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Knowledge about the relation between faults and the observed symptoms is necessary for fault isolation. Such a relation can
be expressed in various forms, including binary diagnostic matrices or information systems. The paper presents the use of
fuzzy logic for diagnostic reasoning. This method enables us to take into account various kinds of uncertainties connected
with diagnostic reasoning, including the uncertainty of the faults-symptoms relation. The presented methods allow us to
determine the fault certainty factor as well as certainty factors of the normal and unknown process states. The unknown
process state factor groups all the states with unknown and multiple faults with the states with improper residual values,
while the normal state factor indicates similarity between the observed state and the pattern fault-free state.
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1. Introduction

In recent years, growing interest in the development of
diagnostic methods based on fuzzy logic as well as their
application in industry can be observed. Fuzzy logic is
a very efficient tool for the conversion of uncertain and
inaccurate information. Most data in industrial practice
have such a character (Frank, 1994; Frank and Marcu,
2000; Korbicz et al., 2004) due to factors such as dis-
turbances and measurement noise, uncertain and approx-
imate process models or imprecise expert knowledge.
Fuzzy logic is a natural way of taking these uncertainties
into account.

One can distinguish two main groups of uncertain-
ties that exist in diagnostic reasoning. The first one is
connected with calculating and evaluating residual values.
One cannot precisely define the ranges of the residual val-
ues that provide evidence for the existence of a fault in the
system. This kind of uncertainty is caused by the follow-
ing factors:

• measurement noise,

• process disturbances,

• inaccuracy or approximation of the models used, etc.

All of the above ingredients result in the fact that
residual values do not have one (usually zero) value in
the normal process state but they vary around that value.
This kind of uncertainty is, in a natural way, taken into
consideration by fuzzy logic. It is done during residual

evaluation, when its qualitative representation is calcu-
lated (fuzzy variables with fuzzy sets and their member-
ship functions). All of the above uncertainties can be in-
terpreted together as the uncertainty of fault symptoms.

The second group of uncertainties is connected with
the definition of the relation between faults and the ob-
served symptoms, which is necessary for fault isolation.
Such a relation can be written down as a binary diagnostic
matrix, an information system or rules in various forms
(Frank and Marcu, 2000; Korbicz et al., 2004; Ko ścielny,
1999; 2001; Kościelny and Syfert, 2000; Kościelny et al.,
1999). Often, its absolute certainty is assumed. However,
in many cases, the uncertainty of this relation exists and
must be taken into account. The uncertainty of the defini-
tion of symptoms can be a result of the following factors:

• insufficient residual sensitivity to particular faults
(e.g., due to a very small leakage scale, symptoms
cannot be observed),

• lack of knowledge about the relation between faults
and the observed symptoms.

The paper describes some of fuzzy logic based meth-
ods of diagnostic reasoning that can also take into account
this kind of uncertainty. It must be emphasized that it is
something more than writing the diagnostic relation in the
form of fuzzy rules. The reasoning algorithm is modified
with the use of various kinds of certainty factors.

As a result, the presented method determines cer-
tainty factors of particular faults as well as certainty fac-
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tors of the normal and unknown process states. The un-
known process state factor groups all the states with un-
known and multiple faults with the states with improper
residual values. The normal state certainty factor indi-
cates similarity between the observed state and the nor-
mal process state. These additional factors help to make a
decision when unambiguous fault isolation cannot be jus-
tified.

2. Relation between Faults and Symptoms

Inputs to isolation algorithms are diagnostic signals. They
are a qualitative representation of residual values calcu-
lated during residual evaluation. Diagnostic signals are
two- or multiple-valued, depending on the kind of quanti-
zation of residual values. Models used for isolation should
map the space of diagnostic signal values onto a discrete
space of faults (Korbicz et al., 2004). One can distinguish
the following kinds of models:

• models mapping the space of binary diagnostic sig-
nals onto the space of faults,

• models mapping the space of multi-valued diagnostic
signals onto the space of faults,

• models mapping the space of continuous diagnostic
signals onto the space of faults.

The last kind of models is not often used because in this
case measurement data for states with faults are necessary
for model determination. On the other hand, compara-
tively simple models, which consider two- or three-valued
diagnostic signals, can be applied on the basis of expert
knowledge. The proposed algorithm uses the second kind
of models, which are a generalisation of the first kind and
meet all the needs connected with real applications.

Assume that the system belongs to the class of fault
isolation systems, denoted by FIS (Korbicz et al., 2004;
Kościelny, 1999; 2001; Kościelny et al., 1999), as defined
by Kościelny (1999). Define a finite set of faults:

F = {fk : k = 1, . . . , K} , (1)

and a finite set of diagnostic signals:

S = {sj : j = 1, . . . , J} . (2)

Each diagnostic signal sj ∈ S is associated with a set of
its values Vj , called the domain of sj . Define the mapping
S × F → V , which assigns to each pair of 〈sj , fk〉 a
subset of values Vj,k of the diagnostic signal sj , while
(Vj,k ⊂ Vj):

V =

⎡
⎢⎣

V1,1 . . . V1,K

. . . Vj,k . . .

VJ,1 . . . V J,K

⎤
⎥⎦ . (3)

The FIS is defined by the above mapping, called the di-
agnostic relation. This definition complies with the rough
information system defined by Pawlak (1983). An exam-
ple of the FIS is shown in Tab. 1.

Table 1. Example of an FIS.

s/f f1 f2 f3 f4 f5 f6 Vj

s1 1 0 1 0 0 1 {0, 1}
s2 0 −1 0 +1 −1 0 {0, +1,−1}
s3 −1 +1 +1,−1 0 +1 +1 {0, +1,−1}
s4 0 1, 2 0, 1 0 1, 2 1, 2 {0, 1, 2}
s5 +1 0 +1 +1 0 +1,−1 {0, +1,−1}

Such an approximate information system for fault
isolation is a generalization of the notion of the binary di-
agnostic matrix. The extensions with respect to the binary
diagnostic matrix are as follows:

• for each diagnostic signal sj an individual set of its
values Vj may exist,

• the set Vj of values for the j-th diagnostic signal
can have several elements,

• any element of the FIS may include only one diag-
nostic signal value, as well as their subset.

If the sets of values for all diagnostic signals are iden-
tical and equal to Vj = {0, 1}, then the FIS can be sim-
plified to a binary diagnostic matrix.

The columns of the FIS system, called fault signa-
ture, define pattern values of diagnostic signals in the case
of the existence of particular faults:

V (fk) =

⎡
⎢⎢⎢⎢⎣

V1,k

V2,k

...

VJ,k

⎤
⎥⎥⎥⎥⎦

. (4)

The signatures expressed by the relationship (4) are called
complex fault signatures, in contrast to elementary signa-
tures. In the case of multiple-valued evaluation, a subset
of elementary signatures (more than one elementary sig-
nature) can correspond to one complex signature. Each el-
ementary signature represents a different combination of
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diagnostic signal values. The relationship

V (f3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0

1+, 1−

0, 1
1+

⎤
⎥⎥⎥⎥⎥⎥⎦
⇒ V (f3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0

1+

0
1+

⎤
⎥⎥⎥⎥⎥⎥⎦

or V (f3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0

1+

1
1+

⎤
⎥⎥⎥⎥⎥⎥⎦

or V (f3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0

1−

0
1+

⎤
⎥⎥⎥⎥⎥⎥⎦

or V (f3) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0

1−

1
1+

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

provides an example of the relation between complex sig-
nature and elementary ones.

Relations between faults and diagnostic signal values
are usually expressed in the form of rules. They, most
often, conform to the following pattern:

If (s1 = v1,a) and . . . (sj = vj,b)

and . . . (sJ = vJ,c) then (fk) (6)

for elementary signatures, called elementary rules, and

If (s1 ∈ V1,k) and . . . (sj ∈ Vj,k)

and . . . (sJ ∈ VJ,K) then (fk) (7)

Fig. 1. Fuzzy, three-valued residual evaluation.

or

If
(
[s1 = v1,a] or . . . [s1 = v1,b]

)
and . . .

([sJ = vJ,a] or . . . [sJ = vJ,b]) then (fk) (8)

for complex ones, called complex rules. Observe that the
premise of (8) contains the symbol of conjunction. Such
a rule is called a complex diagnostic rule (with complex
premises).

It is possible that contradictory rules exist in the rule
base, e.g., the rules with the same premises and different
conclusions. Such rules correspond to unisolable faults.
They can be replaced with one rule of the following form:

If (s1 = v1,a) and . . . (sj = vj,b)

and . . . (sJ = vJ,c) then (fk) or . . . (fn) (9)

or

If (s1 ∈ V1,k) and . . . (sj ∈ Vj,k)

and . . . (sJ ∈ VJ,K) then (fk) or . . . (fn) . (10)

3. Reasoning Using Fuzzy Logic

In the process of fuzzy reasoning, activation levels of
particular rules from the knowledge base are determined.
These rules define the diagnostic relation RFS. The gen-
eral scheme of diagnostic reasoning based on the rules (8)
can be represented by the following steps:

• Each diagnostic signal is assigned several fuzzy sets
describing residual values. The membership degrees
μ(vj,i) of the residual values to these fuzzy sets are
determined. They are called simple premise fulfil-
ment factors. An example of evaluating a fuzzy,
three-valued residual is shown in Fig. 1.
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• The complex premise fulfilment factor is determined
from

μ (sj ∈ Vj,k) = μ (vj,a) ⊕ · · · ⊕ μ (vj,n) , (11)

where ⊕ is the symbol of the fuzzy alternative oper-
ator, μ(sj ∈ Vj,k) stands for the membership coeffi-
cient of the complex premise for the fault fk and the
diagnostic signal sj , and μ(vj,i) signifies the mem-
bership coefficient of the i-th value (the i-th simple
premise) of the j-th diagnostic signal.

• The rule premise fulfilment factors that correspond
to the activation level of the rules are determined as

μ (fk) = μ (s1 ∈ V1,k)⊗· · ·⊗μ (sJ ∈ VJ,k) , (12)

where ⊗ is the symbol of the fuzzy conjunction op-
erator, μ(fk) means the activation level of the rule
for the k-th fault, and μ(sj ∈ Vj,k) is the member-
ship coefficient of the complex premise for the fault
fk and the diagnostic signal sj .

• The diagnosis is formulated on the basis of the cal-
culated rule activation levels, e.g., as a set of faults
which were indicated by the rules with activation lev-
els higher than some fixed threshold value H :

DGN = { 〈fk, μ (fk)〉 : μ (fk) > H } . (13)

Usually, t-norm operators are used as fuzzy con-
junction operators and s-norm operators as fuzzy sum

Fig. 2. Example of diagnosis visualisation on the operator’s console. Specially designed indicators
displaying fault certainty factors are placed close to the corresponding elements.

operators (Piegat, 2001). In the field of fault diagnosis
themost commonly used s-norms are MAX or drastic sum
(Sędziak, 2001) and t-norms: PROD or MIN operators
(Korbicz et al., 2004; Kościelny, 2001; Sędziak, 2001).

One of important issues is the way how the elabo-
rated diagnosis is presented to the operators. Figure 2
shows exemplary solutions. Fault certainty factors are
presented in the form of bar graphs. Fault indicators are
placed near the components whose state is described by
these faults. Such a placement can help the operators to
react quickly and precisely.

The above reasoning method takes into account the
uncertainty of symptoms, but omits the uncertainty of the
relation between symptoms and faults. Some methods that
take into account this uncertainty along with the appropri-
ate extensions of the reasoning algorithm are presented in
Section 5.

4. Unknown State of the System

The rule base derived from the information system is not
complete because it does not include rules for all com-
binations of the values of diagnostic signals. It has only
those rules that correspond to fault signatures. It is usu-
ally supplemented with rules for a normal (fault free) state
(Kościelny, 2001):

If (s1 = 0) and . . . (sJ = 0) then (state OK) . (14)
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The number of all possible elementary rules, correspond-
ing to elementary signatures, which exist in a complete
rule base for the J-th diagnostic signal can be calculated
as

Nfull =
J∏

j=1

Nj, (15)

where Nj denotes the number of fuzzy sets defined for
the j-th diagnostic signal.

The rule base is usually created with the use of rules
describing the normal state and the states with single
faults. The rules that are not taken into account corre-
spond to the following quantities:

• states with faults that have not been taken into ac-
count,

• states with multiple faults,

• physically impossible process states.

An improper combination of diagnostic signal val-
ues described by these rules can occur even if none of the
above situations takes place. This is possible if improper
diagnostic signal values are assigned due to factors such
as disturbances, measurement noise or different dynamics
of symptoms. Thus, it is advisable to introduce an addi-
tional complex rule that determines all other combinations
of diagnostic signal values that are not present in the rule
base. Such a rule is called the rule of the unknown process
state fUS (Syfert, 2003).

Let us assume the use of normalised fuzzy sets de-
scribing diagnostic signals and the use of the PROD oper-
ator for calculating the activation level of the premises of
the elementary rule (6). Then, the completeness and con-
sistency of the rule base can be asserted. A rule base of
N rules is complete and consistent (Piegat, 2001) if for all
possible residual values we have

N∑
n=1

μn = 1, (16)

where μn denotes the premise activation level of the n-th
rule.

The sum of activation levels of all consistent rules
μΣ in an incomplete rule base is less than or equal to 1,
i.e.,

μOK +
K∑

k=1

μ(fk) = μΣ ≤ 1. (17)

The value of μΣ can be treated as a measure of diagno-
sis certainty. The diagnosis is more certain if μΣ is closer
to 1. A lower value of μΣ indicates the existence of an un-
known process state. The certainty factor of the unknown
state can be calculated as

μUS = 1 − μΣ (18)

instead of calculating the sum of all rules that are absent
in the rule base. The visualisation of this value enables
us to evaluate the certainty of a diagnosis generated by
the diagnostic system. An example of using normal and
unknown process state factors on the operator’s console is
shown in Fig. 2.

5. Uncertainty of the Diagnostic Relation

5.1. Signature Certainty Factor

In the case of the relation between faults and symptoms,
an assumption about its absolute certainty is usually made.
In practice, one can expect cases when the conviction that
it is certain is unfounded. Attributing a certainty factor
to each fault signature is the simplest way of taking ac-
count the uncertainty of the relation between faults and
symptoms. Such a certainty factor expresses the convic-
tion about the correctness of the signature

V (fk) → δk. (19)

The certainty factor corresponds to the rules (7),
which can be generalised to

If (s1 ∈ V1,k) and . . . (sJ ∈ VJ,k)

then (fk with δk ) . (20)

In diagnostic reasoning, the uncertainty of the relation is
taken into account by the following formula:

μ∗ (fk) = [μ (s1 ∈ V1,k) ⊗ . . . μ (sJ ∈ VJ,k)]⊗δk. (21)

The activation level of a fault rule, taking into account the
uncertainty of the diagnostic relation, is a fuzzy conjunc-
tion of the fulfilment factor of all complex premises and
the rule certainty factor.

5.2. Fuzzy Information System

To take into account the uncertainty of the relation be-
tween faults and symptoms, a fuzzy diagnostic relation
was applied in the study (Kościelny, 2001). The fuzzy
information system FFIS, introduced by Sędziak (2001),
constitutes a generalisation of the fuzzy diagnostic rela-
tion and the information system FIS.

A fuzzy information system can be represented as the
pair

FFIS = 〈FIS ,FRFS 〉 , (22)

where FRFS denotes the fuzzy diagnostic relation de-
fined for the FIS.

The relation FRFS describes the certainty factor
δR(fk, sj) stating that, if the fault fk occurs, then the
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diagnostic signal sj will take one of the values belonging
to the set Vj,k . The relation FRFS is defined as

FRFS =
{ 〈〈fk, sj〉 , δR (fk, sj)〉 : 〈fk, sj〉 ∈ F × S,

δR (fk, sj) ∈ [0, 1]
}
. (23)

The values of the certainty factors δR(fk, sj) are usually
defined based on the experts’ knowledge. Values close to
zero express the certainty that any of the values belonging
to the set Vj,k will not appear in the case when fk occurs.
A value close to 1 expresses the certainty that one of the
values belonging to the set Vj,k will appear in the case
when fk occurs.

The fulfilment factor of a complex premise, taking
into account the uncertainty of the diagnostic relation, is
determined according to

μ∗ (sj ∈ Vj,k)

= [μ (vj,a) ⊕ . . . μ (vj,n)] ⊗ δR (fk, sj) . (24)

The rule activation level is calculated as a fuzzy conjunc-
tion of the complex premise fulfilment factors:

μ∗∗ (fk) = μ∗ (s1 ∈ V1,k)⊗ . . .⊗μ∗ (sJ ∈ VJ,k) . (25)

As a result of taking into account the fuzzy diagnostic re-
lation, faults indicated by uncertain rules will be pointed
out with adequately lower certainty factors.

In this case, the rules (7) can be expressed in the form

If (s1 ∈ V1,k) and . . . (sJ ∈ VJ,k)

Then
(
fk with [δR (fk, s1) , . . . , δR (fk, sJ ) ]

)
. (26)

5.3. Extended Form of the Fuzzy Information System

In the fuzzy information system the certainty factors
δR(fk, sj) are attributed to the subsets of the values Vj,k

defined for the j-th diagnostic signal and the k-th fault:
〈fk, sj〉 → δR(fk, sj). Attributing the certainty fac-
tors δR(fk, sj , vj,i) to each value of the diagnostic sig-
nal vj,i ∈ Vj,k: 〈fk, sj, vj,m,i〉 → δR(fk, sj , vj,i) is an
extension of such an approach (Syfert, 2003).

A modified relation FR∗
FS describes the certainty

factor expressing the assumption that for a particular fault
fk the diagnostic signal sj will take a value vj,i belong-
ing to the set Vj,k. The relation FR∗

FS is defined as

FR∗
FS =

{ 〈〈fk, sj , vj,i〉 , δR (fk, sj , vj,i)〉 :

〈fk, sj〉 ∈ F × S, vj,i ∈ Vj,k,

δR (fk, sj , vj,i) ∈ [0, 1]
}
, (27)

where δR(fk, sj , vj,i) denotes the conviction factor stat-
ing that, if the fault fk occurs, then the diagnostic signal
sj will take on the value of vj,i.

In this case the complex premise fulfilment factor is
calculated according to the formula

μ∧ (sj ∈ Vj,k) =
(
μ (vj,a) ⊗ δR (fk, sj , vj,a)

)

⊕ · · · ⊕ (
μ (vj,n) ⊗ δR (fk, sj , vj,n)

)
. (28)

The rule activation level is calculated as the fuzzy con-
junction of complex premise fulfilment factors:

μ∧∧ (fk) = μ∧ (s1 ∈ V1,k)⊗· · ·⊗μ∧ (sJ ∈ VJ,k) . (29)

5.4. Extended Interpretation of the Fuzzy Diagnostic
Relation

It is possible to introduce an additional extension of the
interpretation for the fuzzy diagnostic relation when an
unknown state is considered. It was proposed in (Syfert,
2003). However, its detailed description exceeds the scope
of this paper. Only a general idea of such an extension will
be presented.

The way of taking into account the fuzzy diagnos-
tic relation described in Sections 5.1 and 5.2 considers
only one direction of information influence, i.e., fault cer-
tainty factors pointed out by uncertain rules have lower
values. Two additional methods that take into account the
extended interpretation of this relation are described be-
low.

The first modification was marked as an extension of
the fuzzy diagnostic relation. It is based on the following
reasoning:

“If the uncertainty of the relation between a sig-
nature and fault fk is taken into account, then the
relation between that signature and the unknown
state of the object fUS should be simultaneously
considered.”

If the uncertainty of the signature is expressed by the
certainty factor δR(fk, sj), then the relation between
that signature and the unknown state of the object
fUS should be taken into account with certainty factor
[1 − δR(fk, sj)]. The rule (26) will take the following
form:

If (s1 ∈ V1,k) and . . . and (sJ ∈ VJ,k) Then
(
fUS with [(1 − δR (fk, s1)) , . . . , δR (fk, sJ)]

)
. (30)

The second modification was marked as the comple-
ment of the fuzzy diagnostic relation. It is based on the
following reasoning:

“If the uncertainty of the relation between a sig-
nature and fault fk exists as a result of the uncer-
tainty of the symptoms for the j-th diagnostic sig-
nal, then the relation between the signature where
uncertain symptoms do not appear and the fault
fk should be simultaneously considered.”
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For example, if the uncertainty of the signature is ex-
pressed by the certainty factor δR(fk, s1), then the
rule (26) will be extended to

If (s1 ∈ V1 − V1,k) and . . . and (sJ ∈ VJ,k)

Then
(
fk with [(1 − δR (fk, s1)) , . . . , δR (fk, sJ )]

)
.

(31)

The functioning of the extension and the complement
of a fuzzy diagnostic relation gives, in some sense, oppo-
site effects. However, it is also justified using both these
methods simultaneously. The reasoning that is based on
the complement of a fuzzy diagnostic relation constitutes
a natural extension of the fuzzy diagnostic relation. Its
use is justified in all cases when the uncertainty of expert
knowledge about the diagnostic relation is taken into ac-
count. The justification for the use of the extension of a
fuzzy diagnostic relation is dependent on the assumed rea-
soning strategy:

• In the case when there is a very small probability that
faults not belonging to the set F occur (when the
FIS includes all possible system states), then the ap-
plication of the extension can have disadvantageous
influence.

• In the case when there is a high probability that faults
not belonging to the analysed set F occur, the appli-
cation of the extension is fully justified. Its use un-
derlines the connection between the uncertainty and
unknown state of the object.

6. Example

Methods tackling the diagnostic relation uncertainty given
in Sections 5.1, 5.2 and 5.3 will be illustrated using a sim-
ple example. Table 2 shows an FIS describing the relation
between faults and symptoms of some technical system.
The fuzzy set built up on residual values close to zero is
denoted by 0. Fuzzy sets assigned to negative residual
values are denoted by negative numbers (see Fig. 1), and
fuzzy sets assigned to positive residuals are denoted by
positive numbers.

Table 2. Example of an FIS.

s/f f1 f2 f3 f4 V

s1 -2,-1 1,2 1,2 -2 -2,-1,0,1,2

s2 +1 +1 -1 +1 -1,0,+1

s3 0 +1 +1 +1 -1,0,+1

Consider the following values of fuzzy diagnostic
signals obtained in the diagnosing phase:

s1 =
{ 〈−2, 0.8〉 , 〈−1, 0.2〉 , 〈0, 0.0〉 ,

〈+1, 0.0〉 , 〈+2, 0.0〉}
,

s2 = {〈−1, 0.0〉 , 〈0, 0.0〉 , 〈+1, 1.0〉} ,

s3 = {〈−1, 0.0〉 , 〈0, 0.4〉 , 〈+1, 0.6〉} .

(a) Now, consider the case described in Section 5.1. As-
sume that the values of the certainty factor assigned to
the signatures of particular faults are known and given in
Tab. 3.

Table 3. Certainty factors.

s/f f1 f2 f3 f4

δk 0.8 0.8 0.7 1.0

Activation levels for fault rules are determined
from (11) and (12). The MAX operator was applied as
the fuzzy union and the PROD operator as the fuzzy inter-
section:

μ (f1) = MAX {0.8, 0.2} ⊗ 1.0 ⊗ 0.4 = 0.32,

μ (f2) = MAX {0.0, 0.0} ⊗ 1.0 ⊗ 0.6 = 0.0,

μ (f3) = MAX {0.0, 0.0} ⊗ 0.0 ⊗ 0.6 = 0.0,

μ (f3) = 0.8 ⊗ 1.0 ⊗ 0.6 = 0.48.

From (21) we can determine fault activation levels
after correction by considering certainty factor values:

μ∗ (f1) = 0.32 ⊗ 0.8 = 0.256,

μ∗ (f2) = 0.0 ⊗ 0.8,

μ∗ (f3) = 0.0 ⊗ 0.7,

μ∗ (f4) = 0.48 ⊗ 1.0 = 0.48.

The diagnosis (assuming H = 0.1) is DGN =
{〈f4, 0.48〉, 〈f1, 0.256〉}.

(b) Consider the case described in Section 5.2. Assume
that the fuzzy diagnostic relation FRFS (23) is known
and given in Tab. 4.

Fault rule activation levels are determined from (24)
and (25):

μ∗∗ (f1) = (MAX {0.8, 0.2} ⊗ 0.8) ⊗ (1.0 ⊗ 0.9)

⊗ (0.4 ⊗ 1.0) ≈ 0.23,

μ∗∗ (f2) = (MAX {0.0, 0.0} ⊗ 0.9) ⊗ (1.0 ⊗ 1.0)

⊗ (0.6 ⊗ 0.8) = 0.0,
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Table 4. Fuzzy diagnostic relation FRFS .

s/f f1 f2 f3 f4

s1 0.8 0.9 0.9 1.0

s2 0.9 1.0 1.0 1.0

s3 1.0 0.8 0.7 1.0

μ∗∗ (f3) = (MAX {0.0, 0.0} ⊗ 0.9) ⊗ (1.0 ⊗ 1.0)

⊗ (0.6 ⊗ 0.7) = 0.0,

μ∗∗ (f4) = (0.8 ⊗ 1.0) ⊗ (1.0 ⊗ 1.0) ⊗ (0.6 ⊗ 1.0)

≈ 0.48.

In this case the diagnosis is DGN = {〈f4, 0.48〉,
〈f1, 0.23〉}.

(c) Consider case described in Section 5.3. Assume that
the extended fuzzy diagnostic relation FR ∗

FS (27) is de-
fined by Tab. 5.

Table 5. Extended fuzzy diagnostic relation FR∗
FS .

s/f f1 f2 f3 f4

s1 0.9, 0.8 0.9, 0.9 0.9, 1.0 1.0

s2 0.9 1.0 1.0 1.0

s3 1.0 0.8 0.7 1.0

Corrected faults rule activation levels are determined
from (28) and (29):

μ∧∧ (f1) = (MAX {0.8 ⊗ 0.9, 0.2⊗ 0.8}) ⊗ (1.0 ⊗ 0.9)

⊗ (0.4 ⊗ 1.0) ≈ 0.26,

μ∧∧ (f2) = (MAX {0.0 ⊗ 0.9, 0.0⊗ 0.9}) ⊗ (1.0 ⊗ 1.0)

⊗ (0.6 ⊗ 0.8) = 0.0,

μ∧∧ (f3) = (MAX {0.0 ⊗ 0.9, 0.0⊗ 1.0}) ⊗ (1.0 ⊗ 1.0)

⊗ (0.6 ⊗ 0.7) = 0.0,

μ∧∧ (f4) = (0.8 ⊗ 1.0) ⊗ (1.0 ⊗ 1.0) ⊗ (0.6 ⊗ 1.0)

≈ 0.48.

In this case the diagnosis is DGN = {〈f4, 0.48〉,
〈f1, 0.26〉}.

7. Concluding Remarks

The paper presents a method of fuzzy diagnostic reason-
ing that takes into account uncertainties connected with

the process of diagnosing. The known methods (Frank,
1994; Frank and Marcu, 2000; Garcia et al., 1997; Com-
baste et al., 2003) use fuzzy residual evaluation, which is
an efficient tool for neutralising uncertainties connected
with disturbances, measurement noise and modelling in-
accuracy. The paper puts together and extends different
approaches of taking into account the uncertainty of the
relation between symptoms and faults that were described
in the previous papers (Kościelny, 2001; Kościelny and
Syfert, 2004; Syfert, 2003). Such an uncertainty may re-
sult from the following factors:

• insufficient residual sensitivity to particular faults
(e.g., due to a very small leakage size, symptoms will
not be observed),

• lack of knowledge about the relation between faults
and the observed symptoms.

The proposed reasoning algorithms that enable us to take
into account several kinds of uncertainties connected with
the knowledge about the relation between symptoms and
faults form a basis for the diagnostic reasoning algorithm.

Various methods of taking into account the uncer-
tainty of the relation between faults and diagnostic signal
values were described. The idea of signatures for certainty
factors and an extended version of the fuzzy information
system were proposed for the first time. Fuzzy logic was
applied for taking into account that uncertainty. The rules
of reasoning were given for the cases considered.

The diagnostic reasoning conducted on the basis of
the above rules enables us to take into account the fault-
symptom relation uncertainty, as well as symptom uncer-
tainty. Fuzzy residual evaluation is used for that reason.
The proposed reasoning algorithm enables us to calculate
certainty factors for the states with particular faults and the
normal process state. Additionally, certainty factor of the
unknown process states can be calculated. The unknown
state groups all the cases with unknown faults (omitted
during system configuration), with multiple faults and
with improper diagnostic signal values, which were dis-
torted by measurement noise, disturbances, etc. Calcu-
lating that factor increases the reliability of the diagnosis
generated by the diagnostic system. An example of rea-
soning with the use of the proposed diagnostic methods
was shown.

Fuzzy logic is an efficient and natural way of taking
into account uncertainties that occur during the diagnos-
tics of industrial processes. Many parameters are set up
arbitrarily based on experts’ knowledge and experience.
However, such an approach seems to have advantages in
the case of industrial applications. In the case of an al-
ternative approach based on the Bayesian theory, many
serious difficulties occur. They are mainly connected with
defining probabilities necessary for calculations.
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Given the above, reasoning methods for faults are
concerned with the diagnostics of technical systems.
However, identical approaches can be applied in medical
diagnostics, too. These approaches may benefit from con-
sidering symptoms of an illness with, generally, impre-
cise knowledge about the relation between the symptoms
and the illness. Consider the example of Section 6 in the
context of medical diagnostics. The faults fk are equiva-
lent to illness units. Fuzzy diagnostic signals define fuzzy
symptoms of the illness. In this case, 0 is assigned to the
measured parameter qualified as normal, and negative and
positive numbers are assigned to fuzzy sets of parame-
ter values below or above the values within the normal
range. The FIS column describes the set of illness symp-
toms. The certainty factor or the fuzzy relation FRFS , cf.
Tab. 3, describes in various ways the uncertainty of med-
ical knowledge about the illness and its symptoms.
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Kościelny J.M. and Syfert M. (2000): Current diagnostics of
power boiler system with use of fuzzy logic. — Proc. 4-
th IFAC Symp. Fault Detection, Supervision and Safety
for Technical Processes, SAFEPROCESS’2000, Budapest,
Hungary, Vol. 2, pp. 681–686.
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