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Different types of niching can be used in genetic algorithms (GAs) or evolutionary computations (ECs) to sustain the
diversity of the sought optimal solutions and to increase the effectiveness of evolutionary multi-objective optimization
solvers. In this paper four schemes of niching are proposed, which are also considered in two versions with respect to
the method of invoking: a continuous realization and a periodic one. The characteristics of these mechanisms are discussed,
while as their performance and effectiveness are analyzed by considering exemplary multi-objective optimization tasks both
of a synthetic and an engineering (FDI) design nature.
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1. Introduction

Natural selection plays a critical role in optimizing mech-
anisms of rivalry between individuals and species. It de-
termines if a given individual or species or whole popu-
lations will survive. The selected, adapted individuals of
a high fitness have greater chances of producing offspring
of desirable features at least similar to parental ones. As
a result of such a continual selection process, new genera-
tions of improved suitability are created. To our surprise,
nature sometimes admits (with small probability) the sur-
vival of individuals weakly fitted. Such individuals estab-
lish the source of strewn information helping the diversity
of the current population, which allows inserting innova-
tions into the genetic information transmitted to the next
generations. In other words, natural selection in certain
situation tests also other, seemingly non-optimal, possi-
bilities of achieving befitting individuals. Nevertheless, in
nature the time for protecting weak individuals is usually
very short, and, as a result, they promptly disappear.

On a similar basis, in a synthetic environment one
can impose a policy of breeding weak species in or-
der to sustain them. In genetic algorithms (Chambers,
1995; Forrest, 1993; Goldberg, 1986; 1989; Grefen-
stette, 1985; Holland, 1975; Kirstinsson, 1992; Man et
al., 1997; Michalewicz, 1996) and their engineering ap-
plications (Cotta and Schaefer, 2004; Fogarty and Bull,
1995; Huang and Wang, 1997; Li et al., 1997; Korbicz
et al., 2004; Linkens and Nyongensa, 1995; Martinez et
al., 1996; Obuchowicz and Prętki, 2004; Park and Kan-
del, 1994), niching can be recognized as a mechanism that

preserves (apart from the best individuals in terms of fit-
ness) also average and worse individuals in order to sus-
tain diverse generations (Goldberg, 1989; 1990; Kowal-
czuk et al., 1999a; Kowalczuk and Białaszewski, 2004a;
Michalewicz, 1996; Ryan, 1995). By inserting these in-
dividuals into a parental pool they are given a chance
to relay their diverse genetic codes to their offspring.
The mechanism balances the populations of the existing
species by increasing the chance of mating for the indi-
viduals from sparse (weaker) niches and decreasing that
chance for the ones from dense niches (species). In effect,
such a mechanism of ‘uniform breeding’ prevents genetic
algorithms (GA) or evolutionary computations (EC) from
premature convergence, as well as supports their ability to
adapt.

Evolutionary computations are most appreciated in
solving difficult multi-objective optimization problems.
In such cases the concept of optimality in the Pareto sense
is usually applied when assessing the merit of solutions
(Goldberg, 1989; 1990; Kowalczuk et al., 1999a; 1999b;
Kowalczuk and Białaszewski, 2004a; Man et al., 1997;
Michalewicz, 1996). With maximization tasks in mind,
the solutions can be classified as dominated and non-
dominated (Pareto optimal). Next, according to such an
assessment, in a ranking process each individual is as-
signed a scalar rank representing its degree of domination.

In this paper we reflect on different techniques for
niching, which we segregate with respect to the object of
the niching ‘manipulation’ (Kowalczuk and Białaszewski,
2000b; 2004a; 2004b). In such a way four techniques can
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be distinguished: the niching of the fitness (NF) and the
ranks (NR) of all the individuals in a generation, and the
niching of the fitness (NFP) and the ranks (NRP) of the
parents solely. Furthermore, these four types of niching
are considered in two versions with respect to the fre-
quency of their application within a GA/EC cycle. The
efficacy of these mechanisms is consequently verified in
solving exemplary multi-objective optimal design prob-
lems, including linear state observers for detection sys-
tems.

2. Multi–Objective Optimization

As is observed in nature, also in engineering problems we
frequently specify a set of criteria with respect to which
a given product is optimized. In practical terms the is-
sue often boils down to making a choice from amongst
several equivalent ‘optimal’ solutions or to trading off
between different criteria of performance, like price, re-
liability, safety, etc. The issue of total optimization of
several objective functions at the same time is therefore
most essential (Dridi and Kacem, 2004; Kowalczuk et al.,
1999a; Kowalczuk and Białaszewski, 2004a). Such types
of designing problems are often called multi-objective
optimization (MO) tasks (Goldberg, 1989; Michalewicz,
1996; Viennet et al., 1996).

2.1. Multi–Objective Optimization Problem

Consider the following n-dimensional vector x of the pa-
rameters searched for:

x =
[

x1 x2 . . . xn

]T ∈ R
n, n ∈ N, (1)

which is assessed according to an m-dimensional vector
f(x) of objective functions fj(x), j = 1, 2, . . . , m:

f(x) =
[

f1(x) f2(x) . . . fm(x)
]T ∈ R

m, (2)

m ∈ N. Assuming, for simplicity, that all coordinates
of the criterion vector (2) represent profit functions, the
multi-objective optimization task studied can be formu-
lated as a multi-profit maximization task without con-
straints:

max
x

f(x). (3)

2.2. Multi–Objective Optimization Methods

A method of solving multi-objective problems can be
found on the basis of a simple integrated criterion or by
taking into consideration another interconnected assess-
ment. Such methods of solving MO optimality prob-
lems can thus be divided into two groups, representing

a classical approach (Chen et al., 1996; Goldberg, 1989;
Michalewicz, 1996; Zakian and Al-Naib, 1973) and a
scheduling or ranking one (Goldberg, 1989; Kowalczuk
et al., 1999a; Kowalczuk and Białaszewski, 2004a; Man
et al., 1997; Michalewicz, 1996).

Within the classical multi-objective optimization
ways we place the methods considering:

– weighted profits (Michalewicz, 1996),

– distance functions (Michalewicz, 1996), and

– sequential inequalities (Chen et al., 1996; Zakian and
Al-Naib, 1973),

whereas the ranking approaches are based on:

– Pareto optimality ranking (Goldberg, 1989;
Michalewicz, 1996; Man et al., 1997), or

– other more distinctive and utilitarian indices, like the
global optimality level proposed in (Kowalczuk and
Białaszewski, 2000a; 2004a).

They can be characterized as follows:

• In the method of weighted profits all coordinates of
the profit vector f(x) are combined into one profit
function by means of a normalized vector of weights.

• The distance function method consists in integrating
the coordinates of the distance from the profit func-
tion vector f(x) to a certain demand vector into a
scalar profit function h(x) measured by means of a
simple (Euclidean) vector norm.

• The method of sequential inequalities (Zakian and
Al-Naib, 1973) uses a transformation of the analyzed
multi-profit maximization task (without constraints)
into a set of tasks of maximization of the partial
profit functions with inequality constraints suitably
parameterized; which means searching for a parame-
ter vector x, which does not violate a fixed set of
inequalities (Chen et al., 1996; Kowalczuk and Bi-
ałaszewski, 2004a).

The above classical methods are simple. They have,
however, the disadvantage of relying on an arbitrary
choice of a parameter (the weighting vector, demand vec-
tor or limit values for the profit functions). In effect, the
obtained solutions are clearly conditioned by the weights,
demand or limits applied, which means an obvious simpli-
fication of the multi-profit maximization problem. What
is more, for the purpose of the integration of separate ob-
jectives into one measure, the designer has to decide on
the relations (or significance) among the objectives, which
can be a cumbersome task.
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In the last two decades a wealth of various evolution-
ary multi-objective optimization (EMO) methods (Coello,
2001; Forrest, 1993; Goldberg, 1989; Grefenstette, 1985;
Hajela and Lin, 1992; Horn et al., 1994; Korbicz et al.,
2004; Schaffer, 1985; Srinivas and Deb, 1994; Viennet
et al., 1996; Zitzler and Thiele, 1998) were proposed
for solving multi-objective problems in multi-dimensional
spaces more effectively. Among them, one can enumerate
the following GA/EA algorithms:

– Vector Evaluated GAs (VEGAs),

– Hajela and Lin GAs (HLGAs),

– Multi-Objective GAs (MOGAs),

– Niched Pareto GAs (NPGAs),

– Non-dominated Sorting GAs (NSGAs, NSGA2s),

– Strength Pareto EAs (SPEAs and SPEA2s),

– Genetic Gender Algorithms (GGAs).

The VEGA (Schaffer, 1985) differs from the basic
GA in the process of selection. A separate parental pool
is there chosen by taking into account each single ob-
jective function and by making an independent selection
proportional to this single fitness measure. The aggre-
gate parental pool (with repeated individuals) constitutes
a genetic material for creating new individuals by means
of the operations of crossover and mutation. This is a
non-Pareto approach, which can be easily implemented.
Though, generally, its optimal results have a disadvantage
of being superior only with respect to one objective of the
multi-objective task considered.

The HLGA (Hajela and Lin, 1992), representing an-
other non-Pareto approach, uses the method of weighted
profits, where all co-ordinates of the profit vector f(x)
are combined into one scalar function

g(x) = w · f(x),

with w = [ w1 w2 . . . wm ] ∈ R
m denoting a

vector of normalized weights wi ∈ [0, 1],
∑m

i=1 wi = 1.
This time though, the weights encoded in the sought geno-
type are also optimized:

max
x,w

g(x, w). (4)

The HLGA can be easily combined with some mating re-
strictions and a niching mechanism, utilized for sustaining
certain diversity among the solutions.

Within the MOGA approach (Fonseca and Fleming,
1993; Forrest, 1993), each solution is assigned a certain
scalar quantity called ranking, which is proportional to
the number of individuals in the current population over
which the analyzed individual dominates in the sense of

Pareto. The population is sorted according to this ranking,
and each individual is then assigned an auxiliary fitness
value by suitably interpolating the ranking from the best
to the worst solutions. Niching can be additionally incor-
porated in order to avoid premature convergence.

The NPGA (Horn and Nafpliotis, 1993; Horn et al.,
1994) uses a tournament selection based on the Pareto op-
timality, where in the process of creating a parental pool,
two randomly chosen individuals conquer with the mem-
bers of a third party, being some stochastically chosen set
of solutions. The winner of this comparative tournament
is this individual which is non-dominated with respect to
all members of this set. When both competing individuals
are equal (dominated or not dominated), the result of the
tournament depends on the number of individuals in their
niche defined in the objective space. Explicitly, the indi-
vidual from a sparser niche is selected for the constructed
parental pool.

The NSGA proposed by (Srinivas and Deb, 1994)
also relays on the concept of the Pareto domination (rank-
ing) performed on the analyzed population of individu-
als. All non-dominated individuals are assigned an arti-
ficial (dummy) fitness measure, which is proportional to
the population size. Next, the selected non-dominated in-
dividuals are removed from the analyzed population. The
remaining individuals in the population are classified sim-
ilarly (in the Pareto sense). The process continues until all
individuals are evaluated. Again, to sustain the diversity
within the classified individuals (making a current Pareto
front) their artificial fitness values are subject to warping
(the so-called niching). A general (full-cycle) conception
of the NSGA approach is presented as Procedure 2.1.

Procedure 2.1. Non-dominated Sorting GA
Generate randomly an initial population V of N indi-

viduals {xi}Ni=1

while t ≤ t max
Pareto _ front ← 1
while not all individuals are classified (in the Pareto

sense)
Determine the non-dominated individuals (dom-

inators)
Assign the artificial fitness: xi → f(xi)
Warp (niche) the fitness of individuals:

f(xi)→ f̃(xi)
Estimate the rank of individuals: f̃(xi) →

r̃(xi)
Pareto _ front ← Pareto _ front+1

end while
Select the parents {proportionate/stochastic} accord-

ing to r̃(xi)
Create the new offspring V ′ by making:

Crossover
Mutation
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Replace the population: V → V ′

Cycle: t← t + 1
end (of NSGA)

The improved algorithm NSGA-2 uses the elitism
strategy and the crowding mechanism (De Jong, 1975),
which keeps the diversity of the population without spec-
ifying additional parameters (Deb et al., 2000). Within
the elitism strategy one considers an aggregate popula-
tion containing the offspring and parent generations (N
offspring and N parents), combines them, and classifies
them with respect to their Pareto optimality. Since such
a population has size 2N , only the first N , most optimal
individuals are chosen in a simple selection process based
on a scalar measure of the crowding distance (which is
productively applied only with respect to the members of
the lowest Pareto front accepted). Specifically, the crowd-
ing distance is defined as an aggregate size of a mini-
mum hypercube containing two neighboring individuals
in the objective space. Hence the individuals of an an-
alyzed front can be sorted by considering the crowding
distance in descending order. Consequently, in this case it
is the crowding distance mechanism which is responsible
for sustaining diversity. The crowding distance assign-
ment for the members of each Pareto front, used within
the NSGA2 algorithm, is presented in the form of Proce-
dure 2.2 below.

Procedure 2.2. Crowding Distance Assignment

Choose the individuals of the same (highest) rank r(x i)
Set the crowding distance of each individual x i to zero:

d(xi)← 0
for (each partial profit) k = 1 to m

Sort the non-dominated individuals with respect to
fk: min{fk} −→ max{fk}

Fix the vector sk of the indices of the sorted individ-
uals

Set d(xsk
1
)←∞ and d(xsk

l
)←∞

(l is the number of dominators)

for j = 2 to (l − 1)
d(xsk

j
)←d(xsk

j
)+

[
fk(xsk

j+1
)−fk(xsk

j−1
)
]

end for

end for

end (of crowding estimation)

As a result of the Pareto ranking and crowding
distance assignments, each individual has two more at-
tributes: the rank r(xi) and the crowding distance
d(xi), which are suitably used in the NSGA2 algorithm
overviewed in the form of Procedure 2.3.

Procedure 2.3. Non-dominated Sorting GA 2
Generate randomly an initial population V of N indi-

viduals {xi}Ni=1

Pareto _front ← 1
while not all (N) individuals are yet classified in Pareto

sense
Determine the non-dominated individuals (domina-

tors)
Assign the rank (auxiliary fitness): xi → r(xi)
Delete the analyzed Pareto front
Pareto _front ← Pareto _front+1

end while (the initial rank assignment)
while t ≤ t max

Select the parental pool (by the tournament princi-
ple)

Create the (new) offspring V ′ by making:
Crossover
Mutation

Aggregate V and V ′ together
Pareto _ front ← 1

while not all (2N) individuals are yet Pareto-
classified

Determine the non-dominated solutions
Assign the auxiliary fitness: xi → r(xi)
Compute the crowding distance: xi → d(xi)
Sort the individuals of the Pareto front w.r.t.

d(xi)
Delete the analyzed Pareto front
Pareto _front ← Pareto _front+1

end while (sorting)
Choose the first N individuals (of highest rank and

distance) to the next generation V ′′

Replace the population: V ← V ′′

Cycle: t← t + 1
end (of NSGA2)

In the SPEA, Zitzler and Thiele (1998) consider two
sets of solutions: a regular population and an external
(archive) one. The algorithm begins with an initial popula-
tion and an empty external set. In each evolutionary cycle,
all non-dominated individuals are copied into the exter-
nal population. During an update operation, all dominated
and duplicated individuals are removed from the archive.
When the number of non-dominated solutions in the cur-
rent generation exceeds a fixed archival limit, certain non-
dominated individuals are deleted from the archive by us-
ing a truncation (clustering) method, which preserves the
principal characteristics of the set. Each individual in
the external population is assigned a strength value. The
strength value σ(xj) ∈ [0, 1) is a normalized number
of the population members that, in the Pareto sense, are
dominated by (or equal to) the solution x j being consid-
ered. A weakness (inverse fitness) function r(xi) of an
individual (xi) of the regular population is computed by
summing the strengths σ(xj) of all the archive members
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that dominate it (or are equal to xi). The parental pool is
composed by using the binary tournament selection, tak-
ing into account the individuals from the aggregate popu-
lation (the regular and external ones set together).

To overcome potential drawbacks of the SPEA, in
a SPEA2 modification (Zitzler et al., 2001) the strength
value σ(xi) is assigned to all the members of the aggre-
gate population, and the weakness (raw fitness) of each
individual xi is calculated by summing the strength val-
ues of all its dominators. Moreover, an inverse of a k-th
nearest neighbor distance (Silverman, 1986) to the rest of
the aggregate individuals in the objective space is taken
as a local population density measure for each individ-
ual xi (with k =

√
N1 + N2, see the procedure below).

This value added to the weakness of the same individual
xi gives the estimate of the final (inverse) fitness func-
tion being minimized. A suitable truncation mechanism
is applied to preserve a constant number of individuals
in an external population and to preserve boundary solu-
tions (Zitzler et al., 2001). A very general scheme of the
SPEA 2 algorithm is outlined as Procedure 2.4.

Procedure 2.4. SPEA 2
Generate randomly a regular population V1 of N 1 indi-

viduals {xi}N1
i=1

Create an empty external population V2 with a size N2

while t ≤ t max
Assign the fitness value of the individuals in V1

and V2

Copy the non-dominated individuals from V1 and
V2 to V ′

2

if the size of V ′
2 exceeds N2 then

Delete solutions of inferior quality by truncation
else
Fill V ′

2 with dominated individuals of V1 and V2

end if
Select the parents V1” from V ′

2 by the binary tour-
nament selection

Create the offspring V ′
1 of V1” by making:

Crossover
Mutation

Replace the populations: V1 ← V ′
1 , V2 ← V ′

2

Cycle: t← t + 1
end while (cycling)
end (of finding the solution set V2)

When solving highly dimensional EMO problems,
the conception of the Pareto domination appears to be in-
efficient. For such cases, Kowalczuk and Białaszewski
(2001; 2002; 2003) propose a new GGA approach con-
sisting in employing genetic genders for the purpose of
making a distinction between different groups of objec-
tives. As appears from the results presented therein, and

despite dissimilar basis and judgment, this method also al-
lows keeping diversity among the Pareto optimal solutions
produced.

2.3. Pareto Optimization

In the applied ranking methods we avoid the arbitrary
weighting of objectives. Instead, a useful classification of
the solutions is applied that takes into account particular
objectives effectively enough. Their utilitarian representa-
tives are the ranks relating to the Pareto optimality (Gold-
berg, 1989; Man et al., 1997; Michalewicz, 1996), which
allows assessing multi-profit maximization solutions as
dominated or non-dominated (P-optimal). The condition
of the Pareto optimality for a maximization task on the
vector profit function f(x) can be precisely formulated
as follows (Goldberg, 1989).

Let us consider two solutions that are character-
ized by the corresponding vectors of profit functions
f(xr), f(xs) ∈ R

M . The vector f(xr) is partially
smaller than the vector f(xs) if and only if for all their
coordinates the following conditions are fulfilled:

fi(xr) ≤ fi(xs), ∀i = 1, 2, . . . , m, (5)

and there is an index i such that fi(xr) < fi(xs). Thus,
in the Pareto sense, a solution xr is dominated if there ex-
ists a solution xs whose vector of profit functions f(xs)
is partially better than f(xr) in terms of the defini-
tion (5). Each non-dominated solution xs is taken as
Pareto optimal (P-optimal).

Let us consider an assessment of the set of solu-
tions {x1, x2, x3, x4, x5, x6, x7, x8 } in the Pareto
sense for a two-dimensional goal vector f(x) =
[ f1(x) f2(x) ]T, as shown in Fig. 1 (Kowalczuk and
Białaszewski, 2004a). By applying the Pareto optimality
approach, only the solutions {x1, x6, x7, x8 }, dom-
inating over the corresponding subset of the remaining
solutions, are shown to be P-optimal. The P-optimal so-
lutions situated in the dark areas are mutually equivalent.
It results from the figure that the solution x2 of the sec-
ondary Pareto front is dominated by one solution x 1 of
the primary P-front, while the solution x5 is dominated
by x6. The solution x4 is dominated by two solutions,
x6 and x5, whereas x3 is dominated by four solutions,
x1, x2, x5 and x6. The solutions x7 and x8, which are
neither dominated nor non-dominated, are isolated cases.

Not only does the assessment of solutions concern-
ing their Pareto optimality determine the P-optimal set of
solutions, but it also allows useful ranking of all possi-
ble solutions with respect to the degree of domination.
Namely, each solution can be assigned a certain scalar
quantity called a rank (Goldberg, 1989; Man et al., 1997),
which can have different definitions, interpretations, and
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Fig. 1. Illustration of domination in the Pareto
sense for two objectives.

applications (Coello, 2001; Horn et al., 1994; Schaffer,
1985; Srinivas and Deb, 1994; Zitzler et al., 2001). In
general, though such a rank more or less directly relates
to the number of individuals in the current population by
which the analyzed individual is dominated (or over which
the analyzed individual dominates) in the sense of Pareto
(Kowalczuk et al., 1999a; Kowalczuk and Białaszewski,
2004a). Here, the rank ρ(xi) of a given solution xi

amongst N possible solutions is computed by using the
following formula:

ρ(xi) = μmax − μ(xi) + 1,

μmax = max
i=1,2,...,N

μ(xi),
(6)

where μ(xi) is the degree of domination, meaning the
number of solutions by which xi is dominated, while
μmax is the maximum value from amongst all μ(x i). This
kind of ranking transforms the vector of profit functions
into a scalar (one-dimensional) space.

According to the above, and as can be seen from
Fig. 1, the degrees of domination of the P-optimal solu-
tions are μ(x1) = μ(x6) = μ(x7) = μ(x8) = 0, because
no solution dominates over them. The remaining solu-
tions have the following degrees of domination: μ(x2) =
μ(x5) = 1, μ(x4) = 2, μ(x3) = 4, giving the maximal
degree of domination μmax = max

i=1,2,...,8
{μ(xi) } = 4.

Finally, the following ranks of the analyzed solutions
result from (6): ρ(x1) = ρ(x6) = ρ(x7) = ρ(x8) = 5,
ρ(x2) = ρ(x5) = 4, ρ(x4) = 3, ρ(x3) = 1. The
P-optimal solutions {x1, x6, x7, x8 }, having the max-
imal rank, constitute the primary (highest) Pareto front.
The solutions {x2, x5 } constitute the secondary Pareto
front. The solution {x4 } represents the third Pareto

front, while {x3 }, having the minimal rank among all the
analyzed solutions, constitutes the fourth (in row) Pareto
front, or the fifth with regard to the value of the rank.

2.4. Global Optimality

In the ranking method with respect to the Pareto optimal-
ity we effectively transform the profit vector into a scalar
value. The approach to optimality does not, however, give
any directions as to the choice of a single solution from
amongst the Pareto optimal solutions found. Therefore, it
is the designer who has to make an independent judgment
of the obtained offers.

In order to utilize that freedom, a development of
the ranking method was proposed (Kowalczuk and Bi-
ałaszewski, 2000a; 2004a) that uses the idea of a global
optimality level. In particular, the vector profit of each
solution is mapped to a scalar global optimality level (in-
dex), which allows useful ordering of the obtained solu-
tions. Even though there is a chance of obtaining equal in-
dices of global optimality for several solutions constrain-
ing the opportunity of obtaining the ideal serial ordering of
solutions without additional interference by the designer,
this approach effectively limits the number of the equiva-
lent P-optimal solutions.

The method of estimating the global optimality level
is given in Procedure 2.5.

Procedure 2.5. Global Optimality (GOL)
Determine a maximal value of each profit function

fimax from amongst all the N solutions (or only
the P-optimal ones)

∀
i=1,2,...,m

fimax = max
j=1,2,...,n

{ fi(xj) } (7)

Assign each solution a global optimality level as

ηj = min
i=1,2,...,m

fi(xj)
fimax

(8)

end (of GOL)

The method of ordering with respect to the global
optimality level permits a significant minimization of the
problem of the ambiguity of Pareto solutions, which is a
cumbersome issue in designs using the P-optimality.

Let us apply Procedure 2.5 to the set of the eight so-
lutions depicted in Fig. 1. The following vector can rep-
resent the maximal values of the coordinates of the profit
vector: fmax = [ f1(x8) f2(x1) ]T = [ 10 8 ]T.
In the second step of Procedure 2.5. we obtain the fol-
lowing ordering of the solutions according to the global
optimality level ηj (j = 1, 2, . . . , 8): x6 → η6 = 0.6,
x2 → η2 = 0.2, x5 → η5 = 0.5, x7 → η7 = 0.1,
x1 → η1 = 0.3, x3, x8 → η3 = η8 = 0,
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x4 → η4 = 0.25. The solution x6 from the primary
Pareto front has a maximal value of the global optimality
level equal to 0.6. The worst solutions x3 (from the last
P-front) and x8 (from the primary Pareto front) have the
global optimality level of the null value. The presented or-
dering method with respect to the global optimality level
clearly presents two solutions x6 and x5 as most opti-
mal. What is important, the problematic solutions, which
maximize only some criteria or one of them (even though
they belong to the primary Pareto front as x7 and x8),
can be easily ruled out in virtue of the global optimality
level η. The highest optimality level is then assigned to
solely one solution (x6 → η6 = 0.6). Thus this technique
facilitates a useful determination of one P-optimal solu-
tion of the highest global optimality. Though in the ex-
ample of Fig. 1 the solution x6 may be intuitively recog-
nized as the best one, in higher dimensional spaces of op-
timized objectives this need not be that clear.

Within the GA/EC approach, the ordering method
according to global optimality can be most successfully
applied to the final assessment of a set of P-optimal solu-
tions.

3. Niching Methods

The process of dynamical optimization results from the ri-
valry between different individuals or species in nature. It
raises a hope for the survival of best individuals or species,
and the population as a whole. The selected individuals of
a high fitness have greater chances of producing offspring
of desirable, inherited features. Such a continual selection
process leads to individuals of improved suitability. Quite
surprisingly, the nature sometimes admits (with a small
probability) the survival of individuals weakly fitted. Such
individuals establish the source of the diversity of the pop-
ulation, which allows introducing some innovations into
the genetic information transmitted to new generations (a
kind of stochastic testing non-optimal possibilities). In
nature, the time for protecting weak individuals is usually
short, and, as a result, they quickly disappear. In order
to sustain them, such weak species should be bred un-
der a protective ‘umbrella’ (Kowalczuk and Białaszewski,
2004a).

In an analogous way, niching in genetic algorithms
is a mechanism that preserves not only the best individu-
als, but also average and weak individuals in order to sus-
tain diverse generations, and that gives a chance to relay
the genetic codes of such individuals to offspring (Gold-
berg, 1989; Kowalczuk et al., 1999a; Kowalczuk and Bi-
ałaszewski, 2004a). The mechanism balances the popu-
lations of the existing species by increasing the chance of
mating for the individuals from sparse niches and decreas-
ing that chance for the ones from dense niches. Such a

mechanism of ‘uniform breeding’ also prevents GAs from
premature convergence, as well as supports their ability to
adapt.

The niche is a finite ‘ball’ in the space of parame-
ters, in which at least one individual is situated. It is as-
sumed that geometrically close individuals have also sim-
ilar characteristics with respect to their fitness. Thus they
can be identified as species of a distinct sort. The degree of
kinship between two individuals can be represented by the
closeness function of the geometrical distance between
them, which takes its values from the range [0, 1], and is
also called in the literature (Goldberg, 1989; Michalewicz,
1996) a sharing function. The zero value of the closeness
function means that two individuals are not related, i.e.
they do not belong to one species, while the unity value
denotes their closest relation.

The niche identifying a species of ‘bred’ individu-
als is defined as a hyper-ellipsoid in the parameter space.
The closeness functions for the individuals/phenotypes x i

and xj ∈ R
n, (i, j = 1, 2, . . . , N), respectively, can be

expressed as

δij =

⎧⎨
⎩

1− ‖xi − xj‖P if 0 ≤ ‖xi − xj‖P < 1,

0 if ‖xi − xj‖P ≥ 1,
(9)

where

‖xi − xj‖P =
√

(xi − xj)TP−2(xi − xj), (10)

P = diag
{

φ1 φ2 . . . φN

}
, (11)

while φk (k = 1, 2, . . . , n) is the k-th radius of the
hyper-ellipsoid centered on the i-th individual. This ra-
dius can be determined as follows:

φk =
Δk

2ε
, k = 1, 2, . . . , n, (12)

where Δk is the width of the real interval of the k-th
parameter, while ε represents a real positive factor. The
asymptotic case, when ε = M → ∞ holds and there
are only identical individuals in the niche considered, can
be called auto niching. By definition, the closeness func-
tion has the range [0, 1]. The zero value of the closeness
function means that the two individuals are not related,
i.e. they do not belong to the analyzed species. On the
other hand, the unity value signifies that the individuals
are strongly related or identical.

Once we have defined the niche and the closeness
function, the niching technique can be specified as a mod-
ification of the magnitude of the fitness-degree vector or
the scalar rank (related to the P-optimality) of each indi-
vidual in its own niche according to the following (Gold-
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berg, 1989; Kowalczuk et al., 1999a; Kowalczuk and Bi-
ałaszewski, 2004a; Michalewicz, 1996):

f̃(xi) =
f(xi)
N∑

j=1

δij

or ρ̃(xi) =
ρ(xi)
N∑

j=1

δij

, (13)

where f(xj) is the vector fitness and ρ(xi) is the scalar
rank of the i-th individual, while f̃(xi) and ρ̃(xi) denote
its corresponding niche-adjusted fitness and rank, respec-
tively. The sums in both denominators of (13) concern
the set of individuals in the dynamically determined niche
centered on the i-th individual/ phenotype. If the individ-
ual is the only member of its own niche, then its fitness
degree is not decreased, as

∑
δij = 1. In other cases,

the fitness degree is decreased according to the number of
neighbors in the niche.

Figure 2 shows the two-dimensional cube of the
sought parameters x1 ∈ [x1, x̄1] and x2 ∈ [x2, x̄2].
The searched space, defined by the exploration ranges
Δ1 = |x̄1 − x1| and Δ2 = |x̄2 − x2|, has been divided
into equal nine parts because for ε = 3 each individual
gets its own niche in the form of an ellipse, shown in
Fig. 3, with the diameters Δ1/3 and Δ2/3.

 
Fig. 2. Division of a two-dimensional domain

of the sought parameters.

Consider an exemplary process of niching a two-
dimensional vector of fitness. The arrangement of 12 in-
dividuals in a 2-dimensional parameter space is given in
Fig. 4(a), and their fitness values are shown in Fig. 4(b).
The data of a single Pareto optimal solution are marked
with a ‘star’, and the niche of it depicted in Fig. 4(a)
has the radii 8/6 and 7/6. Figure 4(c) presents the niche-
adjusted fitness vectors of individuals prepared for the
ranking selection. By niching, the fitness degree of ten
individuals (the star and the circles) has been decreased
(as the arrows show), and the fitness of two individuals
(the cross and one dot) remains intact.

 
Fig. 3. Ellipsoidal niches of individuals.

As has been described by (13), niching can con-
cern either the fitness or the rank of the individuals of
the analyzed population. Procedures 3.1 and 3.2 ex-
plain the principles of both algorithms. On the basis of
the performed experiments (Kowalczuk and Białaszewski,
2000b; 2004a; 2004b), we can characterize the niching
of ranks as a “stronger” mechanism. This effect directly
results from the change of the ranks and the domination
structure. At the same time, the niching of fitness con-
stitutes solely a source of an indirect modification of the
ranks, and changing the fitness vector need not alter its
level of domination.

Procedure 3.1. Niching the Fitness (NF)
Compute the fitness of individuals:

xi → f(xi)

Warp the fitness of individuals:

f(xi)→ f̃(xi)

Assign the ranks of individuals:

f̃(xi)→ r(xi)

Select a parental pool based on r(xi)
end (of NF)

Procedure 3.2. Niching the Ranks (NR)
Compute the fitness of individuals:

xi → f(xi)

Assign the ranks of individuals:

f(xi)→ r(xi)

Warp the ranks of individuals:

r(xi)→ r̃(xi)

Select a parental pool according to the modified
ranks r̃(xi)

end (of NR)

Analogous types of the niching mechanism can be
considered with respect to the parental pool of selected
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Fig. 4. Effect of exemplary niching: (a) the population and the
ellipse niche of the optimal solution; (b) the true fitness
amongst the population; (c) the niche-adjusted fitness.

individuals (Kowalczuk and Białaszewski, 2000b; 2004a;
2004b). Procedures 3.3 and 3.4 present the basics of such
algorithms.

Procedure 3.3. Niching the Fitness of Parents (NFP)
Compute the fitness of individuals:

xi → f(xi)

Assign the ranks of individuals:

f(xi)→ r(xi)

Select a parental pool according to the ranks r(x i)
Warp the fitness of parents:

f(xj)→ f̃(xj)

Assign the ranks of parents:

f̃(xj)→ r(xj)

Select a final parental pool according to the ranks
r(xj)

end (of NFP)

Procedure 3.4. Niching of the Ranks of Parents (NRP)
Compute the fitness of individuals:

xi → f(xi)

Assign the ranks of individuals:

f(xi)→ r(xi)

Select a parental pool according to the ranks

r(xi)

Warp the ranks of parents:

r(xj)→ r̃(xj)

Select a final parental pool according to the modified
ranks r̃(xj)

end (of NRP)

Taking the survival of an individual as an appear-
ance in its genetic material of the next generation, nich-
ing allows both increasing the probability of survival for
species of sparse niches and decreasing it for those of
dense niches. This means that this mechanism has the na-
ture of ‘uniform breeding’. It is important that in spite
of such a uniform breeding policy, a global effect of ge-
netic expansion and selection procedures can be observed,
which consists in constant densities persistently sustained
in certain niches. This can be eventually interpreted in
terms of their robustness to changes in the fitness mea-
sure.

The niching mechanism should also be studied in
terms of time conditioning within GA cycles. Therefore,
taking into account the fact that niching is useful (Kowal-
czuk and Białaszewski, 2000b; 2004a; 2004b) though
time consuming, we propose considering periodic niching
as an alternative to the (classical) continuous one. Within
the periodic mechanism, by definition, niching is limited
to a certain number of consecutive generations (cycles),
and then it is switched off until the subsequent period.
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4. Illustrative Example

All the niching methods considered have been applied to
exemplary multi-objective optimization tasks (Kowalczuk
and Białaszewski, 2000b). For simplicity, let us first take
a two-objective function:

min
x

f(x) = min
x

[
f1(x) f2(x)

]
, (14)

where the compound functions are

f1(x) = ϕ1(x1, x2)

= −
10∑

j=1

dj

[
2∑

i=1

(xi − aij)2 + cj

]−1

, (15)

f2(x) = ϕ2(x1, x2)

= −
10∑

j=1

ej

[
2∑

i=1

(xi − bij)2 + cj

]−1

, (16)

and their coefficients have the values given in Table 1.

Table 1. Coefficients of the functions (15) and (16).

j a1j a2j b1j b2j cj dj ej

1 4 4 8 4.6 0.1 1 1

2 1 1 5 1 0.2 1 1.5

3 8 8 9 2 0.2 1.5 1

4 6 6 5 5 0.4 1 0.5

5 3 7 3 10 0.6 1 1

6 2 9 1 6 0.6 1 1

7 5 5 6 6 0.3 1.2 0.5

8 8 1 7 7 0.7 2 4

9 6 2 2 2 0.5 1 1

10 7 3.6 5 5 0.5 1 1

The GA used in simulations has the structure de-
scribed by Procedure 4.1.

Procedure 4.1. General GA scheme
Initiation of individuals population

while t ≤ t max
Fitness assessment
Niching
Selection of parents
Creation of new individuals by:

– one-point crossover
– binary mutation

Setting the new population
t = t + 1

end while (cycling)
end (of GA)

Setting the new generation consists in exchanging
90% of old individuals with new ones and retaining the
best 10% (elite) of the old population. The retained so-
lutions are selected from the Pareto optimal ones ordered
based on the global optimality level η.

The simulations were carried out with the use of the
following GA parameters: 50 individuals in the popula-
tion, 32-bits genotypes (binary codes of the phenotypes),
the probability of one-point crossover equal to 0.7, the
value of mutation probability being 0.02. The initial popu-
lation was placed at the lower right corner of the searched
space illustrated in Fig. 5(d).

Procedure 4.2 describes the applied selection method
based on the concepts of proportionality supplemented
with the stochastic reminder choice and the ‘roulette
wheel’ (RW) (Kowalczuk and Białaszewski, 2004a).

Procedure 4.2. Evolutionary selection
Assign the expected number of copies

e(xi) = Nρ(xi)

/
N∑

i=1

ρ(xi), i = 1, 2, . . . , N

Copy Nint =
n∑

i=1

�e(xi)� individuals

Define the number of vacancies Ñ = N −Nint

Assign the distribution functions

q(xi) =
i∑

j=1

{ e(xj)− �e(xj)� }

Perform Ñ turnings of the RW by:
– generating a random number r ∈ [0, 1]
– selecting such an individual xi that

r ≤ q(xi)
q(xn)

– copying xi to the parental pool
end (of selection)

4.1. No Niching

Within the first approach, genetic optimization was car-
ried out without niching (WN). Figure 5(a) presents a his-
togram of the individuals in particular ranks and in con-
secutive generations, where a large number (about 60%)
of non-dominated individuals can be seen in each genera-
tion (starting from the 50-th generation). Figure 5(b) de-
picts the best fitness obtained in running generations, pre-
cisely speaking: the vertices (dots) of the graph represent
the vector-valued fitness of the Pareto optimal solutions.
Figure 5(c) shows the range set of the fitness function ob-
tained by scanning the whole domain (all possible solu-
tions). Within this area, the final Pareto optimal individu-
als are represented by the dots, while the crosses mark the
remaining dominated solutions.
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Fig. 5. Results for no niching: the running histogram of the number of individuals in ranks and in generations for the WN
evolution (a), the fitness of P-optimal solutions in GA (WN) runs (b), the available fitness area (co-domain) with the
fitness of the P-optimal (•) and dominated (×) solutions (WN) (c), the obtained fitness φ1 and φ2 in the searched
space found without niching (WN) (d).
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Fig. 6. Results for the niching of the fitness: fitness of P-optimal solutions in GA-NF runs (a),
NF solutions in the objective space (b), NF solutions in the searched space (c).

Figure 5(d) illustrates the fitness functions pro-
jected on the two-dimensional search space with the
non-dominated (dots) and dominated (crosses) individu-
als marked. As is shown in Figs. 5(b)–(d), the genetic
algorithm without niching swiftly tends to sub-Pareto op-
timal solutions only. In effect, the population is not di-
verse enough (Fig. 5(d)), and the GA easily overlooks the
solutions which belong to a possibly highest Pareto front
(Fig. 5(c)).

4.2. Niching

The GA with the niching of the fitness (NF shown in
Figs. 6(a)–(c)) and the ranks (NR in Figs. 7(a)–(c)) of in-
dividuals has finished the search with only sub-Pareto op-
timal solutions, though with better diversity.

In contrast to the above, with the mechanism of nich-
ing the ranks (NRP given in Figs. 8(a)–(d)) and the fitness

(NFP shown in Figs. 9(a)–(d)) performed with respect to
the members of the parental pool, the genetic algorithm is
able to find those solutions which are totally Pareto opti-
mal, i.e., belong to the highest available Pareto front. At
the same time, the two NFP and NRP methods effectively
sustain the diversity of evolving populations.

Table 2 contains a brief summary of the results ob-
tained for niching applied using different diameters of
niches. It can be seen that reasonably small radii of
species niches leads to great diversity in the population
and a high number of Pareto optimal solutions, without
increasing the complexity of the algorithm.

5. Synthesis of State Observers

The systems of Fault Detection and Isolation (FDI) are
used for practical diagnostic purposes. Such systems are
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Fig. 7. Results for the niching of the ranks: the fitness of P-optimal solutions in GA-NR runs (a), NR solutions in the
co-domain of objectives (b), NR solutions in the space of the sought parameters shown against objectives (c).

built on two principal operations. The first one consists
in detecting the occurrence of a fault, and the second one

tends to isolate a particular defect from others. The main
task of FDI systems is to ensure an expected operation
of engineering assemblages used for signal measurement,
system monitoring and control. This is of importance in
systems of high safety (Chen et al., 1996; Korbicz et al.,
2004; Kowalczuk and Białaszewski, 2004a; Patton et al.,
1989). Sometimes even a small system error can have
a serious effect on system performance. Therefore, FDI
should be done as early as possible, so as to allow the su-
pervising operator to take appropriate steps.

The idea of FDI consists in comparing measurements
of the plant with signals predicted based on the object’s
model. Differences between the corresponding signals,
called residues or residuals, allow identifying the existing

faults of the system. Those differences are, in general, in-
fluenced by disturbances, noise and modeling errors. Fault
detection is achieved by filtering these residues, and diag-
nostic decisions are made on the basis of their appropriate
evaluation. The scheme of a diagnosis system founded on
a state observer and an additional filter, referred to as a
residue generator, is illustrated in Fig. 10.

Let us consider the following model:

ẋ(t) = Ax(t)+Bu(t)+Nd(t)+F1f(t)+w(t), (17)

y(t) = Cx(t) + Du(t) + F2f(t) + v(t), (18)

where x(t) ∈ R
n denotes a state vector, u(t) ∈ R

p is
a control vector, y(t) ∈ R

m stands for a measurement
vector, f(t) ∈ R

q models a fault vector, d(t) ∈ R
n is a

state disturbance vector, while the signals w(t) ∈ R
n and
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Fig. 8. NFP results: running histograms of the number of solutions in ranks and generations for the NFP type
of niching (a), the fitness of P-optimal solutions in GA-NFP runs (b), NFP solutions with respect to the
available fitness (c), NFP solutions in the searched space in terms of the two objectives (d).
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Fig. 9. NRP solutions: running histograms of the number of solutions in ranks and generations for the NRP
niching (a), the fitness of Pareto solutions in GA-NRP runs (b), NRP solutions in the space of the
optimized fitness (c), NRP solutions in the searched space in terms of objectives (d).
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Table 2. Optimality of solutions, diversity of population, and
degree of rank warping (or uniform breeding).

2φk NF NR NFP NRP

1 optimal
solution

2 optimal
solutions

2 optimal
solutions

4 optimal
solutions

10−1 small
diversity

small
diversity

great
diversity

greatest
diversity

moderate
warping

strong
warping

uniform
breeding

very strong
warping

3 optimal
solutions

2 optimal
solutions

1 optimal
solution

1 optimal
solution

2 great
diversity

great
diversity

small
diversity

small
diversity

moderate
warping

strong
warping

uniform
breeding

very strong
warping

3 sub-optimal
solutions

2 sub-optimal
solutions

2 optimal
solutions

2 optimal
solutions

10 small
diversity

small
diversity

great
diversity

great
diversity

reverse
warping

very strong
warping

reverse
warping

very strong
warping

 

Fig. 10. Scheme of observer-based FDI systems.

v(t) ∈ R
m have a noisy character. The matrices of the

model (17)–(18) have suitable dimensions: A ∈ R
n×n,

B ∈ R
n×p, C ∈ R

m×n, D ∈ R
m×p, F1 ∈ R

n×q and
F2 ∈ R

m×q . We assume that the pair (A, C) is com-
pletely observable, and that the fault f(t) is represented
by an unknown vector time function while the influence
of this fault on the state evolution of the system consid-
ered and on the measurement signals is conditioned by
the choice of F1 and F2, respectively.

The state observer can be described by the following
equations (Brogan, 1991; Chen et al., 1996; Kowalczuk
and Suchomski, 2004a; 2004b; Suchomski and Kowal-
czuk, 2004):

˙̂x(t) = (A−KC)x̂(t)+(B−KD)u(t)+Ky(t), (19)

ŷ(t) = Cx̂(t) + Du(t), (20)

where x̂(t) ∈ R
n is a state-vector estimation, ŷ(t) ∈

R
m constitutes an estimated system output, while K ∈

R
n×m stands for a matrix observer gain.

The residual signal r(t) ∈ R
r can be obtained from

the following residual equation:

r(t) = Q
(
y(t)− ŷ(t)

)
, (21)

where a matrix Q ∈ R
r×m of weights serves as a tun-

ing design parameter. The residue generator described by
(19)–(21), used for detecting faults in the plant modeled
by (17), (18), is presented in Fig. 11.

Fig. 11. Residual generator based on the state space model.

The evolution of the state estimation error

e(t) = x(t)− x̂(t), e(t) ∈ R
n, (22)

can be described by the following equation of an internal
form, conditioned by faults and disturbances:

ė(t) = (A−KC)e(t) + (F1 −KF2)f(t)

+ Nd(t) + w(t)−Kv(t). (23)

For an asymptotically stable homogeneous error
equation, all eigenvalues of A−KC must have negative
real parts. It can be easily shown (Brogan, 1991; Chen
et al., 1996; Kowalczuk and Suchomski, 2004a) that the
residual vector r(t) of (21) can be interpreted as the ob-
servation of the state estimation error e(t) in the presence
of the perturbing signals f(t) and v(t), which can be ex-
pressed as

r(t) = QCe(t) + QF2f(t) + Qv(t). (24)

The solution of (23) can be shown in the s-domain:

E(s) =
[
sIn−(A−KC)

]−1{(F1−KF2)F (s)

+ ND(s)+W (s)+KV (s)+e(0)
}
, (25)

where F (s), D(s), W (s) and V (s) are Laplace trans-
forms of the corresponding signals, while e(0) denotes
an initial value of the state estimation error. The residue
has the following Laplace form (Brogan, 1991; Chen et
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al., 1996; Kowalczuk et al., 1999a; Kowalczuk and Bi-
ałaszewski, 2004a; Kowalczuk and Suchomski, 2004a;
2004b; Suchomski and Kowalczuk, 2004):

R(s) = Grf (s) F (s)+Grd(s) D(s)+Grw(s)W (s)

+ Grv(s)V (s)+Gre(s)e(0), (26)

where the matrix transfer functions are as follows:

Grf (s) = Q
{
C

[
sIn − (A−KC)

]−1

× (F1 −KF2) + F2

}
, (27)

Grd(s) = QC
[
sIn − (A−KC)

]−1
N , (28)

Grw(s) = QC
[
sIn−(A−KC)

]−1
, (29)

Grv (s) = Q
{
Im−C

[
sIn−(A−KC)

]−1
K

}
, (30)

Gre(s) = QC
[
sIn−(A−KC)

]−1 = Grw (s). (31)

The above transfer functions give a description of the ef-
fect of critical factors of faults, initial conditions, external
disturbances, and modeling uncertainty.

The matrices K and Q form the parameterization
of the designed detector. It is thus necessary to choose the
entries of those matrices such that they will emphasize the
influence of F (s) on R(s) and, at the same time, restrict
the impact of the remaining factors on R(s).

To define such tasks of parametric optimization, let
us consider the following weighted partial-objective func-
tions in the whole frequency domain:

J1(K, Q) = ||W1(s) ·Grf (s)||∞, (32)

J2(K, Q) = ||W2(s) ·Grd(s)||∞, (33)

J3(K, Q) = ||W3(s) ·Grw(s)||∞, (34)

J4(K, Q) = ||W4(s) ·Grv(s)||∞, (35)

J5(K) = ||(A−KC)−1||s, (36)

J6(K) = ||(A−KC)−1K||s, (37)

with the following matrix norms:

||M(s)||∞ = sup
ω

σ̄
[
M(jω)

]
, (38)

||M ||s = σ̄ [M ] , (39)

where σ̄[·] is the maximum singular value of the matrix
argument of this operator.

The weighting matrix functions W1(s), W2(s),
W3(s) and W4(s), which represent the prior knowledge

about the spectral properties of the process, introduce ad-
ditional degrees of freedom of the detector design proce-
dure. Those matrices permit a spectral separation of the
effects of faults and noise. In order to maximize the influ-
ence of faults at low frequencies and minimize the noise
effect at high frequencies, the matrix function W1(s)
should have a low-pass property. The weighting function
W2(s) should have the same properties, while the spec-
tral effect of W3(s) and W4(s) should be opposite to
that of W1(s).

Once we have fixed the weighting matrices W1(s),
W2(s), W3(s) and W4(s), the synthesis of the detection
filter reduces to the issue of the multi-objective optimiza-
tion of the pair (K, Q) ∈ R

n×m × R
r×m with regard to

the goal expressed by

opt
(K,Q)

J(K, Q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

max
(K,Q)

J1(K, Q)

min
(K,Q)

J2(K, Q)

min
(K,Q)

J3(K, Q)

min
(K,Q)

J4(K,Q)

min
K

J5(K)

min
K

J6(K)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (40)

With stable spectr[A−KC] ⊂ ℘−, a set of com-
plex values with a negative real part, the inverse matrix
[A−KC]−1 exists. The profit index J1(K, Q) con-
stitutes the main maximized criterion (implying a similar
positive effect on lower bounds on the minimum singular
values), while the cost functions J2(K, Q), J3(K, Q)
and J4(K, Q) account for the model disturbance and
noise effects. The costs J5(K) and J6(K), describing
the influence of static deviations from the nominal model
of the plant, represent explicit robustness measures.

The selection of the observer gain K can be per-
formed in several ways. The method of the eigenstructure
assignment of the observation system matrix (A−KC)
or a method based on the Kalman-Bucy filtering can be
applied, for instance (in the latter case, the knowledge of
covariance characteristics of noise perturbations in the an-
alyzed model is necessary). Here we follow the first ap-
proach (Chen et al., 1996), in which a whole spectrum
(eigenvalues λi) of the observation system (A−KC) is
placed in the required region while assuring the necessary
robustness of this placement to the deviations (ΔA, ΔC)
from the nominal plant model.

It is important to emphasize that in an ‘original’ FDI
design problem the issue of structural synthesis is not
complete – in this sense that only a part of design free-
dom within the matrix K is utilized during the design.
Therefore, the spectral synthesis of the matrix (A−KC)
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should consider an additional task of robust stabiliza-
tion of the observer by considering a suitably parame-
terized family of pairs {(A + ΔA, C + ΔC)} that map
the uncertainty of modeling (Kowalczuk and Suchomski,
2004b).

Chen et al. (1996) utilized the method of sequen-
tial inequalities (Zakian and Al-Naib, 1973) in a GA op-
timization procedure. In their approach, cost indices are
expressed in the frequency domain and transformed into
a set of inequality constraints, which are tested for a fi-
nite set of frequencies. Thus the authors applied a GA to
search for optimal solutions satisfying all inequality con-
straints. To get a suitable parameterization of the gain K ,
Chen et al. (1996) employed the eigenstructure assign-
ment method.

In our approach the analyzed multi-objective opti-
mization problem is solved by a method that incorpo-
rates both the Pareto optimality and the genetic search
in the whole frequency domain. In particular, the de-
sign of residue generators is based on the optimization of
the objectives J(K, Q) of (40), whose coordinates are
partial objectives: the profit function J1(K, Q) and the
cost functions Ji(K, Q), i = 2, 3, 4, 5, 6. The ranking
method derived from the P-optimality is employed to as-
sess the P-optimal solutions of this task generated by the
genetic algorithm operating on multi-allele codes.

To assure that genetic optimization yields exclusively
permissible solutions: spectr [A−KC] ⊂ ℘, we di-
rectly search only for eigenvalues (and not for the ob-
server gain K itself), on the basis of which the observer
gain matrix is calculated by means of the pole placement
method (Kowalczuk et al., 1999a; Kowalczuk and Bi-
ałaszewski, 2004a).

The problem of multi-objective optimization is thus
reduced to the following task:

opt
(K,Q)

J(K, Q) = opt
K

J(K) = opt
λ

J
(
K(λ)

)
, (41)

where λ ⊂ ℘N is the sought n-element vector of the
eigenvalues of the matrix (A−KC).

5.1. Ship Propulsion System

The ship propulsion system of a low-speed marine vehicle
(Izadi and Blanke, 1998; Kowalczuk and Białaszewski,
2000a; 2003) that consists of one engine and one propeller
is taken as a practical object of our study. This system is
the basic mechanism of ship maneuvering (acceleration
and braking). A failure of the propulsion unit may cause a
dangerous event, like a collision with another ship, drift-
ing to shallows, or financial or environmental losses. Such
circumstances imply the necessity of monitoring the sys-
tem and taking appropriate steps in the case of operational
faults.

In such systems, apart from fault detection, it is nec-
essary to accomplish the isolation of faults. In particular,
fault isolation can refer to a shaft speed sensor or the diesel
engine itself. Each of the faults requires different steps to
be taken.

A linearized continuous-time model of the ship
propulsion system is shown in Fig. 12, where five blocks
are distinguished: (a) the propeller-pitch control system,
(b) the diesel engine, (c) the shaft, (d) the propeller and
ship dynamics, and (e) the PI controller. The description
of system parameters is given in Table 3.

The system can be described in the continuous-time
domain by the state-space model (17)–(18) with the fol-
lowing matrices:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−kt 0 0 0
bθ

M

bn

M

bν

M

1
M

aθ

m

an

m

aν

m
0

0 0 0 − 1
τC

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎣

kt 0
0 0
0 0

0
ky

τC

⎤
⎥⎥⎥⎥⎥⎦,

C =

⎡
⎢⎣ 1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎥⎦ , N =

⎡
⎢⎢⎢⎢⎢⎣

0 0

− 1
M

0

0 − 1
m

0 0

⎤
⎥⎥⎥⎥⎥⎦,

F1 =

⎡
⎢⎢⎢⎣
−kt 1 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎦ , F2 =

⎡
⎢⎣ 1 0 0

0 0 1
0 0 0

⎤
⎥⎦ ,

and the following vector signals:

x=

⎡
⎢⎢⎢⎣

θ

n

v

Qeng

⎤
⎥⎥⎥⎦ , u=

[
θref

Y

]
, d=

[
Qf

Text

]
, f =

⎡
⎢⎣ Δθ

Δθ̇

Δn

⎤
⎥⎦ ,

 
Fig. 12. Linearized model of the ship propulsion system.
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y=

⎡
⎢⎣ θm

nm

vm

⎤
⎥⎦ , ω̃=

⎡
⎢⎢⎢⎣
−ktωθ

0
0
0

⎤
⎥⎥⎥⎦ , ω=

⎡
⎢⎣ ωθ

ωn

ωv

⎤
⎥⎦ ,

where x is the state vector, u denotes the control vec-
tor, f stands for an additive fault vector, d denotes an
unknown disturbance vector, y is the measurement vec-
tor, while the signals w and v have noisy characteristics.
The descriptions of θ, n, ν, Qeng and other elements of
model vectors and matrices are given in Table 3.

Table 3. Parameters of the diagnosed ship propulsion system.

Symbol Description

θ, θm Propeller pitch angle and its measurement

θref Set-point for the propeller pitch angle

δθ Pitch-angle measurement fault

δθ̇ Leakage

ν, νm Ship speed and its measurement

n, nm Shaft speed and its measurement

δn Angular-velocity measurement fault

Y Fuel index (level)

Qf Friction torque

Qeng Torque developed by the diesel engine

Text
External force representing

the influence of wind and waves

νθ, νn, νν Measurement noises for θ, n, ν

M Shaft inertia

m Ship weight

KT Pitch-angle control gain

ky Engine gain

τc Engine time-constant

aθ, an, av

bθ, bn, bv

Parameters of the steady state

The faults in the examined object are associated with
the sensor of the pitch angle of the propeller, the sensor
of the angular velocity of the shaft, and the diesel engine
itself (Izadi and Blanke, 1998).

The sensor of the pitch angle θ of the propeller can
indicate a fault in two cases, i.e., when:

(a) generating too low a signal (a negative deviation
Δθlow) due to a broken wire or shaft stack,

(b) generating too high a signal (with a positive deviation
Δθhigh) due to a broken wire or shaft stack.

Another fault is a hydraulic leakage, which can bring
about a slow change of the propeller pitch angle ( Δ θ̇).

The tachometer can generate the following faults:

(a) generating a maximum signal value (Δnmax) due to
an electromagnetic disturbance,

(b) generating a minimum signal value (Δnmin) due to a
signal fade-out in the converter.

The appearance of the above faults can have seri-
ous consequences. The fault Δθhigh can decrease the
ship velocity, which brings about the risk of maneuvering,
and extra operational costs. The failure Δθ low increases
the ship velocity and the danger of a collision. The fault
Δnmax can impel a decrease in the ship velocity, which
results in delayed ship operation and increased operational
costs. The fault Δnmin gives rise to unplanned accelera-
tion, threatening with a collision.

5.2. Results of Evolutionary Explorations

The vector of the sought real eigenvalues of the matrix
(A−KC), for i = 1, 2, . . . , N , is expressed as

λ(vi) = vi =
[

v1i v2i v3i v4i

]T

∈ R
4,

where vki is the k-th coordinate of the parameter vec-
tor vi, which stands for the i-th individual. The searched
ranges of the optimized parameters vk were set as v1,2i

∈
[−30, −0.5] and v3,4i

∈ [−100, −31], respectively. For
simplicity of implementation and interpretation, at this
stage of the study we have applied the evolutionary ap-
proach founded on floating-point computer implementa-
tion of numbers. As has been done before, the 10% elitism
strategy was employed in the EC algorithm in order to sus-
tain effective solutions.

The weighting functions have been taken as:

W1(s) = diag
{

1
(0.01s + 1)(0.05s + 1)

}
,

W2(s) = diag {1} ,

W3,4(s) = diag
{

(0.01s + 1)(0.05s + 1)
(0.001s + 1)2(0.00001s + 1)2

}
,

which allows separating the influence of the faults and the
noises. In order to maximize the fault effects at low fre-
quencies and to minimize the noise results in the high fre-
quency range, the matrices W1(s) have been set as low-
pass filters and the functions W3(s) and W4(s) com-
posed as suitable high-pass filters.
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Fig. 13. Highest global optimality level (GOL) obtained
by ECs with continuous niching.

In the process of evolutionary searching, the four
niching methods, NF, NR, NFP and NRP, as well as the
algorithm without niching (WN) were considered.

Computations were carried out on the assumption
that the ranges of the sought parameters are divided into
three parts (ε = 3). With similar values of the other EC
parameters, the four-point crossover mechanism was im-
plemented with the probability 0.8. The initial population
was placed in a constrained region of the searched space.

Figure 13 portrays some results of optimization per-
formed with the use of the continuous niching mechanism,
and, in particular, the evolution of the highest global op-
timality levels characterizing EC products in consecutive
generations.

The effectiveness of the solutions obtained in the
case of EC-optimization using the niching mechanisms
only periodically switched on is characterized in Fig. 14.
The switching took place every 30-th generation for 10 EC
cycles as illustrated by the gray stripes in the graphs,
which represent the trajectories of the highest global opti-
mality level.

As can be seen from Figs. 13 and 14, the niching
applied to the fitness of the members of both the whole
population and the parental pool solely (denoted as NF
and NFP, respectively) achieve superior outcomes in terms
of the highest global optimality levels amongst the solu-
tions. The approaches consisting in niching the individ-
uals’ ranks (NR and NRP) lead to weaker convergence,
which can be attributed to an undue perturbation of the
optimal selections.

Moreover, as results from Figs. 13 and 14, the appli-
cation of the periodic niching mechanism to the evolution-
ary search does not influence significantly the achieved
highest global optimality level. At the same time, it is
clear that the periodic niching mechanism is less time con-
suming. It is also obvious that very soon, even in the initial
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Fig. 14. Best global optimality level with periodic niching.

generations, the classical EC mechanism without niching
(WN) can bring about fast convergence to sub-optimal so-
lutions.

5.3. Statistical Results of the Genetic Search

In order to obtain a clear distinction between the results
of different niching approaches, another comprehensive
statistical investigation considering genetic algorithms has
been undertaken. This time, plain GAs without the elitism
strategy were implemented with the use of a binary 113-
bits genotype of the sought four real eigenvalues (individ-
ually represented on 27, 29, 27, and 30 bits, respectively),
which set a common accuracy limit to 1e− 7.

The searched ranges of the optimized parameters
were set as v1I ∈ [−10 −0.02], V2i ∈ [−100 −53],
V3i ∈ [−10 −0.2], V4i ∈ [−100 −12], respectively. All
optimization runs started with the same initial population.

Figure 15 shows mean run-time results of GA opti-
mization performed twelve times with continuous nich-
ing. Figure 15(a) portrays the evolution of the mean high-
est global optimality levels of the individuals obtained in
consecutive GA generations, whereas the mean value of
GOLs computed from averaged GOLs of all the Pareto
optimal solutions within each niching version of the GA
at a running step is presented in Fig. 15(b).

The same series of experiments were performed for
GAs using periodic niching, and the corresponding results
are shown in Fig. 16.

Figures 15 and 16 approve the previously posed sup-
position that fitness-related niching (NF and NFP) leads
to superior outcomes in terms of global optimality. Espe-
cially, the improvement is manifested by the plot of the
average Pareto optimal GOL. Quite surprisingly, the pe-
riodic mechanism of bringing the niching into play gives
the clearest substantiation of the sense of niching. As can
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(a)

(b)

Fig. 15. Mean GOL optimality (for 12 GA runs
with continuous niching): (a) highest and
(b) average P-optimal values.

be observed in Fig. 16(b), each period of improving op-
timality (coinciding with niching) is followed by a period
of loosing it apparently (being a consequence of switching
off both the elitism and the niching).

Another way of looking into the problems of the
Pareto optimality and diversity is presented in Fig. 17,
where a plot of the number of Pareto fronts in GA gen-
erations computed as a mean value from the twelve EMO
computation runs for each method. Note that the diversifi-
cation of solutions with respect to the (Pareto) optimality,
measured by the number of P-fronts, allows discriminat-
ing a smaller set of winners, which is usually a cumber-
some issue in the case of high dimensioning of objective
spaces (Kowalczuk and Białaszewski, 2001; 2002; 2003).

An exemplary set of the eigenvalues of the diagnostic
observer obtained by the genetic algorithm using continu-
ous niching of fitness functions (NF) as well as its corre-

(a)

(b)

Fig. 16. Mean GOL optimality (for 12 GA runs with
periodic niching): (a) highest and (b) average
P-optimal values.

Fig. 17. Mean number of Pareto fronts in GA generations.

sponding Pareto optimal index (40) are as follows:

λNF =
[− 9.0904 − 87.0807 − 0.4784 − 41.9664

]
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JNF =
[
1.4804e + 2 2.3243e− 6 5.8108e− 1

1.0015e + 0 1.0755e + 9 8.4750e + 7
]
.

Quite an instructive and practical analysis of the ob-
tained results is offered by Fig. 18, which illustrates the
final effect of optimization gained in terms of the searched
six-dimensional space. Specifically, each profile repre-
sents a set of mean normalized values of the partial-
objective functions acquired by each niching variant (us-
ing the continuous and periodic timing) of optimizing GA
algorithms run twelve times. In other words, consecutive
abscissa points correspond to the co-ordinates (32)–(37)
of the optimized vector (40) normalized for the purpose
of scaling the results (by using the following set of scal-
ing coefficients: [620 1e-4 10 10 1e+10 1e+9]). Note that
the first objective has been maximized, while the others
have been minimized.

(a)

(b)

Fig. 18. Mean normalized Pareto optimal values of
objectives (i) gained in GAs with: (a) con-
tinuous; (b) periodic niching.

5.4. Simulated Verification of Optimization
Results

Validating simulations of the analyzed diagnostic system
were performed with the observer characterized by the ob-
tained solutions of the five GA algorithms. A sequence of
additive faults (Izadi and Blanke, 1998; Kowalczuk and
Białaszewski, 2004a) in simplified forms is depicted in
Fig. 19.

Fig. 19. Additive faults to be detected.

 
Fig. 20. External disturbances to the process.

The disturbances representing a friction torque and
an external force influencing the object are presented in
Fig. 20. The noisy signal ω(t), affecting the states and
measurements, was generated as a zero-mean Gaussian
white-noise process.

Each of the twelve solutions yielded by each nich-
ing GA variant were exercised, and the respective residual
signals were used to form a mean behavior of the fault
detection observer. These mean residuals rθ = θ − θ̂,
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(a) (b)

(c) (d)

(e)

Fig. 21. Residual signals for the observer obtained with the analyzed methods: WN (a); NF (b); NFP (c); NR (d); NRP (e).
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rn = n− n̂, and rv = v− v̂, obtained for particular nich-
ing methods, are plotted in Fig. 21. As can be seen from
these figures, practically all the faults of Fig. 19 give char-
acteristic symptoms in at least one of the residues. Never-
theless, the solution achieved by the standard GA without
niching (WN) appears to be most inferior in terms of the
discussed FDI system design.

The residuals demonstrate changes analogous to the
generic fault signal applied. It is thus apparent that with
the use of appropriate optimal filtration, the symptoms in-
formation included in the residuals makes it possible to
detect and isolate all the faults.

6. Conclusions

The evolutionary computation (GA/EC) approach proves
to be an effective method of solving multi-objective opti-
mization problems, which can be successfully used in the
synthesis of engineering systems. It is important that this
approach, permitting a global multi-objective search in
multi-dimensional spaces for Pareto optimal solutions, is
immune to the possible discontinuity or multi-modality of
partial objective functions. At the same time, the multiple
solutions yielded by the Pareto optimal approach, which is
generally criticized for its non-uniqueness, find their full
application in the process of ranking and selecting the in-
dividuals to parental pools at the end of each evolutionary
cycle.

For the purpose of making the final evaluation of the
obtained outcomes, the solutions can be ordered with the
use of a global optimality index, which gives a scalar mea-
sure of each solution relative to the attainable maximum
values of all the partial quality indices.

The classical GA/EC mechanism without niching
(WN) can bring about fast (often premature) convergence
to sub-optimal solutions in the initial generations. There-
fore the ranking procedure, supporting the Pareto optimal
selection of the best solutions, has been enriched with a
niching mechanism, which – as has been shown – can
be implemented in various ways taking into account both
the objects (the fitness, the rank, the population, the par-
ents) and the timing type (continuous, periodic) of nich-
ing. It facilitates more effective exploration of the para-
meter space, prevents genetic algorithms from their pre-
mature convergence, and takes care of solution diversity.

Note that the results of a suitably implemented mech-
anism of niching also have a simple robustness interpreta-
tion, connected with the preservation of niches of densely
populated species, despite following the evolutionary pol-
icy of ‘uniform breeding’.

As compared to the fitness-based niching, the niching
of ranks can be characterized as a ‘stronger’ mechanism.
This effect directly results from the change of both the

ranks and the domination structure. At the same time, the
niching of fitness constitutes solely a source of an indirect
modification of the ranks, and changing the fitness vector
need not alter its level of domination.

With the niching of the ranks (NRP) and fitness
(NFP) of the parental pool, the genetic algorithm is able
to find those solutions which are totally Pareto optimal.
This effect can be related to the fact that the diversity of
evolving generations can then be effectively sustained.

In general, however, niching applied to the fitness
of the members of the whole population and the parental
pool (NF and NFP) leads to superior results in terms of
the global optimality level while, depending on the para-
meters applied, the niching of the individuals’ ranks (NR
and NRP) can lead to weaker convergence to P-optimal
solutions, as an effect of undue perturbations in genetic
selection.

Clearly, these effects are weakened when using the
time-saving periodic niching mechanism in the genetic
search. Nevertheless, it may be enough to temporarily in-
voke such fitness-related niching in order to influence the
ability of the GA to achieve higher global optimality.

If the criteria considered are not complex enough, the
niching mechanism can easily appear ineffective.

A completely different approach (GGA) to multi-
objective optimization problems was considered in
(Kowalczuk and Białaszewski, 2001; 2002; 2003).
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