. Let a place p ∈ P , and a nonnegative n ∈
N be given. Then n is an integer bound for p iff for M ′

reachable from M we have |M ′(p)| ≤ n.

Let (Nn0+, d) be a metric space where d : Nn0+ ×
Nn0+ → R+ is defined by

d(M1,M2) =
m∑

i=1

ζi‖(M1(pi)(κp) −M2(pi)
(
κp)

)‖, (6)

where ζi > 0, ∀κp ∈ K(pi), i = 1, . . . ,m.
Consider (5), which defines a continuous function in
(Nn0+, d). Now, we are ready to state and prove two main
results of this subsection (Passino et al., 1995).

Proposition 1. Let CPN be a colored Petri net. The col-
ored Petri net CPN is uniformly practically stable if there
exists a strictly positive linear mapping Φ : K(p)ws →
Υws (with Υ normally one of the color sets is already
used in CPN) such that

Δv = |Φ ∗A ∗X | ≤ 0. (7)

Proof. Let us choose v(M(p)(cp)) = |Φ ∗M |, ∀cp ∈
C(p), as a Lyapunov function candidate and let Φ be a
strictly positive linear mapping. The Lyapunov function
v satisfies the conditions of Theorem 1. Therefore, uni-
form practical stability is obtained if there exists a strictly
positive linear mapping Φ such that (7) holds.

Remark 5. The condition given by (7) with a strictly
equality sign is equivalent to the condition

Φ ∗A = 0f , (8)

where 0f is the zero function.

The solution of this equation is not an easy task.
However, various methods have been proposed (see
Jensen, 1997b and the references given therein).

Proposition 2. Let CPN be a colored Petri net. The CPN
is stabilizable if there exists a step X such that

Δv = |A ∗X | ≤ 0. (9)

Proof. Let us choose

v
(
M(p)(cp)

)
=

[
v1

(
M(p)(cp)

)
, v2

(
M(p)(cp)

)
, . . . ,

vm

(
M(p)(cp)(p)(cp)

)]T
, ∀cp ∈ C(p),

as a vector Lyapunov function candidate, where
vi(M(p)(cp)) = |M(pi)|, 1 ≤ i ≤ m (with m equal
to the number of places in CPN). The Lyapunov function
v satisfies the conditions of Theorem 1. Therefore, uni-
form practical stability is obtained if there exists a step X
such that (9) holds. Therefore, we conclude that the CPN
is stabilizable.
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2.3. Decision Process

We assume that every discrete-event system with a finite
set of states P to be controlled can be described as a fully
observable, discrete-state Markov decision process (Bell-
man, 1957; Howard, 1960; Puterman, 1994). To control
the Markov chain, there must exist a possibility of chang-
ing the probability of transitions through an external in-
terference. We suppose that there exist a possibility of
carrying out the Markov process by N different meth-
ods. In this sense, we suppose that the controlling of the
discrete-event system has a finite set of actions Q which
cause stochastic state transitions. We denote by pq(s, t)
the probability that an action q generates a transition from
a state s to a state t, where s, t ∈ P .

A stationary policy π : P → Q denotes a particular
strategy or a course of action to be adopted by a discrete-
event system, with π(s, q) being the action to be executed
whenever the discrete-event system is in a state s ∈ P .
We refer the reader to (Bellman, 1957; Howard, 1960; Put-
erman, 1994) for a description of policy construction tech-
niques.

Hereafter, we will consider the possibility of estimat-
ing every step of the process through a utility function that
represents the utility generated by the transition from state
s to state t in the case of using an action q. We assume
an infinite time horizon, and that the discrete-event system
accumulates the utility associated with the states it enters.

Let us define Uπ(s) as the maximum utility starting
at the state s that guarantees choosing the optimal course
of action π(s, q). Let us suppose that at the state s we
have an accumulated utility B(s) and the previous transi-
tions have been executed in an optimal form. In addition,
suppose consider that the transition of going from the state
s to the state t has a probability of pπ(s,q)(s, t). Because
the transition from the state s to the state t is stochastic,
it is necessary to take into account the possibility of go-
ing through all the possible states from s to t. Then the
utility of going from state s to state t is represented by

Uπ(s) = B(s) + β
∑
t∈P

pπ(s,q)(s, t) · Uπ(t), (10)

where β ∈ [0, 1) is the discount rate (Howard, 1960).

The value of π at any initial state s can be computed
by solving this system of linear equations. A policy π is
optimal if Uπ(t) ≥ Uπ′(t) for all t ∈ P and policies π′.
The function U establishes a preference relation.

3. Colored Decision Process Petri Net

We introduce the concept of Colored Decision Process
Petri nets (CDPPN) by locally randomizing the possible

choices, for each individual place of the Petri net (Clemp-
ner, 2005).

Definition 12. A colored decision process Petri net is the
tentuple CDPPN = {Σ, P,Q, F,K,A+, A−,M0, π, U},
where

• Σ is a finite set of nonempty sets, called colors,

• P = {p0, p1, p2, . . . , pm} is a finite set of places,

• Q = {q1, q2, . . . , qn} is a finite set of transitions,

• F ⊆ I ∪O is a set of arcs where I ⊆ (P ×Q) and
O ⊆ (Q×P ) such that P ∩Q = ∅ and P ∪Q 
= ∅,

• K : P ∪Q −→ Σ is the color function, where Σ is
the set of finite nonempty sets,

• A+ : K(p) × K(q) → N is the forward incidence
matrix of P ×Q,

• A− : K(p) ×K(q) → N is the backward incidence
matrix of P ×Q,

• M0, the initial marking, is a vector indexed by the
elements of P , where M0(p) : K(p) → N,

• π(p, q) : K(p) × K(q) → R+ is a routing policy
representing the probability of choosing a particular
transition (routing arc), such that for each p ∈ P ,

∑
qj :(p,qj)∈I

π((κp, κqj )) = 1,

• U(p) : K(p) → R+ is a utility function.

The previous behavior of the CDPPN is described as
follows: When a token reaches a place, it is reserved for
the firing of a given transition according to the routing
policy determined by U . A transition q must fire as soon
as all the places p1 ∈ P contain enough tokens reserved
for a transition q. Once the transition fires, it consumes
the corresponding tokens and immediately produces an
amount of tokens in each subsequent place p2 ∈ P . When
π(p, q)(κp, κq) = 0, this means that there are no arcs in
the place-transition Petri net. In Figs. 1 and 2 we have
represented partial routing policies π that generate a tran-
sition from a state p1 to a state p2 where p1, p2 ∈ P :

• Case 1. In Fig. 1 the probability that q1 generates
a transition from the state p1 to p2 is 1/3. But,
because the transition q1 to the state p2 has two
arcs, the probability of generating a transition from
the state p1 to p2 is increased to 2/3.

• Case 2. In Fig. 2, by convention, the probability that
q1 generates a transition from the state p1 to p2 is
1/3 (1/6 plus 1/6). However, because the transition
q1 to the state p2 has only one arc, the probability
of generating a transition from the state p1 to p2 is
decreased to 1/6.
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• Case 3. Finally, we have the trivial case when there
exists only one arc from p1 to q1 and from q1 to
p2.

It is important to note that, by definition, the utility
function U is employed only for establishing a trajectory
tracking, working on a different execution level than that
of the place-transition Petri net. The utility function U by
no means changes the place-transition Petri net evolution
or performance.

Fig. 1. Routing policy, Case 1.

Fig. 2. Routing policy, Case 2.

Remark 6. In the previous definition we consider nets
with a single initially marked place.

Remark 7. The previous definition by no means changes
the behavior of the place-transition Petri net, and the rout-
ing policy is used to calculate the utility value at each
place of the net.

Remark 8. It is important to note that the utility value can
be renormalized after each transition or time k of the net.

Uk(·) denotes the utility at the place pi ∈ P at time
k and let Uk = [Uk(·), . . . , Uk(·)]T denote the utility
state of the CDPPN at the time k. FN(p, q) : K(p) ×
K(q) → R+ is the number of arcs from the place p to the
transition q (the number of arcs from transition q to the
place p). The rest of CDPPN functionality is as described
in PN preliminaries.

Consider an arbitrary pi ∈ P . For each fixed tran-
sition qj ∈ Q that forms an output arc (qj , pi) ∈ O,
we look at all the previous places ph of the place pi de-
noted by the list (set) pηij = {ph : h ∈ ηij}, where
ηij = {h : (ph, qj) ∈ I and (qj , pi) ∈ O}, which form
all the input arcs (ph, qj) ∈ I and produce the sum

∑
h∈ηij

Ψ(ph, qj , pi) ∗ Uk(ph)(κph
), ∀κph

∈ K(ph),

(11)

where

Ψ(ph, qj , pi)(κph
, κqj , κpi)

= π(ph, qj)(κph
, κqj ) ∗

FN(qj , pi)(κqj , κpi)
FN(ph, qj)(κph

, κqj )
,

∀κph
∈ K(ph), ∀κqj ∈ K(qj), ∀κpi ∈ K(pi),

and the index sequence j is the set {j : qj ∈ (ph, qj) ∩
(qj , pi) and ph running over the set pηij}.

Proceeding with all the qjs, we form the vector in-
dexed by the sequence j identified by (j0, j1, . . . , jf ) as
follows:
⎡
⎣ ∑

h∈ηij0

Ψ(ph, qj0 , pi)(κph
, κqj0

, κpi) ∗ Uk(ph)(κp),

∑
h∈ηij1

Ψ(ph, qj1 , pi)(κph
, κqj1

, κpi) ∗ Uk(ph)(κp),

. . . ,
∑

h∈ηijf

Ψ(ph, qjf
, pi)(κph

, κqjf
, κpi) ∗ Uk(ph)(κp)

⎤
⎦.

(12)
Intuitively, the vector (12) represents all the pos-
sible trajectories through the transitions qjs, where
(j1, j2, . . . , jf ), to a place pi for a fixed i.

Continuing the construction of the utility function U ,
let us introduce the following definition:

Definition 13. Let L : R
n → R+ be a continuous

map. Then L is a Lyapunov-like function (Kalman and
Bertram, 1960) iff it satisfies the following properties:

1. ∃x∗, L(x∗) = 0,

2. L(x) > 0, ∀x 
= x∗,

3. L(x) → ∞ as x→ ∞,

4. ΔL = L(xi+1) − L(xi) < 0 for all xi, xi+1 
= x∗.

Then, formally, we define the utility function U as
follows:

Definition 14. The utility function U with respect
to a colored decision process Petri net CDPPN =
{Σ, P,Q, F,K,A+, A−,M0, π, U} is represented by the
equation

U
qj

k (pi)(κpi) =

⎧⎪⎨
⎪⎩

Uk(p0)(κp0 ) if i = 0, k = 0,

L(α) if i > 0, k = 0
and i ≥ 0, k > 0,

(13)
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where

α =

⎡
⎣ ∑

h∈ηij0

Ψ(ph, qj0 , pi)(κph
, κqj0

, κpi) ∗U qj0
k (ph)(κph

),

∑
h∈ηij1

Ψ(ph, qj1 , pi)(κph
, κqj1

, κpi)∗U qj1
k (ph)(κph

),

. . . ,
∑

h∈ηijf

Ψ(ph, qjf
, pi)(κph

, κqjf
, κpi)∗U

qjf

k (ph)(κph
)

⎤
⎦.

(14)

The function L : D ⊆ R
n
+ → R+ is a Lyapunov-like

function which optimizes the utility through all possible
transitions (i.e., trough all possible trajectories defined by
different qjs), D is the decision set formed by the js,
0 ≤ j ≤ f of all those possible transitions (qj pi) ∈ O,

Ψ(ph, qj , pi)(κph
, κqj , κpi)

= π(ph, qj)(κph
, κqj ) ∗

FN(qj , pi)(κqj , κpi)
FN(ph, qj)(κph

, κqj )
,

∀κph
∈ K(ph), ∀κqj ∈ K(qj), ∀κpi ∈ K(pi),

ηij is the index sequence of the list of places previous to
pi through the transition qj , ph (h ∈ ηij) is a specific
previous place of pi through the transition qj .

Remark 9.

• Note that the previous definition of the utility func-
tion U with respect to (10) considers the accumu-
lated utility B(·) = 0, and the Lyapunov-like func-
tion L guarantees that the optimal course of action
is followed, taking into account all the the possible
paths defined. In addition to that, the function L es-
tablishes a preference relation because, by definition,
L is asymptotic. This condition gives the decision
maker the opportunity to select a path that optimizes
the utility.

• The iteration over k for U is as follows:

1. For i = 0 and k = 0 the utility is
U0(p0)(κp0) in the place p0 and for the rest
of the places pi the utility is 0.

2. For i ≥ 0 and k > 0 the utility is
U

qj

k (pi)(κpi ) ∀κpi ∈ K(pi) in each place
pi, computed by taking into account the util-
ity value of the previous places ph for k and
k − 1 (when needed).

Property 1. The continuous function U(·) satisfies the
following properties:

1. There is a p� ∈ P such that

(a) if there exists an infinite sequence {pi}∞i=1 ∈
P with pn →

n→∞ p� such that 0 ≤

· · · < U(pn)(κpn) < U(pn−1)(κpn−1) · · · <
U(p1)(κp1), then U(p�)(κp�) is the infimum,
i.e., U(p�)(κp�) = 0,

(b) if there exists a finite sequence p1, . . . , pn ∈
P with p1, . . . , pn → p� such that
C = U(pn)(κpn) < U(pn−1)(κpn−1) · · · <
U(p1)(κp1), then U(p�)(κp�) is the mini-
mum, i.e., U(p�)(κp�) = C, where C ∈ R,
p� = pn,

2. U(p)(κp) > 0 or U(p)(κp) > C, where C ∈ R,
∀p ∈ P such that p 
= p�.

3. If ∀pi, pi−1 ∈ P such that pi−1 ≤U pi, then ΔU =
U(pi)(κpi) − U(pi−1)(κpi−1) < 0.

4. The routing policies decrease monotonically, i.e.,
πi ≥ πj (notice that the indices i and j are taken
so that j > i along a trajectory to the infimum or
the minimum).

Remark 10. In Property 1 we state that ΔU =
U(pi)(κpi) − U(pi−1)(κpi−1) < 0 for determining
the asymptotic condition of the Lyapunov-like function.
However, it is easy to show that such a property is conve-
nient for deterministic systems. In Markov decision pro-
cess systems it is necessary to include probabilistic de-
creasing asymptotic conditions to guarantee the asymp-
totic condition of the Lyapunov-like function.

Property 2. The utility function U(p) : K(p) → R+ is
a Lyapunov-like function.

Remark 11. From Properties 1 and 2 we have the follow-
ing:

• U(p�)(κp�) = 0 or U(p�)(κp�) = C means that
a final state is reached. Without loss of generality
we can say that U(p�)(κp�) = 0 by means of a
translation to the origin.

• In Property 1 we conclude that the Lyapunov-
like function U(p)(κp) approaches an infi-
mum/minimum when p is large thanks to Point 4 of
Definition 13.

• Property 1, Point 3, is equivalent to the following
statement: There is an ε > 0 such that |U(pi)(κpi)−
U(pi−1)(κpi−1)| > ε, ∀pi, pi−1 ∈ P such that
pi−1 ≤U pi.

For instance, the utility function U in terms of the
entropy is a specific Lyapunov-like function used in in-
formation theory as a measure of the information disor-
der. Another possible choice is the min function used in
business process re-engineering to evaluate the job perfor-
mance.
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Fig. 3. Setting of Example 1.

Example 1. Define the Lyapunov-like function L
in terms of the entropy H(pi) = −pi ln pi as
L = maxi=1,...,|α|(−αi lnαi). We will conceptual-
ize H as the average amount of uncertainty created by
moving one step ahead (the uncertainty is high when
H is close to 0 and low when H is close to 1). In the
CDPPN the token will have two colors identified as l
and r. Every arc has associated a set of probabilities
corresponding to the colors l and r, i.e., (probability_l,
probability_r).

Uk=0(p0)(l) = 1,

Uk=0(p0)(r) = 0.8,

U qa

k=0(p1)(l) = L
[
Ψ(p0, qa, p1)(l, qa, l) ∗ U qa

k=0(p0)(l)
]

= L[1/6 ∗ 1] = maxH [1/6 ∗ 1] = 0.298,

U qa

k=0(p1)(r) = L
[
Ψ(p0, qa, p1)(r, qa, r) ∗ U qa

k=0(p0)(r)
]

= L[3/6 ∗ 0.8] = maxH [3/6 ∗ 0.8]

= 0.366,

U qa

k=0(p2)(l) = L
[
Ψ(p0, qa, p2)(l, qa, l) ∗ U qa

k=0(p0)(l)
]

= L[1/6 ∗ 1] = maxH [1/6 ∗ 1] = 0.298,

U qa

k=0(p2)(r) = L
[
Ψ(p0, qa, p2)(r, qa, r) ∗ U qa

k=0(p0)(r)
]

= L[3/6 ∗ 0.8] = maxH [3/6 ∗ 0.8]

= 0.366,

U qb

k=0(p3)(l) = L
[
Ψ(p0, qb, p3)(l, qb, l) ∗ U qb

k=0(p0)(l)
]

= L[(2/6 ∗ 2) ∗ 1] = maxH [4/6 ∗ 1]

= 0.270,

U qb

k=0(p3)(r) = L
[
Ψ(p0, qb, p3)(r, qb, r) ∗ U qb

k=0(p0)(r)
]

= L[(2/6 ∗ 2) ∗ 0.8] = maxH [4/6 ∗ 0.8]

= 0.335,

U qc

k=0(p4)(l) = L
[
Ψ(p0, qc, p4)(l, qc, l) ∗ U qc

k=0(p0)(l)
]

= L[3/6 ∗ 1] = maxH [3/6 ∗ 1] = 0.346,

U qc

k=0(p4)(r) = L
[
Ψ(p0, qc, p4)(r, qc, r) ∗ U qc

k=0(p0)(r)
]

= L[1/6 ∗ 0.8] = maxH [1/6 ∗ 0.8]

= 0.268,

U qd

k=0(p5)(l) = L
[
Ψ(p1, qd, p5)(l, qd, l)U

qd

k=0(p1)(l)

+ Ψ(p2, qd, p5)(l, qd, l)U
qd

k=0(p2)(l)
]

= L[1 ∗ 0.298 + 1/2 ∗ 0.298]

= maxH [0.447] = 0.359,

U qd

k=0(p5)(r) = L
[
Ψ(p1, qd, p5)(r, qd, r)U

qd

k=0(p1)(r)

+ Ψ(p2, qd, p5)(r, qd, r)U
qd

k=0(p2)(r)
]

= L[1 ∗ 0.366 + 1/2 ∗ 0.366]

= maxH [0.549] = 0.329,

U qe

k=0(p6)(l) = L
[
Ψ(p3, qe, p6)(l, qe, l)U

qe

k=0(p3)(l)

+ Ψ(p4, qe, p6)(l, qe, l)U
qe

k=0(p4)(l)
]
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= L[1 ∗ 0.270 + 1 ∗ 0.346]

= maxH [0.616] = 0.298,

U qe

k=0(p6)(r) = L
[
Ψ(p3, qe, p6)(r, qe, r)U

qe

k=0(p3)(r)

+ Ψ(p4, qe, p6)(r, qe, r)U
qe

k=0(p4)(r)
]

= L[1 ∗ 0.335 + 1 ∗ 0.268]

= maxH [0.603] = 0.305,

U
q(f,g,h)

k=1 (p0)(l) = L
[
Ψ(p5, qf , p0)(l, qf , l)U

qf

k=1(p5)(l),

Ψ(p5, qg, p0)(l, qg, l)U
qg

k=1(p5)(l)

+Ψ(p6, qg, p0)(l, qg, l)U
qg

k=1(p6)(l),

Ψ(p6, qh, p0)(l, qh, l)U
qh

k=1(p6)(l)
]

= L[6/10 ∗ 2 ∗ 0.359,

(4/10 ∗ 0.359 + 5/20 ∗ 0.298)

∗ 2, 10/20 ∗ 2 ∗ 0.298]

= maxH [0.430, 0.436, 0.298]

= max[0.362, 0.361, 0.360] = 0.362

U
q(f,g,h)

k=1 (p0)(r) = L
[
Ψ(p5, qf , p0)(r, qf , r)U

qf

k=1(p5)(r),

Ψ(p5, qg, p0)(r, qg, r)U
qg

k=1(p5)(r)

+ Ψ(p6, qg, p0)(r, qg , r)U
qg

k=1(p6)(r),

Ψ(p6, qh, p0)(r, qh, r)U
qh

k=1(p6)(r)
]

= L[4/10 ∗ 2 ∗ 0.329, (6/10 ∗ 0.329

+ 5/20 ∗ 0.305) ∗ 2, 10/20 ∗ 2 ∗ 0.305]

= maxH [0.263, 0.547, 0.305]

= max[0.351, 0.329, 0.362] = 0.362.

For U
q(f,g,h)

k=1 (p0)(l) we have

j = (f, g, h), qj = (qf , qg, qh),

η0f = {5}, η0g = {5, 6}, η0h = {6},
pη0f

= {p5}, pη0g = {p5, p6}, pη0h
= {p6}.

The case of U
q(f,g,h)

k=1 (p0)(r) is similar to U
q(f,g,h)

k=1 (p0)(l).
However, the utilities for U

q(f,g,h)

k=1 (p0)(l) and
U

q(f,g,h)

k=1 (p0)(r) are different. �

3.1. CDPPN Mark-Dynamic Properties

We will identify mark-dynamic properties of the CDPPN
as properties related to the PN.

Definition 15. An equilibrium point with respect to
CDPPN = {Σ, P,Q, F,K,A+, A−,M0, π, U} is a place
p∗ ∈ P such that Ml(p∗) = S < ∞, ∀l ≥ k and p∗ is
the last place of the net.

Theorem 2. The colored decision process Petri net
CDPPN = {Σ, P,Q, F,K,A+, A−,M0, π, U} is uni-
formly practically stable iff there exists a strictly positive
linear mapping Φ : K(p)WS → ΥMS (with Υ being
normally one of the color sets already used in the CDPPN)
such that Δv = |Φ ∗A ∗X | ≤ 0.

Proof. (Necessity) It follows directly from Proposition 1.

(Sufficiency) Let us suppose by contradiction that
|Φ ∗A ∗X | > 0 with fixed Φ. From M ′ = M +A ∗X
we have that ΦM ′ = ΦM + Φ ∗ A ∗X . Then, it is pos-
sible to construct an increasing sequence ΦM < ΦM ′ <
· · · < ΦMn < · · · which grows up without bounds.
Therefore, the CDPPN is not uniformly practically stable.

Remark 12. It is important to stress that the only places
where the CDPPN will be allowed to get blocked are those
which correspond to equilibrium points.

3.2. CDPPN Trajectory-Dynamic Properties

We will identify trajectory-dynamic properties of the
CDPPN as those properties related to the utility at each
place of the PN. In this sense, we will relate an optimum
point to the best possible performance choice. Formally,
we will introduce the following definition:

Definition 16. A final decision point pf ∈ P with re-
spect to the colored decision process Petri net CDPPN =
{Σ, P,Q, F,K,A+, A−,M0, π, U} is a place p ∈ P
where the infimum is asymptotically approached (or
the minimum is attained), i.e., U(p)(κp) = 0 or
U(p)(κp) = C.

Definition 17. An optimum point p� ∈ P with re-
spect to the colored decision process Petri net CDPPN =
{Σ, P,Q, F,K,A+, A−,M0, π, U} is a final decision
point pf ∈ P where the best choice is selected ‘according
to some criteria’.

Property 3. Every colored decision process Petri net
CDPPN = {Σ, P,Q, F,K,A+, A−,M0, π, U} has a fi-
nal decision point.

Remark 13. In the case where ∃p1, . . . , pn ∈ P , such
that U(p1) = · · · = U(pn) = 0, we have that p1, . . . , pn

are optimum points.

Proposition 3. Let CDPPN = {Σ, P,Q, F,K,A+, A−,
M0, π, U} be a colored decision process Petri net and
let p� ∈ P an optimum point. Then U(p�)(κp�) ≤
U(p)(κp), ∀p ∈ P such that p ≤U p�.
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Proof. U(p�)(κp�) is equal to the minimum or the in-
fimum. Therefore, U(p�)(κp�) ≤ U(p)(κp), ∀p ∈ P
such that p ≤U p�.

Theorem 3. The colored decision process Petri net
CDPPN = {Σ, P,Q, F,K,A+, A−,M0, π, U} is
uniformly practically stable iff U(pi+1)(κpi+1) −
U(pi)(κpi ) ≤ 0.

Proof. (Necessity) Let us choose v = Id(U(pi)). Then
Δv = U(pi+1)(κpi+1) − U(pi)(κpi) ≤ 0, and by the
autonomous version of Theorem 1 and Corollary 1, the
CDPPN is stable.

(Sufficiency) We want to show that the CDPPN is practi-
cally stable, i.e., given 0 < λ < A, we must show that
|U(pi)(κpi)| < A. We know that U(p0)(κp0) < λ and,
since U is non-decreasing, we have that |U(pi)(κpi)| <
|U(p0)(κp0)| < λ < A.

Definition 18. A strategy with respect to a col-
ored decision process Petri net CDPPN =
{Σ, P,Q, F,K,A+, A−,M0, π, U} is identified by
σ and consists of the routing policy transition sequence
represented in the CDPPN graph model such that some
point p ∈ P is reached.

Definition 19. An optimum strategy with respect to
a colored decision process Petri net CDPPN =
{Σ, P,Q, F,K,A+, A−,M0, π, U} is identified by σ�

and consists of the routing policy transition sequence rep-
resented in the CDPPN graph model such that an optimum
point p� ∈ P is reached.

Equivalently, we can represent (13) and (14) as fol-
lows:

U
σhj

k (pi)(κpi ) =

⎧⎪⎪⎨
⎪⎪⎩

Uk(p0)(κp0) if i = 0, k = 0,

L(α) if i > 0, k = 0
and i ≥ 0, k > 0,

(15)

α =

⎡
⎣ ∑

h∈ηij0

σhj0(pi)(κpi) ∗ Uσhj0
k (ph)(κph

),

∑
h∈ηij1

σhj1(pi)(κpi) ∗ Uσhj1
k (ph)(κph

),

. . . ,
∑

h∈ηijf

σhjf
(pi)(κpi) ∗ U

σhjf

k (ph)(κph
)

⎤
⎦ ,
(16)

where σhj(pi)(κpi) = Ψ(ph, qj , pi)(κph
, κqj0

, κpi). The
rest is as previously defined.

Notation 1. With the intention to facilitate even more the
notation, we will represent the utility function U as fol-
lows:

1. Uk(pi)(κpi)
�
= U

qj

k (pi)(κpi)
�
= U

σhj

k (pi)(κpi) for
any transition and any strategy,

2. U�
k (pi)(κpi)

�
= U

q�
j

k (pi)(κpi)
�
= U

σ�
hj

k (pi)(κpi) for
an optimum transition and an optimum strategy.

The reader will easily identify which notation is used de-
pending on the context.

Example 2. For Example 1 we have

Uk=0(p0)(l) = 1,

Uk=0(p0)(r) = 0.8,

U
σhj

k=0(p1)(l) = L
[
σ0a(p1)(l) ∗ Uσ0a

k=0(p0)(l)
]
,

where {σha} = {σ0a},

U
σhj

k=0(p1)(r) = L
[
σ0a(p1)(r) ∗ Uσ0a

k=0(p0)(r)
]
,

where {σha} = {σ0a},

U
σhj

k=0(p2)(l) = L[σ0a(p2)(l) ∗ Uσ0a

k=0(p0)(l)],

where {σha} = {σ0a},

U
σhj

k=0(p2)(r) = L
[
σ0a(p2)(r) ∗ Uσ0a

k=0(p0)(r)
]
,

where {σha} = {σ0a},

U
σhj

k=0(p3)(l) = L
[
σ0b(p3)(l) ∗ Uσ0b

k=0(p0)(l)
]
,

where {σhb} = {σ0b},

U
σhj

k=0(p3)(r) = L
[
σ0b(p3)(r) ∗ Uσ0b

k=0(p0)(r)
]
,

where {σhb} = {σ0b},

U
σhj

k=0(p4)(l) = L
[
σ0c(p4)(l) ∗ Uσ0c

k=0(p0)(l)
]
,

where {σhc} = {σ0c},

U
σhj

k=0(p4)(r) = L
[
σ0c(p4)(r) ∗ Uσ0c

k=0(p0)(r)
]
,

where {σhc} = {σ0c},

U
σhj

k=0(p5)(l) = L
[
σ1d(p5)(l) ∗ Uσ1d

k=0(p1)(l)

+σ2d(p5)(l) ∗ Uσ2d

k=0(p2)(l)
]
,

where {σhd} = {σ1d, σ2d},

U
σhj

k=0(p5)(r) = L
[
σ1d(p5)(r) ∗ Uσ1d

k=0(p1)(r)

+σ2d(p5)(r) ∗ Uσ2d

k=0(p2)(r)
]
,

where {σhd} = {σ1d, σ2d}
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U
σhj

k=0(p6)(l) = L
[
σ3e(p6)(l) ∗ Uσ3e

k=0(p3)(l)

+ σ4e(p4)(l) ∗ Uσ4e

k=0(p4)(l)
]
,

where {σhj} = {σ3e, σ4e},

U
σhj

k=0(p6)(r) = L
[
σ3e(p6)(r) ∗ Uσ3e

k=0(p3)(r)

+ σ4e(p4)(r) ∗ Uσ4e

k=0(p4)(r)
]
,

where {σhj} = {σ3e, σ4e},

U
σhj

k=1(p0)(l) = L
[
σ5f (p0)(l) ∗ Uσ5f

k=0(p5)(l),

σ5g(p0)(l) ∗ Uσ5g

k=0(p5)(l)

+ σ6g(p0)(l) ∗ Uσ6g

k=0(p6)(l),

σ6h(p0)(l) ∗ Uσ6h

k=0(p6)(l)
]
,

where {σhf} = {σ5f},
{σhg} = {σ5g, σ6g}
and {σhh} = {σ6h},

U
σhj

k=1(p0)(r) = L
[
σ5f (p0)(r) ∗ Uσ5f

k=0(p5)(r),

σ5g(p0)(r) ∗ Uσ5g

k=0(p5)(r)

+ σ6g(p0)(r) ∗ Uσ6g

k=0(p6)(r),

σ6h(p0)(r) ∗ Uσ6h

k=0(p6)(r)
]
,

where {σhf} = {σ5f},
{σhg} = {σ5g, σ6g}
and {σhh} = {σ6h}.

Some possible routing policy transition sequence are

1. A strategy σ for a time k = 1 is as follows:

Uk=0(p0)(l) = 1,

U
σhj

k=0(p1)(l) = L
[
σ0a(p1)(l) ∗ Uσ0a

k=0(p0)(l)
]
,

U
σhj

k=0(p2)(l) = L
[
σ0a(p2)(l) ∗ Uσ0a

k=0(p0)(l)
]
,

U
σhj

k=0(p5)(l) = L
[
σ1c(p5)(l) ∗ Uσ1c

k=0(p1)(l)

+ σ2d(p5)(l) ∗ Uσ2d

k=0(p2)(l)
]
,

U
σhj

k=0(p3)(l) = L
[
σ0b(p3)(l) ∗ Uσ0b

k=0(p0)(l)
]
,

U
σhj

k=0(p4)(l) = L
[
σ0c(p4)(l) ∗ Uσ0c

k=0(p0)(l)
]
,

U
σhj

k=0(p6)(l) = L
[
σ3e(p6)(l) ∗ Uσ3e

k=0(p3)(l)

+ σ4e(p4)(l) ∗ Uσ4e

k=0(p4)(l)
]
,

Uk=0(p0)(r) = 1,

U
σhj

k=0(p1)(r) = L
[
σ0a(p1)(r) ∗ Uσ0a

k=0(p0)(r)
]
,

U
σhj

k=0(p2)(r) = L
[
σ0a(p2)(r) ∗ Uσ0a

k=0(p0)(r)
]
,

U
σhj

k=0(p5)(r) = L
[
σ1c(p5)(r) ∗ Uσ1c

k=0(p1)(r)

+ σ2d(p5)(r) ∗ Uσ2d

k=0(p2)(r)
]
,

U
σhj

k=0(p3)(r) = L
[
σ0b(p3)(r) ∗ Uσ0b

k=0(p0)(r)
]
,

U
σhj

k=0(p4)(r) = L
[
σ0c(p4)(r) ∗ Uσ0c

k=0(p0)(r)
]
,

U
σhj

k=0(p6)(r) = L
[
σ3e(p6)(r) ∗ Uσ3e

k=0(p3)(r)

+ σ4e(p4)(r) ∗ Uσ4e

k=0(p4)(r)
]
,

U
σ5f

k=1(p0)(l) = L
[
σ5f (p0)(l) ∗ Uσ5f

k=0(p5)(l)
]
, (∗)

U
σ5f

k=1(p0)(r) = L
[
σ5f (p0)(r) ∗ Uσ5f

k=0(p5)(r)
]
. (∗∗)

An alternative strategy σ′ for a time k = 1 is the
same as in (1), just change (*) and (**) by

U
{σ5g,σ6g}
k=1 (p0)(l) = L

[
σ5g(p0)(l) ∗ Uσ5g

k=0(p5)(l)

+ σ6g(p0)(l) ∗ Uσ6g

k=0(p6)(l)
]
,

U
{σ5g,σ6g}
k=1 (p0)(r) = L

[
σ5g(p0)(r) ∗ Uσ5g

k=0(p5)(r)

+ σ6g(p0)(r) ∗ Uσ6g

k=0(p6)(r)
]
,

respectively. An alternative strategy σ′′ for a time k = 1
the same as in (1), just change (*) and (**) by

Uσ6h

k=1(p0)(l) = L
[
σ6h(p0)(l) ∗ Uσ6h

k=0(p6)(l)
]
,

Uσ6h

k=1(p0)(r) = L
[
σ6h(p0)(r) ∗ Uσ6h

k=0(p6)(r)
]
,

respectively. �

3.3. Convergence of CDPPN Mark-Dynamic
and Trajectory-Dynamic Properties

Theorem 4. Let CDPPN = {Σ, P,Q, F,K,A+, A−,
M0, π, U} be a colored decision process Petri net. If
p∗ ∈ P is an equilibrium point, then it is a final decision
point.

Proof. Let us suppose that p∗ is an equilibrium point. We
want to show that its utility has asymptotically approached
an infimum (or reached a minimum). Since p∗ is an equi-
librium point, by definition, it is the last place of the net
and its marking cannot be modified. But this implies that
the routing policy attached to the transition(s) that follows
p∗ is 0, (in this case there is such a transition(s), i.e., the
worst case). Therefore, its utility cannot be modified and
since the utility is a decreasing function of pi, an infimum
or a minimum is attained. Then, p∗ is a final decision
point.

Theorem 5. Let CDPPN = {Σ, P,Q, F,K,A+, A−,
M0, π, U} be a finite and non-blocking colored decision



J. Clempner416

process Petri net (unless p ∈ P is an equilibrium point).
If pf ∈ P is a final decision point, then it is an equilib-
rium point.

Proof. If pf is a final decision point, since the CDPPN is
finite, there exists a k such that Uk(pf )(κpf

) = C. Let
us suppose that pf is not an equilibrium point.

Case 1. It is not bounded. So, it is possible to increment
the marks of pf in the net. Therefore, it is possible to
modify its utility. As a result, it is possible to obtain a
lower utility than C.

Case 2. It is not the last place in the net. Therefore, it is
possible to fire an output transition to pf in such a way
that its marking is modified. Therefore, it is possible to
modify the utility over pf . As a result, it is possible to
obtain a lower utility than C.

Corollary 2. Let CDPPN = {Σ, P,Q, F,K,A+, A−,
M0, π, U} be a finite and non-blocking colored decision
process Petri net (unless p ∈ P is an equilibrium point).
Then an optimum point p� ∈ P is an equilibrium point.

Proof. From the previous theorem we know that a final
decision point is an equilibrium point and, since in partic-
ular p� is a final decision point, then it is an equilibrium
point.

Remark 14. The finite and non-blocking (unless p ∈ P
is an equilibrium point) condition over the CDPPN cannot
be relaxed:

1. Let us suppose that the CDPPN is not finite, i.e., p
is in a cycle. Then the Lyapunov-like function con-
verges to zero as k → ∞, i.e., L(p) = 0, but the
CDPPN has no final place. Therefore, it is not an
equilibrium point.

2. Let us suppose that the CDPPN blocks at some
place (not an equilibrium point) pb ∈ P . Then the
Lyapunov-like function has a minimum at the place
pb, L(pb) = C, say, but pb is not an equilibrium
point because it is not necessarily the last place of
the net.

Definition 20. Let CDPPN = {Σ, P,Q, F,K,A+, A−,
M0, π, U} be a colored decision process Petri net. A tra-
jectory ω is a (finite or infinite) ordered subsequence of
places pς(1) ≤Uk

pς(2) ≤Uk
· · · ≤Uk

pς(n) ≤Uk
· · · such

that a given strategy σ holds.

Definition 21. Let CDPPN = {Σ, P,Q, F,K,A+, A−,
M0, π, U} be a colored decision process Petri net. An
optimum trajectory ω is a (finite or infinite) ordered sub-
sequence of places pς(1) ≤U�

k
pς(2) ≤U�

k
· · · ≤U�

k

pς(n) ≤U�
k

· · · such that the optimum strategy σ� holds.

Theorem 6. Let CDPPN = {Σ, P,Q, F,K,A+, A−,
M0, π, U} be a non-blocking colored decision process
Petri net (unless p ∈ P is an equilibrium point). Then
we have

U�
k (p�)(κp�) ≤ Uk(p)(κp), ∀σ, σ�.

Proof. We have

U
σhj

k (pi)(κpi) =

⎧⎪⎨
⎪⎩

Uk(p0)(κp0) if i = 0, k = 0,

L(α) if i > 0, k = 0
and i ≥ 0, k > 0,

α =

⎡
⎣ ∑

h∈ηij0

σhj0(pi)(κpi) ∗ Uσhj0
k (ph)(κph

),

∑
h∈ηij1

σhj1 (pi)(κpi) ∗ Uσhj1
k (ph)(κph

),

. . . ,
∑

h∈ηijf

σhjf
(pi)(κpi) ∗ U

σhjf

k (ph)(κph
)

⎤
⎦ .

Then, starting from p0 and proceeding with the iteration,
eventually the trajectory ω given by p0 = pς(1) ≤Uk

pς(2) ≤Uk
· · · ≤Uk

pς(n) ≤Uk
· · · which converges

to p� is produced, i.e., the optimum trajectory is ob-
tained. Since at the optimum trajectory the optimum strat-
egy σ� holds, we have U�

k (p�)(κp�) ≤ Uk(p)(κp),
∀σ, σ�.

Remark 15. The inequality U�
k (p�)(κp�) ≤

Uk(p)(κp) means that the utility is optimum when
the optimum strategy is applied.

Corollary 3. Let CDPPN = {Σ, P,Q, F,K,A+, A−,
M0, π, U} be a nonblocking colored decision process
Petri net (unless p ∈ P is an equilibrium point) and let
σ� be an optimum strategy. Set L = mini=1,...,|α|{αi}.
Then U�

k (p)(κp) is equal to (17), where p is a vector
whose elements are those places which belong to the op-
timum trajectory ω given by p0 ≤ pς(1) ≤Uk

pς(2) ≤Uk

· · · ≤Uk
pς(n) ≤Uk

· · · which converges to p�.

Proof. Since at each step of the iteration U�
k (pi)(κpi)

is equal to one of the elements of the vector α, the rep-
resentation that describes the dynamical utility behavior
of tracking the optimum strategy σ� is given by (17),
where jm, jn, . . . , jv, . . . represent the indices of the op-
timal routing policy, defined by qjs.

Plane symmetry involves moving all points around
the plane so that their positions relative to one another
remain the same, although their absolute positions may
change. By analogy, let us introduce the following defini-
tion:
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σ�
0jm

(pς(0))(κpς(0)) σ�
1jm

(pς(0))(κpς(0) ) . . . σ�
njm

(pς(0))(κpς(0))

σ�
0jn

(pς(1))(κpς(1)) σ�
1jn

(pς(1))(κpς(1)) . . . σ�
njn

(pς(1))(κpς(1) )

. . . . . . . . . . . .

σ�
0jv

(pς(i))(κpς(i)) σ�
1jv

(pς(i))(κpς(i) ) . . . σ�
njv

(pς(i))(κpς(i))

. . . . . . . . . . . .
| {z }

σ�

Uk(p0)(κp0)

Uk(p1)(κp1)

. . .

Uk(pi)(κpi)

. . .
| {z }

U

(17)

Definition 22. A colored decision process Petri net
CDPPN = {Σ, P,Q, F,K,A+, A−,M0, π, U} is said to
be symmetric if it is possible to decompose it into some
finite number (greater than 1) of sub-Petri nets in such a
way that there exists a bijection ψ between all the sub-
Petri nets such that

(p, q) ∈ I ⇔ (
ψ(p), ψ(q)

) ∈ I

and (q, p) ∈ O ⇔ (
ψ(q), ψ(p)

) ∈ O

for all of the sub-Petri nets.

Corollary 4. Let CDPPN = {Σ, P,Q, F,K,A+, A−,
M0, π, U} be a nonblocking (unless p is an equilibrium
point) symmetric colored decision process Petri net and let
σ� be an optimum strategy. Set L = mini=1,...,|α|{αi}.
Then

σ�U ≤ σU, ∀σ, σ�,

where σ and σ� are represented by a matrix and U is
represented by a vector.

Proof. From the previous corollary, thanks to the sym-
metric property, we obtain that for all ∀σ, σ� the vector
inequality σ�U ≤ σU holds.

Example 3. Consider the CDPPN of Example 1. The
strategies for the color l can be recursively modeled as
follows (the representation for the color r is similar—the
reader has to change l by r to obtain the result):

I. A strategy σ for a time k = 0, i ≥ 0 is given
by (18). A strategy σ for a time k = 1, i ≥ 0 is
shown in (19).

II. An alternative strategy σ′ for a time k = 1, i ≥ 0 is
given by (20).

III. An alternative strategy σ′′ for a time k = 1, i ≥ 0
is shown in (21).

The optimality of the three strategies σ ∪ σ′, σ ∪ σ′′ and
σ ∪ σ′′′ will depend on the Lyapunov-like function L we
choose.

3.4. Optimum Trajectory Planning

Given a nonblocking (unless p ∈ P is an equilib-
rium point) colored decision process Petri net CDPPN =
{Σ, P,Q, F,K,A+, A−,M0, π, U}, the optimum trajec-
tory planning consists in finding the firing transition se-
quence u such that the optimum target state Mt with the
optimum point is achieved. The target state Mt belongs
to the reachability set R(M0), and satisfies the condition
that it is the last and final task processed by the CDPPN
with some fixed starting state M0 with a utility U0.

Theorem 7. The optimum trajectory planning problem is
solvable.

Proof. From what was shown in Theorem 6, for each step
we find U�

k (pς(1))(κpς(1)), . . . , U
�
k (pς(i))(κpς(i) ), . . . ,

U�
k (p�)(κp�). Define a mapping (see Notation 1):

ur

(
U

q�
j

k (pς(i))(κpς(i))
)

= [0, . . . , 0, 1(κpς(i)), 0, . . . , 0]
(22)

with 1 in the position j and zero everywhere else, and set

u =
∑
r
ur((U

q�
j

k (pς(i))(κpς(i))), where the index r runs

over all the transitions associated with the subsequence
ς(i) such that pς(i) converges to p�. Then, by construc-
tion, the optimum point is attained.

Remark 16. The order in which the transitions are fired
is given by the order of the transitions inherited from the
order of the subsequence pς(i).

Property 4. Let us denote the distance between the initial
point p0 ∈ P and the optimum point p� ∈ P by |p0 −
p�|. Then finding the firing vector u is bounded by the
cost/benefit relation given by |p0 − p�|/Uk(p�).

The cost/benefit ratio provides information on the na-
ture, magnitude and significance of the potential effects of
a policy. It is applied when the policy analysis concerns
the examination of the advantages and drawbacks of dif-
ferent proposed policies or of varying target levels of a
policy. It is important to note that, intuitively, the distance
|p0 − p�| represents the time taken to fire all the enabled
transitions between p0 and p�.
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1 0 0 0 0 0 0
σ0a(p1)(l) 0 0 0 0 0 0
σ0a(p2)(l) 0 0 0 0 0 0
σ0b(p3)(l) 0 0 0 0 0 0
σ0c(p4)(l) 0 0 0 0 0 0

0 σ1d(p5)(l) σ2d(p5)(l) 0 0 0 0
0 0 0 σ3e(p6)(l) σ4e(p6)(l) 0 0︸ ︷︷ ︸

σ

U(p0)(l)
U(p1)(l)
U(p2)(l)
U(p3)(l)
U(p4)(l)
U(p5)(l)
U(p6)(l)

(18)

1 0 0 0 0 σ5f (p0)(l) 0
σ0a(p1)(l) 0 0 0 0 0 0
σ0a(p2)(l) 0 0 0 0 0 0
σ0b(p3)(l) 0 0 0 0 0 0
σ0c(p4)(l) 0 0 0 0 0 0

0 σ1d(p5)(l) σ2d(p5)(l) 0 0 0 0
0 0 0 σ3e(p6)(l) σ4e(p6)(l) 0 0︸ ︷︷ ︸

σ

U(p0)(l)
U(p1)(l)
U(p2)(l)
U(p3)(l)
U(p4)(l)
U(p5)(l)
U(p6)(l)

(19)

1 0 0 0 0 σ5g(p0)(l) σ6g(p0)(l)
σ0a(p1)(l) 0 0 0 0 0 0
σ0a(p2)(l) 0 0 0 0 0 0
σ0b(p3)(l) 0 0 0 0 0 0
σ0c(p4)(l) 0 0 0 0 0 0

0 σ1d(p5)(l) σ2d(p5)(l) 0 0 0 0
0 0 0 σ3e(p6)(l) σ4e(p6)(l) 0 0︸ ︷︷ ︸

σ

U(p0)(l)
U(p1)(l)
U(p2)(l)
U(p3)(l)
U(p4)(l)
U(p5)(l)
U(p6)(l)

(20)

1 0 0 0 0 0 σ6h(p0)(l)
σ0a(p1)(l) 0 0 0 0 0 0
σ0a(p2)(l) 0 0 0 0 0 0
σ0b(p3)(l) 0 0 0 0 0 0
σ0c(p4)(l) 0 0 0 0 0 0

0 σ1d(p5)(l) σ2d(p5)(l) 0 0 0 0
0 0 0 σ3e(p6)(l) σ4e(p6)(l) 0 0︸ ︷︷ ︸

σ

U(p0)(l)
U(p1)(l)
U(p2)(l)
U(p3)(l)
U(p4)(l)
U(p5)(l)
U(p6)(l)

(21)
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Fig. 4. Setting of Example 4.

Example 4. Let choose the Lyapunov-like function L in
terms of the entropy H(pi) = −pi ln pi. We will concep-
tualize H as the average amount of uncertainty of mov-
ing one step ahead, where the uncertainty is high when
H is close to 0 and low when H is close to 1. Be-
cause L : D ⊆ R

n → R+ we will use the function
maxi=1,...,|α|(−αi lnαi) to select a proper element of the
vector α ∈ D. In the CDPPN the token will have two col-
ors identified as l and r. Every arc has an associated tuple
of probabilities corresponding to the colors l and r, i.e.,
(probability_l, probability_r).

(a) Then the optimum strategy σ� is

Uk=0(p0)(l) = 1,

U
σhj

k=0(p2)(l) = L
[
σ0d(p2)(l) ∗ Uσ0d

k=0(p0)(l)
]

= maxH [60/124] = max[0.351] = 0.351,

U
σhj

k=0(p4)(l) = L
[
σ2e(p4)(l)

∗ Uσ2e

k=0(p2)(l), σ2f (p4)(l) ∗ Uσ2f

k=0(p2)(l)
]

= maxH [(60/100)∗0.351, (40/100)∗0.351]

= max[0.328, 0.275] = 0.328.

The firing transition vector is

u =
0 0 0 1 0 1

qa qb qc qd qe qf

.

We do not compute U
σhj

k=0(p3)(l) because U
σhj

k=0(p2)(l)
determines the optimum trajectory.

(b) An alternative strategy σ 
= σ� is

Uk=0(p0)(l) = 1,

U
σhj

k=0(p1)(l) = L
[
σ0a(p1)(l) ∗ Uσ0a

k=0(p0)(l)
]

= maxH [64/124] = max[0.341] = 0.341,

U
σhj

k=0(p3)(l) = L
[
σ1b(p3)(l) ∗ Uσ1b

k=0(p1)(l), σ1c(p3)(l)

∗ Uσ1c

k=0(p1)(l)
]

= maxH [(40/100)∗0.341, (60/100)∗0.341]

= max[0.271, 0.324] = 0.324.

The firing transition vector is

u′ =
1 1 0 0 0 0

qa qb qc qd qe qf

.

As we can see, for σ we can obtain at most a value of
0.324 but for σ� we obtain 0.328.

The computation for the color r is similar. However,
the optimum strategy trajectory is opposite to the optimum
strategy for the color l. �

4. Conclusions and Future Work

A formal framework for colored decision process Petri
nets was presented. The expressive power and mathemati-
cal formality of the CDPPN contribute to bridging the gap
between Petri nets and Markov decision processes. In this
sense, there are a number of questions related to classical
planning that may in the future be addressed satisfactorily
within this framework. Traditional notions of stability in
the Lyapunov sense were explored to characterize the sta-
bility properties of the CDPPN. We introduced the notion
of uniformly practical stability and provided sufficient and
necessary stability conditions for the CDPPN. In addi-
tion to that, we showed that the CDPPN mark-dynamic
and trajectory-dynamic properties of equilibrium, stability
and an optimum point converge under some mild restric-
tions. An algorithm for optimum trajectory planning used
to identify the optimum point was described. Illustrative
examples where equilibrium, stability and final decision
point properties of the CDPPN were shown to hold were
addressed. We are currently working on a generalization
to game theory (Clempner et al., 2005).
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