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1. Introduction

The commonly accepted theory of fuzzy numbers (Czo-
gała and Pedrycz, 1985) is that set up by Dubois and
Prade (1978), who proposed a restricted class of member-
ship functions, called (L, R)–numbers with shape func-
tions L and R. However, approximations of fuzzy func-
tions and operations are needed if one wants to follow
Zadeh’s (Zadeh 1975; 1983) extension principle. It leads
to some drawbacks that concern properties of fuzzy al-
gebraic operations, as well as to unexpected and uncon-
trollable results of repeatedly applied operations (Wa-
genknecht, 2001; Wagenknecht et al., 2001).

Classical fuzzy numbers (sets) are convenient as far
as a simple interpretation in the set-theoretical language is
concerned (Zadeh, 1965). However, we could ask: How
can we imagine a fuzzy information, say X , in such a way
that by adding it to fuzzy information (number) A another
fuzzy number C will be obtained? In our previous papers
(see (Kosiński et al., 2003b) for references) we tried to an-
swer that question in terms of the so-called ordered fuzzy
numbers, which can be identified with pairs of continu-
ous functions defined on the interval [0, 1]. In this paper
we generalize the class of membership curves introduced
earlier in order to make the algebra of ordered fuzzy num-
bers a more efficient tool in dealing with unprecise, fuzzy
quantitative terms.

2. Ordered Fuzzy Numbers

In the series of papers (Kosiński et al., 2001; 2002a;
2002b; 2003a; 2003b; Kosiński, 2004; Kosiński and
Prokopowicz, 2004; Koleśnik et al., 2004), we introduced
and developed the main concepts of the space of ordered
fuzzy numbers. In our approach the concept of member-
ship functions (Czogała and Pedrycz, 1985) was weak-
ened by requiring a mere membership relation. Conse-
quently, a fuzzy number A was identified with an ordered
pair of continuous real functions defined on the interval
[0, 1], i.e., A = (f, g) with f, g : [0, 1]→R as continuous
functions. We call f and g the up and down-parts of the
fuzzy number A, respectively. To be in agreement with
the classical denotation of fuzzy sets (numbers), the inde-
pendent variable of both functions f and g is denoted by
y, and their values by x.

The continuity of both parts implies that their images
are bounded intervals, say UP and DOWN , respec-
tively (Fig. 1(a)). We used symbols to mark boundaries
for UP = [lA, 1−A] and DOWN = [1−A, pA].

In general, the functions f and g need not be in-
vertible as functions of y ∈ [0, 1], and only continuity is
required. If we assume, however, that they are monoto-
nous, i.e., invertible, and add the constant function of x
on the interval [1−

A, 1+
A] with the value equal to 1, we
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Fig. 1. Ordered fuzzy number (a), an ordered fuzzy number presented as a fuzzy number in classical meaning (b),
and a simplified mark denoting the order of inverted functions (c).

might define the membership function

μ(x) =

⎧⎪⎪⎨
⎪⎪⎩

f−1(x) if x∈ [f(0), f(1)] = [lA, 1−A],

g−1(x) if x∈ [g(1), g(0)] = [1+
A, pA],

1 if x∈ [1−A, 1+
A],

(1)

if

1. f is increasing and g is decreasing, and such that

2. f ≤ g (pointwise).

In this way, the obtained membership function
μ(x), x ∈ R represents a mathematical object which re-
sembles a convex fuzzy number in the classical sense
(Drewniak, 2001; Klir, 1997; Wagenknecht, 2001). Notice
that for the representation of the membership function μ
of the convex fuzzy number one can attach two monotonic
functions μup := f−1 and μdown := g−1 defined on the
intervals [f(0), f(1)] and [g(1), g(0)], respectively.

In fact, in Fig. 1(c) to the ordered pair of two con-
tinuous functions (here just two affine functions) f and
g there corresponds a membership function of a convex
fuzzy number1, with an extra arrow, which denotes the
orientation of the closed curve formed of the graph of the
function and the part of the x axis (which is just the part
of the domain of the function on which its values are dif-
ferent from zero). On the other hand, the arrow underlines
the fact that we are dealing with an ordered pair of func-
tions. In this way, we appointed an extra feature to this
object (as well as to its counterpart – the convex fuzzy
number), named the orientation.

Notice that if some of the conditions formulated
above are not satisfied, the construction of the classical

1 As usual, the part of the graph representing vanishing values of the
membership function is not presented here.

membership function is not possible. However, in the
x − y plane the graphs of f and g (as functions of y)
can be drawn together with the constant function of x on
the interval [f(1), g(1)], equal to 1. Consequently, the
resulting graphs of three functions form together a curve
which can be called the membership curve of an ordered
fuzzy number (f, g) .

3. Operations

Now, in the most natural way, the operation of addition be-
tween two pairs of such functions is defined (cf. our main
definition from (Kosiński et al., 2003b)) as the pairwise
addition of their elements, i.e., if (f1, g1) and (f2, g2)
are two ordered fuzzy numbers, then (f1 + f2, g1 + g2)
will be just their sum. It is interesting to notice that as
long as we are dealing with an ordered fuzzy number
represented by pairs of affine functions of the variable
y ∈ [0, 1], its so-called classical counterpart, i.e., a mem-
bership function of the variable x is just a trapezoidal-
type convex fuzzy number. One should notice, however,
that a trapezoidal type membership function corresponds
not to every pair of affine functions of y (cf. the require-
ment of the invertibility of f and g and conditions 1
and 2 formulated in Eqn. (1)); some of them are improper
(as was noticed already in (Kosiński et al., 2003b) like in
Fig. 2.

If we want to add two pairs of affine functions (i.e.,
two particular types of ordered fuzzy numbers) defined on
[0, 1], the final result is easy to obtain, since interval cal-
culus can then be used. Here a mnemotechnic method
of adding (as well as subtracting and multiplying by a
scalar, i.e., by a real, crisp number) of ordered fuzzy num-
bers represented by pairs of affine functions can be given.
If for any pair of affine functions (f, g) of y ∈ [0, 1]
we form a quaternion (tetrad) of real numbers according
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Fig. 2. Sum of two convex OFNs is an improper convex number.

Fig. 3. Multiplication.

to the rule [f(0), f(1), g(1), g(0)] (which correspond to
the four numbers [lA, 1+

A, 1−A, pA]) of Eqn. (1), then this
tread uniquely determines2 the ordered fuzzy number A.
If (e, h) =: B is another pairs of affine functions, then
the sum A + B = (f + e, g + h) =: C will be uniquely
represented by the tread

[
f(0)+e(0), f(1)+e(1), g(1)+h(1), g(0)+h(0)

]
. (2)

In a similar way, if we want to multiply an OFN, say
A, by a scalar λ ∈ R, then the product λA will have its
tread representation in the form

λA←→
[
λf(0), λf(1), λg(1), λg(0)

]

where A←→
[
f(0), f(1), g(1), g(0)

]
. (3)

In the assumed definitions (cf. Kosiński et al., 2003a), the
operation of subtraction is compatible with a linear struc-
ture of OFNs, i.e., A−B := A + (−1)B. The represen-
tations (2) and (3) are at our disposal to find the result of
the subtraction A − B in the form of the corresponding
tread.

2 Only one line segment can be drawn through two points in the
plane.

If for A = (f, g) we define its complement Ā =
(−g,−f) (note that Ā �= (−1) ·A), then the sum A+ Ā
gives a fuzzy zero 0 = (f − g,−(f − g)) in the sense
of the classical fuzzy number calculus. If we attach to
A = (f, g) the corresponding number of the opposite ori-
entation A⊥ = (g, f), then we can see that the difference
between them is a fuzzy zero, i.e.,

A−A⊥ = (f − g,−(f − g)) (4)

like before. For a better presentation of the advantages of
the new operations on OFN we add extra figures for the
sum, the difference and the product of A by the inverse
of B, i.e., the division A/B.

In Fig. 2 we can follow the operation of addition
using the tread representation of two trapezoidal ordered
fuzzy numbers. In fact, for the number A we have the
tread [1, 2, 3, 5], and for B (which has the opposite orien-
tation to that of A) the corresponding tread is [6, 4, 4, 3].
Taking the sum of both treads (componentwise), we will
get

[1, 2, 3, 5]+[6, 4, 4, 3] = [7, 6, 7, 8]←→ A+B = C, (5)

which is the tread representation of the sum C = A + B.

For a better presentation of the advantages of the new
operations on OFN, we add extra figures for the products
of A by B and by the inverse of B, i.e., the division
A/B. Notice that the inverse 1/B of an ordered fuzzy
number B is defined as an ordered fuzzy number such
that the product B · (1/B) gives a crisp one, i.e., an or-
dered fuzzy number represented by the pair of constant
functions (1†, 1†), where 1†(y) = 1 for all y ∈ [0, 1].

4. Generalization

However, there are some limitations if we pass from the
concept of ordered fuzzy numbers (OFN) represented by
ordered pairs of continuous functions (even those satis-
fying Conditions 1 and 2 above) to the theory of con-
vex fuzzy numbers represented by their membership func-
tions. This is because some membership functions already
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Fig. 4. Inverse of B.

Fig. 5. Division A/B.

known in the classical theory of fuzzy numbers (cf. Czo-
gała and Pedrycz, 1985; Guanrong and Tat, 2001; Łachwa,
2001; Piegat, 1999) cannot be obtained by taking inverses
of continuous functions f and g in the process described
above. We think here about such membership functions
which are piecewise constant (cf. Fig. 7)), i.e., μ is one
of them if its branches μup and μdown are not strictly
monotonous.

The lack of strict monotonicity of the branches μup

and μdown as functions of x and, consequently, the ex-
istence of constancy subintervals imply that the inverse
functions to μup and μdown , regarded as functions of y,
do not exist in the classical sense. To solve this problem
(in terms of the weaker concept of ordered fuzzy numbers,
which is a membership relation) we may assume that for
both functions μup and μdown there exists a finite (or at
most countable) number of such constancy subintervals,
and then the inverse functions, say f and g, respectively,
exist in a generalized sense, i.e., they are piecewise con-
tinuous and monotonous with a finite (or at most count-
able) number of discontinuity points. Those discontinuity
points are of the first order, i.e., at each such point one-
sided limits of the functions exist, which may be differ-
ent. Then each jump of discontinuity in the y variable
corresponds to a constancy subinterval in the x variable.

In this way we arrived at a class of functions larger
than continuous ones from among which elements of pairs
(f, g) are selected. This is the class of real-valued func-

tions of bounded (finite) variation (Łojasiewicz, 1973).
Now we are well prepared (cf. Appendix) to introduce a
generalization of the original definition of ordered fuzzy
numbers, cf. (Kosiński et al., 2002a; 2002b; 2003a).

Definition 1. By an ordered fuzzy number A we mean an
ordered pair (f, g) of functions such that f, g : [0, 1]→R

are of bounded variation.

Operations on new ordered fuzzy numbers are intro-
duced in much the same way as in (Kosiński et al., 2001;
2002a; 2002b; 2003a; 2003b; Kosi ński, 2004; Kosiński
and Prokopowicz, 2004; Koleśnik et al., 2004). Notice,
however, a minor difference in the definition of division.

Definition 2. Let A = (fA, gA), B = (fB, gB) and
C = (fC , gC) be mathematical objects called ordered
fuzzy numbers. The sum C = A + B, subtraction
C = A−B, product C = A ·B, and division C = A/B
are defined by

fC(y) = fA(y) � fB(y), gC(y) = gA(y) � gB(y), (6)

where ‘�’ stands for ‘+’, ‘−’, ‘·’, and ‘/’, respectively,
and A/B is defined if the functions |fB| and |gB| are
bounded from below by a positive number.

As was already noticed in the previous section, the
subtraction of B is the same as the addition of the oppo-
site of B, i.e., the number (−1) · B.
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Fig. 6. Ordered fuzzy number as a pair of
functions of bounded variation.

Fig. 7. Membership function of an ordered fuzzy number.

Additionally, the following, more set-theoretic oper-
ations can be defined:

Definition 3. Let A = (fA, gA), B = (fB, gB) and
C = (fC , gC) be mathematical objects called ordered
fuzzy numbers. The maximum C = A ∨ B and the mini-
mum C = A ∧B are defined by

fC(y) = func
{

fA(y), fB(y)
}

,

gC(y) = func
{

gA(y), gB(y)
}

, (7)

where ‘func’ stands for ‘max’ and ‘min’, respectively.

Many operations can be defined in this way for pairs
of functions. A Fuzzy Calculator was already cre-
ated as a calculation tool by Roman Koleśnik (Koleśnik et
al., 2004). It facilitates an easy future use of all mathe-
matical objects described as ordered fuzzy numbers.

This tool (a program called zCalc) was created with
a graphical shell named zWinCalc and is not limited to
piecewise linear parts (quasi-trapezoidal representations)
only. It can run on any form of functions written in a sym-
bolic way, i.e., by formulas, as well as given in a graphical
way by points on the plane (a coordinate system). To cre-
ate the main zCalc program, the following components
were used:

(i) Visual Studio 6.0 – an environment for programming
in the C++ language;

(ii) Bison-Flex – a generator of the language (a useful
tool to build the syntax analyzer).

The tool zCalcwas written as a component of the operat-
ing system Windows (9x/XP). To this end, a console inter-
face which allows us to use the main module as a kind of
the interpreter of a specifical simply language was added.

Algebraic operations on OFN offer a unique possi-
bility to define new types of compositional rules of fuzzy
inference which play a key role in approximate reasoning
when conclusions from a set of fuzzy if–then rules are to
be derived.

Examples of such compositional rules of inference
were given based on the multiplication operator in which
all fuzzy sets are OFNs, in the Ph.D. thesis (Prokopowicz,
2005). Moreover, to determine activation levels of multi-
condition rules (or firing the strength of the fuzzy rule),
new methods of aggregation of their premise parts were
also proposed in (Prokopowicz, 2005). These aspects will
be the subject of the next article.

The original case of OFNs with continuous elements
(f, g) allows us to define a set of defuzzification operators
thanks to the Riesz-Kakutami-Banach theorem.

5. Further Extensions

Pointwise multiplication by a scalar (crisp) number, to-
gether with addition, leads to a linear structure R, which
is isomorphic to the linear space of real 2D vector-valued
functions defined on the unit interval I = [0, 1].

Hence R can be identified with BV ([0, 1]) ×
BV ([0, 1]), where BV ([0, 1]) is the space of real-valued
functions of bounded variation defined on the interval
[0, 1] (cf. Appendix). Since the space BV ([0, 1]) is a
Banach space in the norm (12) (cf. Appendix), its Carte-
sian product can be equipped with the norm as follows:

‖(f, g)‖ = max(|f(0)|+ var(f), |g(0)|+ var(g)) . (8)

Finally, R is a Banach algebra with the unity (1†, 1†).
One should add that a Banach structure of an extension of
convex fuzzy numbers was introduced by Goetschel and
Voxman (1986). However, they were only interested in
the linear structure of this extension.

A relation of partial ordering inR can be introduced
by defining a subset of those ordered fuzzy numbers which
are greater than or equal to zero. We say a fuzzy number
A = (f, g) is no less than zero, and write A ≥ 0, iff
f ≥ 0 and g ≥ 0. Hence for two ordered fuzzy numbers
B, C the relation B ≥ C holds if B − C ≥ 0. From
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this we see that R is a partially ordered ring to which the
theory of such rings can be applied.
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Appendix

Here we give the most important facts concerning func-
tions of bounded variations.

Each function h of bounded variation on [0, 1] pos-
sesses at most a countable number of discontinuity points
of the first order and, moreover, each function can be
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represented as a sum of two functions h(s) = hc(s) +
hj(s), s ∈ [0, 1], where hc is a continuous function of
bounded variation while hj(s) is a function of jumps of
h, called the jump function. In other words, if {sk : k =
1, 2, . . .} is the sequence (finite or infinite: however, with
different terms) of all discontinuity points of the function
h, then the jump function of h is hj(s) =

∑
k uk, where

for each k the value

uk(s) = 0 for s < sk

and

uk(sk) = h(sk)− h(sk − 0),

uk(s) = h(sk + 0)− h(sk − 0) for s > sk, (9)

where h(sk − 0), h(sk + 0) are one-sided limits of h
at sk.

It is worthwhile to add that each function of bounded
variation is a difference of two monotonous (exactly in-
creasing) functions. Hence the function hc in the above
representation is a difference of two increasing continuous
functions.

One needs to stress that not all ordered fuzzy num-
bers in the sense of our first definition (Kosiński et al.,
2003a) fulfil the present definition, since they are contin-
uous functions which do not have bounded variation. For
example, the function h(s) = s cos(π/2s) for s ∈ (0, 1]
and h(0) = 0 is continuous in the whole interval [0, 1]
while its variation, i.e., the upper limit of the sum

v(h) =
n−1∑
k=0

|h(sk+1)− h(sk)| (10)

for an arbitrary partition 0 = s0 < s1 < s + 2 < · · · <
sk−1 < sn = 1 of the interval [0, 1] is unbounded. To
see this, it is enough to take for any n the partition

0 <
1
2n

<
1

2n− 1
< · · · < 1

3
<

1
2

< 1,

for which the sum v(h) in (10) will be

v(h) = 1 +
1
2

+
1
3

+ · · ·+ 1
n

,

and for a sufficiently large n the sum can be arbitrarily
large. If, however, a function fulfils the Lipschitz con-
dition with a constant M on the interval [0, 1], then its
variation is bounded by M (Łojasiewicz, 1973).

On the other hand, each increasing (even discontin-
uous) function (or, more generally, monotonous) func-
tion on the interval [0, 1] is a function of bounded vari-
ation (which is rather obvious from the formula (10) in
the case of an increasing function, since each component
h(sk+1) − h(sk) is positive and then the sum is equal to
h(1)− h(0)).

In what follows, we will use the notation var(h) for
the variation of the function f , i.e., the upper limit of the
sum (10), for an arbitrary partition of the interval [0, 1],

var(h) = sup v(h), (11)

where v(h) is given by (10).

The facts quoted above are fundamental in the proof
of the main proposition (Alexiewicz, 1969; Łojasiewicz,
1973).

Proposition 1. Linear combinations and products of
functions of bounded variation are functions of bounded
variation. Moreover, a quotient of functions of bounded
variation is a function of bounded variation if the absolute
value of the divisor is bounded from below by a positive
number.

Moreover, on the set of functions of bounded varia-
tion one can introduce the norm by the relation

‖h‖ = |h(0)|+ var(h), h : [0, 1]→R, (12)

and with this norm the space BV ([0, 1]) of all functions
of bounded variation on [0, 1] with its linear structure
defined by the pointwise addition of functions and multi-
plication by a scalar from R becomes a Banach space.
This space is not separable.
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