
Int. J. Appl. Math. Comput. Sci., 2006, Vol. 16, No. 1, 101–113

COMPARISON OF SUPERVISED LEARNING METHODS FOR SPIKE TIME
CODING IN SPIKING NEURAL NETWORKS

ANDRZEJ KASIŃSKI, FILIP PONULAK

Institute of Control and Information Engineering, Poznań University of Technology
ul. Piotrowo 3a, 60–965 Poznań, Poland

e-mail: {Andrzej.Kasinski,Filip.Ponulak}@put.poznan.pl

In this review we focus our attention on supervised learning methods for spike time coding in Spiking Neural Networks
(SNNs). This study is motivated by recent experimental results regarding information coding in biological neural systems,
which suggest that precise timing of individual spikes may be essential for efficient computation in the brain. We are
concerned with the fundamental question: What paradigms of neural temporal coding can be implemented with the recent
learning methods? In order to answer this question, we discuss various approaches to the learning task considered. We
shortly describe the particular learning algorithms and report the results of experiments. Finally, we discuss the properties,
assumptions and limitations of each method. We complete this review with a comprehensive list of pointers to the literature.

Keywords: supervised learning, spiking neural networks, time coding, temporal sequences of spikes

1. Introduction

For many years a common belief was that essential infor-
mation in neurons is encoded in their firing rates. How-
ever, recent neurophysiological results suggest that ef-
ficient processing of information in neural systems can
be founded also on precise timing of action potentials
(spikes) (Bohte, 2004; VanRullen et al., 2005; Thorpe
et al., 2001). In the barn owl auditory system, neu-
rons detecting coincidence receive volleys of precisely
timed spikes from both ears (Gabbiani and Midtgaard,
2001; Gerstner and Kistler, 2002a). Under the influence
of a common oscillatory drive in the rat hippocampus,
the strength of a constant stimulus is coded in relative
timing of neuronal action potentials (Mehta et al., 2002).
In humans, precise timing of first spikes in tactile affer-
ents encodes touch signals at finger tips (Thorpe et al.,
2001). Time codes have also been suggested for rapid vi-
sual processing (Thorpe et al., 2001).

A precise temporal coding paradigm is required in
some artificial control systems. Examples are neuropros-
thetic systems which aim at producing functionally use-
ful movements of paralysed limbs by exciting muscles
or nerves with the sequences of short electrical impulses
(Popović and Sinkjaer, 2000). Precise relative timing of
impulses is critical for generating desired, smooth move-
ment trajectories.

In addition to the above examples, it has been the-
oretically demonstrated that the temporal neural code is
very efficient whenever fast information processing is re-

quired (Maass, 2002). All these arguments provide strong
motivation for investigating computational properties of
systems that compute with precisely timed spikes.

It is generally recognized that artificial Spiking
Neural Networks (SNNs) (Gerstner and Kistler, 2002a;
Maass, 1997; Maass and Bishop, 1999) are capable of ex-
ploiting time as a resource for coding and computation
in a much more sophisticated manner than typical neural
computational models (Maass, 1998; 2003). SNNs ap-
pear to be an interesting tool for investigating temporal
neural coding and for exploiting its computational po-
tential. Although significant progress has already been
made to recognize information codes that can be ben-
eficial for computation in SNNs (Gerstner and Kistler,
2002a; Maass, 1999; 2003; Maass and Bishop, 1999), it is
still an open problem to determine efficient neural learn-
ing mechanisms that facilitate the implementation of these
particular time coding schemes.

Unsupervised spike-based processes, such as Long
Term Potentiation (LTP), Long Term Depression (LTD)
and Spike-Timing Dependent Plasticity (STDP), have al-
ready been widely investigated and described in the lit-
erature (Bi, 2002; Bonhoeffer et al., 1989; Gerstner and
Kistler, 2002b; Gerstner et al., 1996; Markram et al.,
1997; Kepecs et al., 2002; Kistler, 2002). However, the
unsupervised approach is not suitable for learning tasks
that require an explicit goal definition.

In this article we focus on supervised learning meth-
ods for precise spike timing in SNNs. The goal of our

A. Kasiński and F. Ponulak102

study is to determine what paradigms of neural informa-
tion coding can be implemented with recent approaches.

First, we present supervised learning methods for
spike timing, which are known from the literature. We
classify these methods into more general groups repre-
senting particular learning approaches and shortly de-
scribe each of the learning algorithms. Finally, we sum-
marize the main facts about the approaches and discuss
their properties.

2. Review of Learning Methods

In this section we present some representative methods
for supervised learning in SNNs. For all these methods
the common goal of learning can be stated as follows:
Given a sequence of the input spike trains S in(t) and a
sequence of the target output spikes S d(t), find a vector
of the synaptic weights w, such that the outputs of the
learning neurons Sout(t) are close to Sd(t).

2.1. Methods Based on Gradient Evaluation

Learning in the traditional, artificial neural networks
(ANNs) is usually performed by gradient ascent/descent
techniques (Hertz et al., 1991). However, explicit eval-
uation of the gradient in SNNs is infeasible due to the
discontinuous-in-time nature of spiking neurons. Indirect
approaches or special simplifications must be assumed to
deal with this problem.

In (Bohte et al., 2000; 2002), the authors presented
one of such approaches. Their method, called SpikeProp,
is analogous to the backpropagation algorithm (Rumelhart
et al., 1986) known from the traditional artificial neural
networks.

The target of SpikeProp is to learn a set of the de-
sired firing times, denoted by td

j , at the postsynaptic neu-
rons j ∈ J for a given set of the input patterns S in(t).
However, it is assumed that each neuron in a simulated
network is allowed to fire only once during a single sim-
ulation cycle and the time course of the neuron’s mem-
brane potential after the firing is not considered. Thus the
problem of the discontinuity of the membrane potential at
the firing time is avoided here. On the other hand, this
assumption limits the class of neural information coding
schemes implementable in the SpikeProp method.

The SpikeProp algorithm has been derived for the
neurons modeled by the Spike Response Model (SRM)
(Gerstner and Kistler, 2002a). In this model, the mem-
brane potential of the neuron j can be described by

Vj(t) =
∑
i∈Γj

∑
k

wk
ij ε

(
t − tout

i − dk
ij

)
. (1)

Equation (1) holds for the region where membrane
potential changes are mostly determined by postsynaptic
potentials ε(t). The set Γj represents all pre-synaptic
neurons of neuron j. The term wk

ij is the weight of the
synaptic terminal k of the connection between the neu-
rons i and j. It is assumed that ε(t) = t/τ exp(1− t/τ),
with some time constant τ . The parameter tout

i is the
firing time of the neuron i, and dk

ij is the delay of the
synaptic terminal.

The learning method is based on explicit evaluation
of the gradient of E = 1/2

∑
j(t

out
j − tdj)

2 with respect
to the weights of each synaptic input to j:

∂E

∂wk
ij

=
∂E

∂tj

(
tout
j

) ∂tj

∂wk
ij

(
tout
j

)

=
∂E

∂tj

(
tout
j

) ∂tj
∂Vj

(
tout
j

) ∂Vj

∂wk
ij

(
tout
j

)
. (2)

In the factors on the right, tj is expressed as a func-
tion of the membrane potential Vj(t) around t = tout

j . In
order to simplify the gradient evaluation, it is assumed that
for a small region around t = tout

j the function V m
j (t) is

linearly approximated. Hence, the local derivative of t j

with respect to V m
j (t) is constant. Error-backpropagation

equations derived for a fully connected feedforward net-
work with hidden layers are as follows:

∂E

∂wk
ij

= yk
ij(t) δj, (3)

where δj for neurons in the output layer equals

δj =
− (

tout
j − tdj

)
∑

i∈Γj

∑
k

wk
ij

∂yk
ij(t)

∂t

. (4)

For hidden neurons, we have

δj =

∑
i∈Γj

δi

∑
k

wk
ij

∂yk
ij(t)

∂t

∑
i∈Γj

∑
k

wk
ij

∂yk
ij(t)

∂t

. (5)

In (4) and (5), the set Γj represents again all the di-
rect pre-synaptic neurons of the neuron j, while the set
Γj represents all the direct successors of the neuron j.

Finally, the weights are modified according to

Δwk
ij = −η

∂E

∂wk
ij

= −η yk
ij(t) δj , (6)

with η defining the learning rate. The error is thus mini-
mized by changing the weights according to the negative
local gradient.

Comparison of supervised learning methods for spike time coding in spiking neural networks 103

The presented SpikeProp algorithm was re-
investigated in (Moore, 2002; Schrauwen and Van Camp-
enhout, 2004; Tiňo and Mills, 2005; Xin and Embrechts,
2001). It was found that weight initialization is a crit-
ical factor for good performance of the learning rule.
In (Moore, 2002), the weights were initialized with
values that led the network to the successful training
in a similar number of iterations as in (Bohte et al.,
2000), but with large learning rates, although Bohte
argued that the approximation of the threshold function
implies that only small learning rates can be used (Bohte
et al., 2002). Other experiments (Moore, 2002) also
provided evidence proving that negative weights could
be allowed and still led to successful convergence,
which was in contradiction to Bohte’s conclusions. Xin
and Embrechts (2001) proposed a modification of the
learning algorithm by including the momentum term in
the weight update equation. It was demonstrated that this
modification significantly speeded up the convergence of
SpikeProp. In (Schrauwen and Van Campenhout, 2004),
the authors adapted the gradient descent method derived
in SpikeProp to adjust not only synaptic weights,
but also synaptic delays, time constants and neurons’
thresholds. This resulted in faster algorithm convergence
and in smaller network topologies required for the given
learning task. Finally, Tiňo and Mills (2005) extended
SpikeProp to recurrent network topologies, to account
for temporal dependencies in the input stream. Neither
the original SpikeProp method nor any of the proposed
modifications allow learning patterns composed of more
than one spike per neuron.

The properties of the SpikeProp method were
demonstrated in a set of classification experiments. These
included the standard and interpolated XOR problems
(Maass, 1999). The SpikeProp authors encoded the input
and output values by time delays, associating the analog
values with the corresponding “earlier” or “later” firing
times. In the interpolated XOR experiment, the network
could learn the presented input with an accuracy of the
order of the algorithm integration time step.

The classification abilities of SpikeProp were also
tested on a number of common benchmark datasets (the
Iris dataset, the Wisconsin breast cancer dataset and the
Statlog Landsat dataset). For these problems, the accuracy
of SNNs trained with SpikeProp was comparable to that of
a sigmoidal neural network. Moreover, in experiments on
real-world datasets, the SpikeProp algorithm always con-
verged, whereas the compared ANN algorithms, such as
the Levenberg-Marquardt algorithm, occasionally failed.

The main drawback of the SpikeProp method is that
there is no mechanism to “prop-up” synaptic weights once
the postsynaptic neuron no longer fires for any input pat-
tern. Moreover, in the SpikeProp approach only the first
spike produced by a neuron is relevant and the rest of the

time course of the neuron is ignored. Whenever a neu-
ron fires a single spike, it is not allowed to fire again. For
this reason the method is suitable to implement only the
‘time-to-first-spike’ coding scheme (Thorpe et al., 2001).

2.2. Statistical Methods

In (Pfister et al., 2003; 2005), the authors proposed to de-
rive a supervised spike-based learning algorithm starting
with statistical learning criteria. Their method is based
on the approach proposed by Barber. However, in (Bar-
ber, 2003), the author considered supervised learning for
neurons operating on a discrete time scale. Pfister et al.
extended this study to the continuous case.

The fundamental hypothesis in (Pfister et al., 2003;
2005) is to assume that the instantaneous firing rate of the
postsynaptic neuron j is determined by a point process
with the time-dependent stochastic intensity ρj(t) =
g(Vj(t)) that depends nonlinearly upon the membrane po-
tential Vj(t). The firing rate ρj(t) is known as the escape
rate (Gerstner and Kistler, 2002a).

The goal of the learning rule considered is to opti-
mise the weights wj in order to maximise the likelihood
of getting postsynaptic firing at the desired times, i.e. to
obtain Sout

j (t) = Sd
j (t), given the firing rate ρj(t). The

optimization is performed via the gradient ascent of the
likelihood Pj of the postsynaptic firing for one or several
desired firing times. The advantage of the discussed prob-
abilistic approach is that it allows us to describe explicitly
the likelihood Pj

(
Sout

j (t)|Sin
j (t)

)
of emitting Sout

j (t)
for a given input S in

j (t):

Pj

(
Sout

j (t)|Sin
j (t)

)
= exp

(∫ T

0

log
(
ρj

(
s|Sin

j (t), Sout
j (s)

))
Ŝout

j (s)

− ρj

(
s|Sin

j (t), Sout
j (s)

)
ds

)
, (7)

where Sout
j (t) denotes the set of postsynaptic spikes that

occurred before t and Ŝout
j (t) is the entire postsynaptic

spike train.

Since the likelihood Pj is a smooth function of its
parameters, it is straightforward to differentiate it with
respect to the synaptic efficacies wj . On the basis of
the evaluated derivative ∂ log(Pj)/∂wj and the standard
technique of gradient ascent, the authors derived a set of
rules for the modification of synaptic weights. The partic-
ular rules corresponded to the different scenarios of neu-
ron stimulation. The learning rules can be described by
a two-phase learning window similar to that of Spike-
Timing Dependent Plasticity (Kepecs et al., 2002; Kistler,
2002). The authors demonstrated that the shape of the

A. Kasiński and F. Ponulak104

learning window was strongly influenced by constraints
imposed by the different scenarios of the optimization
procedure.

In the approach considered, it is assumed that learn-
ing rules apply to all synaptic inputs of the learning neu-
ron and the postsynaptic neuron j receives an additional
‘teaching’ input I(t) that could either arise from a second
group of neurons or from the intracellular current injec-
tion. The role of I(t) is to increase the probability that
the neuron fires at or close to the desired firing time td

j . In
this context, the learning mechanism can also be viewed
as a probabilistic version of the spike-based supervised
Hebbian learning (described in Section 2.6).

In (Pfister et al., 2005), the authors present a set of
experiments which differ in the stimulation mode and the
specific tasks of the learning neuron. The learning algo-
rithm is applied to the spike response model with escape
noise as a generative model of the neuron (Gerstner and
Kistler, 2002a). The authors consider different scenarios
of the experiments:

• different sources of the ‘teaching’ signal (the signal
is given by a supervisor as a train of spikes or as a
strong current pulse of short duration);

• allowing (or not) other postsynaptic spikes to be gen-
erated spontaneously;

• implementing a temporal coding scheme where the
postsynaptic neuron responds to one of the presynap-
tic spike patterns with a desired output spike train
containing several spikes while staying inactive for
other presynaptic spike patterns.

The experiments demonstrate the ability of the learn-
ing method to precisely set the time of single firings at
the neuron output. However, since in all experiments a
desired postsynaptic spike train consisted of at most 2
spikes, it is hard to estimate a potential, practical suitabil-
ity of the proposed method to learn complex spike trains
consisting of dozens of spikes.

2.3. Linear Algebra Methods

Carnell and Richardson proposed to apply linear algebra
to the task of spike time learning (Carnell and Richard-
son, 2004). They begin with the formal introduction of the
time series S(t) =

∑N
i=1 s(ti) and the weighted time se-

ries wS(t) =
∑N

i=1 wis(ti), where s(ti) denotes a single
spike at the time ti and wi is the weight corresponding
to s(ti). The inner product of two weighted time series is
defined as〈∑

wis(ti),
∑

ωjs(τj)
〉

=
∑

wiωj exp
(− ‖ti − τj‖

)
. (8)

For the weighted time series wS(t), the metric
norm(wS(t))=

√〈wS(t),wS(t)〉 is introduced. Here the
norm (wS1(t) −wS2(t)) can be considered as a measure
of the difference between wS1(t) and wS2(t). wS1(t) is
orthogonal to wS2(t) if and only if 〈wS1(t),wS2(t)〉 =
0. The operation of projecting wS1(t) onto the di-
rection of wS2(t) is defined as ProjwS1(t)(

wS2(t)) =
(〈wS1(t),wS2(t)〉 / 〈wS1(t),wS1(t)〉)w

S1(t). The projec-
tion can be understood as the best approximation to
wS2(t) expressed as a multiple of wS1(t).

On the basis of these definitions, the authors formu-
late some algorithms for the approximation of the target
pattern Sd(t) given a set of the input patterns S in(t) and
a set of the adjustable synaptic weights w:

1. Gram-Schmidt solution: the Gram-Schmidt process
(Cohen, 1993; Weisstein, 2006) is used to find an or-
thogonal basis for the subspace spanned by a set of
the input time series S in(t). Having the orthogonal
basis, the best approximation in the subspace to any
given element of Sd(t) can be found.

2. Iterative solution: the projection of an error onto the
direction of the times series S in

i is determined, with
i randomly chosen in each iteration. The error is de-
fined as the difference between the target and the ac-
tual time series. The operation is evaluated until the
norm of the error is sufficiently small. The algo-
rithm is as follows:

(a) define E = Sd(t) − Sout(t),

(b) repeat the next steps until the norm(E) is
small,

(c) pick i at random,

(d) define Δwi = Proj Sin
i (t) (E),

(e) let wi := wi + Δwi,

(f) proceed with network simulation, read the re-
sulting Sout(t).

In a set of experiments the authors demonstrated that
the iterative algorithm is able to approximate the target
time series of spikes. The experiments were performed
with the Liquid State Machine (LSM) network archi-
tecture (cf. Fig. 1(b)) (Maass et al., 2002; Natschlaeger
et al., 2002) and the Leaky-Integrate-and-Fire (LIF) neu-
ron models (Gerstner and Kistler, 2002a). Only a single
neuron, considered as a network output, was subjected to
learning. The approximated spike train consisted of 10
spikes (spanned within a 1 second interval). In the suc-
cessful training case, an input vector S in(t) was gener-
ated by 500 neurons. A good approximation of S d(t)
was obtained after about 600 iterations. The presented re-
sults revealed that the ability of the method to produce the

Comparison of supervised learning methods for spike time coding in spiking neural networks 105

desired target patterns is strongly influenced by the num-
ber and variability of spikes in S in(t). The quality of ap-
proximation is improved for the increased diversity of the
spikes that populate the input to the learning neuron. This
is a common conclusion for all LSM systems.

As a final remark, we state that the presented algo-
rithm (Carnell and Richardson, 2004) is one out of only
few algorithms that allow learning patterns consisting of
multiple spikes. However, the algorithm updates weights
in a batch mode and for this reason it is not suitable for on-
line learning. In some applications this can be considered
as a drawback.

2.4. Evolutionary Methods

In (Belatreche et al., 2003), the authors investigate the via-
bility of evolutionary strategies (ES) regarding supervised
learning in spiking neural networks.

The use of the evolutionary strategy is motivated
by the ability of ESs to work on real numbers without
complex binary encoding schemes. ESs proved to be
well suited for solving continuous optimization problems
(Spears et al., 1993). Unlike in genetic algorithms, the pri-
mary search operator in an ES is mutation. A number of
different mutation operators have been proposed. The tra-
ditional mutation operator adds to the alleles of genes in
the population some random value generated according to
a Gaussian distribution. Other mutation operators include
the use of the Cauchy distribution. The use of the Cauchy
distribution allows exploring the search space by making
large mutations and helping to prevent premature conver-
gence. On the other hand, the use of the Gaussian muta-
tion allows us to exploit the best solutions found in a local
search. In this algorithm, not only synaptic strengths, but
also synaptic delays are adjustable parameters. The spik-
ing network is mapped to a vector of real values, which
consists of the weights and delays of synapses. A set of
such vectors (individuals) will form the population evolv-
ing according to the ES. The population is expected to
converge to a globally optimal network, tuned to the par-
ticular input patterns.

The learning properties of the algorithm were tested
on a set of classification tasks with XOR and the Iris
benchmark dataset. SRM neuron models and feed-
forward fully connected spiking networks were used.
Similarly to (Bohte et al., 2000), continuous values were
mapped here into firing delays. The authors reported re-
sults comparable to those obtained with the known classi-
fication algorithms (BP, LM, SpikeProp).

Some limitations of the algorithm arise due to the fact
that each neuron is allowed to generate at most a single
spike during the simulation time. Therefore, the method
is not suitable for learning patterns consisting of multiple

spikes. Another disadvantage, common to all evolutionary
algorithms, is that computation with this approach is very
time consuming.

2.5. Learning in Synfire Chains

Human learning often involves relating two signals sepa-
rated in time, or linking a signal, an action and a subse-
quent effect into a causal relationship. These events are
often separated in time but, nonetheless, humans can link
them, thereby allowing them to accurately predict the right
moment for a particular action. Synfire chains (SFCs) are
considered as a possible mechanism for representing such
relations between delayed events. An SFC is a feedfor-
ward multi-layered architecture (a chain), in which spik-
ing activity can propagate in a synchronous wave of neu-
ronal firing (a pulse packet) from one layer of the chain to
the successive ones (Bienenstock, 1995). Each step in the
SFC requires a pool of neurons whose firings simultane-
ously raise the potential of the next pool of neurons to the
firing level. In this mechanism each cell of the chain fires
only once. In (Sougne, 2001), a specific neural architec-
ture, called INFERNET, is introduced. The architecture
is an instance of the SFC. Its structure is organized into
clusters of nodes called the subnets. Each subnet is fully
connected. Some subnet nodes have connections to ex-
ternal subnet nodes. The nodes are represented here by a
simple model similar to SRM.

The learning task is to reproduce the temporal rela-
tion between two successive inputs (the first one presented
to the first layer of SFC and the other one considered as
the ‘teaching’ signal, given to the last layer). Thus the
task is to find a link between the firing input nodes and the
firing target nodes with a target time delay.

Two successive inputs can be separated by several
tenths of a second, and a single connection cannot alone be
responsible for such long delays. Therefore, a long chain
of successive pools of node firings might be required.

In the reported approach, the author introduces a
learning algorithm in which the particular synaptic con-
nections are modified by a rule similar to STDP, with,
however, an additional non-Hebbian term:

Δwij = W
(
tfj − tfi + dij

)

− λ sign
(
W

(
tfj − tfi + dij

))
. (9)

According to (9), the weight changes Δw ij of the synap-
tic connection from the neuron i to j are determined by
the learning window W defined over the time difference
between the pre- and postsynaptic firings, tf

i and tf
j , re-

spectively, and the synaptic delay dij (Sougne, 2001).
The function sign(x) = −1 for x < 0 and sign(x) = 1
otherwise.

A. Kasiński and F. Ponulak106

Consider an SFC with n layers and the desired av-
erage time delays between the firings of the consecutive
layers. The learning algorithm is as follows:

For each input node firing tf
i

For each presynaptic node j

Calculate Δwij and add it to wij

Select the n best nodes J ′

For each node j ′ ∈ J ′

Set the level to 1
For each node j ′′ presynaptic to node j ′

Calculate Δwj′j′′ and add it to wj′j′′

Select the n best nodes J ′′

For each node j ′′ ∈ J ′′

Set the level to 2
Etc. up to the layer n.

The learning algorithm implies that synaptic weights
between the particular neurons must become strong
enough to ensure that the wave of excitation reaches even-
tually the output subnet.

Sougne (2001) discussed experiments in which two
inputs are presented: one (the probe) at the time 0 ms and
one (the target) at some later time instant. The task for the
network was to correctly reproduce the temporal associ-
ation between these two inputs and therefore to build an
SFC between them. While trained, the network was able
to trigger this synfire chain whenever the first input was
presented. In this task, the author reported some difficul-
ties. The algorithm could correctly reinforce a connection
that led to the probe node firing at the right time, but could
not, in general, prevent the target nodes from firing ear-
lier, if some other ‘inter-nodes’ fired several times before.
Indeed, a careful analysis of learning equations confirms
that there is no rule for avoiding spurious firing.

We conclude that the learning method under con-
sideration represents an interesting approach to the spike
time learning problem in SNNs. In this method, it is as-
sumed that the time of postsynaptic neuron firing depends
mostly on the signal propagation delay in presynatpic neu-
rons. The ‘time-weight’ dependence is neglected. The au-
thor focuses on modifying the topology of the network, to
obtain the desired delay between the signal fed to the net-
work input and the signal generated at the network output.

However, with this approach, the objective function
(the desired time delay) is not a continuous function of
the parameters (synaptic weights) of the optimization al-
gorithm. For this reason, the algorithm can be consid-
ered as a discrete optimization technique. This approach
makes it possible to attain precision that takes values not
from the continuous domain, but from a finite set of pos-
sible solutions (since the global delay is a combination of

fixed component delays, constituting a finite set). An ap-
proximation quality depends, in general, on the number
and diversity of connection delays. Another limitation of
the method is, again, the fact that it can learn only single
firing times and thus can be applied only to the ‘time-to-
first-spike’ coding scheme.

The author claims that the method enables him to
learn sequentially many synfire chains. This property
would be very interesting in the context of real-life ap-
plications. Unfortunately, it is not described in the cited
article how this multi-learning can be achieved.

2.6. Spike-Based Supervised Hebbian Learning

In this subsection we discuss methods that represent the
so-called Supervised Hebbian Learning (SHL) approach.
According to this approach, Hebbian processes (Hebb,
1949) are supervised by an additional ‘teaching’ signal
that reinforces the postsynaptic neuron to fire at the tar-
get times. The ‘teaching’ signal can be transmitted to the
neuron in the form of synaptic currents or as intracellu-
larly injected currents.

Ruf and Schmitt (1997) proposed one of the first
spike-based methods similar to the SHL approach. In
this first attempt, they defined the learning rule for the
monosynaptic excitation. The learning process was based
on three spikes (two presynaptic ones and a postsynaptic
one) generated during each learning cycle. The first presy-
naptic spike at the time tin1 was considered as an input
signal, whereas the second presynatpic spike at t in

2 = td

pointed to the target firing time for the postsynaptic neu-
ron. The learning rule is

Δw = η(tout − td), (10)

where η > 0 is the learning rate and tout is the actual
time of the postsynaptic spike. This learning rule was ap-
plied after each learning cycle. It is easy to demonstrate,
that under certain conditions, tout converges to td.

With this method it was possible to train only a sin-
gle synaptic input, whereas neurons usually receive their
inputs from several presynaptic neurons. The correspond-
ing synaptic weights could still be learned in the way de-
scribed above if the weights were learned sequentially (a
single synapse per learning cycle). This is, however, a
very inefficient approach.

As a solution to this problem, the authors proposed
a parallel algorithm. The learning rules for the parallel
algorithm are⎧⎪⎪⎨

⎪⎪⎩
Δwi = η(td − tini), 1 ≤ i ≤ n,

normalize the resulting weight vector w,

such that ‖w‖ = 1.

(11)

Comparison of supervised learning methods for spike time coding in spiking neural networks 107

Surprisingly, although the algorithm defined by (11) is
considered as an extension to the monosynaptic rule, it
does not aim at achieving the desired timing of the post-
synaptic neuron. Instead, the goal is to modify synap-
tic weights to approach some target weight vector wd

given by the difference between pre- and postsynaptic fir-
ing times, i.e., wd

i = (td−tini) for any presynaptic neuron
i. The authors claim that such an approach can be useful
in temporal pattern analysis in SNNs, but no details are
given to explain it.

A thorough analysis of the supervised Hebbian learn-
ing in the context of spiking neurons was performed by
Legenstein et al. (2005). The learning method imple-
ments the STDP process with supervision realised by ex-
tra input currents injected to the learning neuron. These
currents forced the learning neuron to fire at the target
times and prevented it from firing at other times. The au-
thors investigated the suitability of this approach to learn
any given transformation of the input to output spiking se-
quences.

In STDP, it is commonly assumed that the weight
changes Δw of the particular synaptic connection are
proportional to{

+A+ exp (−s/τ+) if s > 0,

−A− exp (s/τ−) if s ≤ 0,
(12)

with the constants A+, A−, τ+, τ− > 0 and s being the
delay between the pre- and postsynaptic firings.

The common version of STDP always produces a bi-
modal distribution of weights, where each weight assumes
either its minimal or its maximal possible value. There-
fore, in that article the authors considered mostly the tar-
get transformations that could be implemented with that
bimodal distribution of weights. However, the learning
algorithm was also tested with a multiplicative variation
of STDP (Guetig et al., 2003) which takes the form

Δw =

{
+A+(1 − w)μ exp (−s/τ+) if s > 0,

−A−wμ exp (s/τ−) if s ≤ 0,

(13)
where μ is a non-negative exponent. In contrast to the
standard STDP, this modified rule allowed producing in-
termediate stable weight values. However, the authors re-
ported that learning with this modified version of STDP
was highly sensitive to input signal distributions.

In (Legenstein et al., 2005), the authors demonstrate
a set of experiments in which they consider different op-
tions of uncorrelated and correlated inputs with a pure and
noisy teacher signal. In all experiments, LIF neuron mod-
els and dynamic synapses models were used (Maass and
Zador, 1999; Markram et al., 1998). However, synaptic
plasticity was considered only for excitatory connections.

The results reported in (Legenstein et al., 2005)
demonstrated that the learning algorithm was able to ap-
proximate the given target transformations quite well.
These good results were achieved not only for the case
where synaptic weights were adjustable parameters, but
also for a more realistic interpretation suggested by ex-
perimental results, where STDP modulated the initial re-
lease probability of dynamic synapses (Maass and Zador,
1999).

Legenstein et al. proved that the method has the con-
vergence property in the average case for arbitrary uncor-
related Poisson input spike trains. On the other hand, the
authors demonstrated that convergence cannot be guaran-
teed in a general case.

The authors reported the following drawback of the
algorithm considered: Since teacher currents suppress all
undesired firings during the training, the only correlations
of pre- and postsynaptic activities occur around the target
firing times. At other times, there is no correlation and
thus no mechanism to weaken these synaptic weights that
led the neuron to fire at undesired times during the testing
phase.

Another reported problem is common to all super-
vised Hebbian approaches: Synapses continue to change
their parameters even if the neuron fires already exactly at
the desired times. Thus, stable solutions can be achieved
only by applying some additional constraints or extra
learning rules to the original SHL.

Despite these problems, the presented approach
proves a great ability to implement the precise spike tim-
ing coding scheme. Moreover, this is the first method
out of so far presented in this article that allows learning
the target transformations from the input to output spike
trains.

2.7. ReSuMe – Remote Supervision

In Section 2.6 we have seen that the supervised Heb-
bian approach demonstrated interesting learning proper-
ties. With this approach it was feasible not only to learn
the desired sequences of spikes, but also to reconstruct the
target input-output transformations. Moreover, this ap-
proach inherited interesting properties of the traditional
Hebbian paradigm: it is local in time and space, simple
and thus suitable for online processing. On the other hand,
it was demonstrated that SHL displays several serious dis-
advantages that may yield problems when more complex
learning tasks are considered.

Here we discuss ReSuMe, the Remote Supervised
Method proposed in (Ponulak, 2005). It is argued that the
method possesses interesting properties of the supervised
Hebbian approach while avoiding its drawbacks.

A. Kasiński and F. Ponulak108

wki

n (i)k

in n (i)j

d

ni

out

S (t)
in

N
in

NMC

S
in

S (t)1

d

S (t)2

d

S (t)..

d

N1

d

N2

d

N..

d

N1

out

N2

out

N..

out

S (t)1

out

S (t)2

out

S (t)..

out

(a) (b)

Fig. 1. (a) Concept of remote supervision: The target spike train, transmitted via the neuron nd
j (i), is not directly delivered to the

learning neuron nout
i . However, it determines (illustrated by the dotted line) the changes of the synaptic efficacy wki, between

a presynaptic neuron nin
k (i) and nout

i ; (b) Network architecture: ReSuMe implemented in the modified Liquid State Machine.

The goal of ReSuMe learning is to impose on a neural
network the desired input-output properties, i.e., to pro-
duce the desired spike trains in response to the given input
sequences.

ReSuMe takes advantage of Hebbian (correlation)
processes and integrates them with a novel concept of re-
mote supervision. The name remote supervision comes
from the fact that the target signals are not directly fed to
learning neurons (as is the case in SHL). However, they
still co-determine the changes in synaptic efficacies in the
connections terminating at the learning neurons. This is
schematically illustrated in Fig. 1(a).

In ReSuMe, synaptic weights are modified according
to the following equation:

d
dt

w(t)

=
[
Sd(t)−Sl(t)

][
a+

∫ ∞

0

W (s)Sin(t−s) ds

]
, (14)

where Sd(t), Sin(t) and Sl(t) are the target, pre- and
postsynaptic spike trains, respectively. The parameter a
expresses the amplitude of non-correlation contribution to
the total weight change while the convolution function
represents Hebbian-like modifications of w. The inte-
gral kernel W (s) is defined over a time delay s between
spikes occurring at synaptic sites (Ponulak, 2005). In the
case of excitatory synapses, the term a is positive and the
learning window W (s) has a shape similar as in STDP,

cf. (12). In the case of inhibitory synapses, a is negative
and W (s) is defined similarly as for anti-STDP rules.

The ReSuMe method is biologically plausible since
it is based on Hebbian-like processes. Also the remote
supervision concept, applied to ReSuMe, can be biologi-
cally justified on the basis of heterosynaptic plasticity – a
phenomenon recently observed in neurophysiological ex-
periments (Bi, 2002; Bonhoeffer et al., 1989; Tao et al.,
2000).

The high learning ability of ReSuMe has been
confirmed through extensive simulation experiments
(Kasiński and Ponulak, 2005; Ponulak, 2005; Ponulak and
Kasiński, 2005). Here we present the results of an exper-
iment discussed in (Ponulak, 2005), where ReSuMe was
used to train a network to produce the desired sequence
of the spikes Sd(t) in response to a given, specified input
spike train S in(t) (Fig. 2). ReSuMe was applied to the
LSM network consisting of 800 LIF neurons (Fig. 1(b)).
Both Sin(t) and Sd(t) signals were generated randomly
over a time interval of 400 ms (Figs. 2(a) and (c)). A single
learning neuron was trained over 100 learning sessions.
An output signal Sout(t) at the initial state of the learning
and the trained output Ŝout(t) are depicted in Figs. 2(b)
and (d), respectively. It is evident that after the training,
the resulting output sequence Ŝout(t) is almost identical
with the target Sd(t).

Other experiments presented in (Kasiński and Ponu-
lak, 2005) demonstrated that ReSuMe is able not only to
learn temporal sequences of spikes with high accuracy, but

Comparison of supervised learning methods for spike time coding in spiking neural networks 109

(a)

(b)

(c)

(d)

Fig. 2. Results of an experiment on spike sequence learning with ReSuMe: (a) Input spike train Sin(t), (b) output Sout(t)

before training, (c) target spike train Sd(t) desired at the output, (d) output Ŝout(t) after 100 learning sessions.

also to model the input/output properties of static objects,
by learning multiple pairs of input-output patterns. More-
over, with ReSuMe implemented in the LSM architecture
it was possible to successfully assign different tasks to the
individual network outputs.

Another advantage of ReSuMe is that the method is
independent of the neuron models used. For this reason, it
can be implemented in networks with combined different
neuron models and potentially also in networks of biologi-
cal neurons. This was confirmed in the experiments where
ReSuMe was successfully tested with LIF and Hodgkin-
Huxley neuron models (Kasiński and Ponulak, 2005).

In (Ponulak and Kasiński, 2005), it was demon-
strated that ReSuMe could efficiently generate the de-
sired trajectories of movement for biologically realistic
dynamic models of limbs. The network was trained to
reconstruct spatio-temporal patterns of spikes correspond-
ing to the patterns of activity in the pools of motoneurons.
Each pool, consisting of 40 neurons, activated the partic-
ular muscle model. The simplified limb model, driven
by the SNN, was able to follow the desired trajectory of
movement with a satisfactory precision.

The experiments discussed here confirmed that Re-
SuMe can efficiently learn the desired temporal and spatio-
temporal patterns of spikes and that the learning process
converges quickly. On the basis of these results it can be
concluded that ReSuMe is an efficient learning method,
potentially suitable for real-life and real-time applications.

3. Discussion

In this review we discussed a number of learning meth-
ods suitable for the spike time coding scheme. These
methods use diverse approaches to perform the learning
task. Bohte et al. (2000) proposed to estimate the gradi-
ent of an error function explicitly. This, however, requires
a special assumption on the linearity of the threshold func-
tion. Pfister et al. (2003) performed learning by gradient
ascent on the probabilistic basis. A strictly mathemati-
cal approach was introduced in (Carnell and Richardson,
2004), where the authors defined special algebraic opera-
tions on the time series and applied these operations to the
iterative algorithm for spiking patterns learning. Another
interesting solution was presented in (Belatreche et al.,
2003). The authors introduced there an evolutionary algo-
rithm that modifies synaptic weights and delays in order
to obtain precise timing of a postsynaptic spike. Learn-
ing in the Synfire Chain network is discussed in (Sougne,
2001). The author presents there a chaining rule which al-
lows finding links between two neuron layers firing in the
desired temporal contiguity. The methods developed in
(Ruf and Schmitt, 1997) and (Legenstein et al., 2005) rep-
resent the supervised Hebbian approach. This approach
possesses several interesting properties, such as locality,
scalability and the ability of on-line processing. Legen-
stein et al. demonstrated that their method enables effi-
cient learning of temporal patterns of spikes (Legenstein
et al., 2005). Moreover, it also allows imposing on a

A. Kasiński and F. Ponulak110

Table 1. Supervised learning methods for spike time coding in SNN

No
Author/
Method

Approach Presented Tasks Coding Scheme References

1 S. Bohte/
SpikeProp

Gradient
estimation

Classification Time-to-first-
spike

(Bohte, 2003; Bohte et al., 2000;
2002; Moore, 2002; Schrauwen and
Van Campenhout, 2004; Xin and
Embrechts, 2001)

2 J. Pfister,
D. Barber,
W. Gerstner

Statistical
approach

Spike sequence
learning,
Classification

Precise spike
timing

(Barber, 2003; Pfister et al., 2003;
2005)

3 A. Carnell,
D. Richardson

Linear
algebra
formalisms

Spike sequence
learning

Precise spike
timing

(Carnell and Richardson, 2004)

4 A. Belatreche,
L. Maguire,
T. McGinnity,
Q. Wu

Evolutionary
strategy

Classification Time-to-first-
spike

(Belatreche et al., 2003)

5 J. Sougne Learning in
synfire
chains

Single temporal
interval learning

Relative spike
time

(Sougne, 2001)

6 B. Ruf,
M. Schmitt

Supervised
Hebbian
learning

Classification Time-to-first-
spike

(Ruf, 1998; Ruf and Schmitt, 1997)

7 R. Legenstein,
Ch. Naeger,
W. Maass

Supervised
Hebbian
learning

Spike sequence
learning,
Input-output
mapping

Precise spike
timing

(Legenstein et al., 2005)

8 F. Ponulak/
ReSuMe

Remote
supervision

Spike sequence
learning,
Input-output
mapping,
Neuron model
independence,
Real-life
applications

Precise spike
timing

(Kasiński and Ponulak, 2005;
Ponulak, 2005; Ponulak and
Kasiński, 2005)

neural network the desired input-output transformations
through learning. On the other hand, this approach suffers
from some drawbacks that make the learning task more
difficult (cf. Section 2.6).

A novel concept of remote supervision (ReSuMe)
was introduced and discussed in (Ponulak, 2005). It was
shown that this method inherits the advantages of the su-
pervised Hebbian learning, while avoiding its drawbacks.
It was demonstrated that ReSuMe can efficiently learn
multiple temporal and spatio-temporal patterns of spikes
with a high precision. Moreover, ReSuMe was success-
fully applied to the real-life task of movement generation
(Ponulak and Kasiński, 2005).

Finally, we observe that only four of the discussed
methods demonstrate the ability to learn temporal se-
quences consisting of multiple spikes. The remaining al-
gorithms address rather single spike coding schemes.

The main facts about all reviewed methods are sum-
marized in Table 1.

4. Conclusions

In this review we considered supervised methods for spike
time learning in neural networks. Our study was moti-
vated by the recent experimental results on information
coding in biological neural networks which suggested that
precise timing of individual spikes may be fundamental
for efficient computation in the brain.

We presented various approaches to the task con-
sidered and discussed the properties of the particular ap-
proaches. The review revealed that the methods pre-
sented in (Carnell and Richardson, 2004; Legenstein et al.,
2005; Pfister et al., 2005; Ponulak, 2005) are capable of

Comparison of supervised learning methods for spike time coding in spiking neural networks 111

learning complex temporal and spatio-temporal spike se-
quences. This capability allows us to create a universal
tool to implement any of the temporal coding schemes
proposed in the literature (Bohte, 2004; Gerstner and
Kistler, 2002a; Maass and Bishop, 1999; Thorpe et al.,
2001).

It is worth mentioning that there is a number of
other supervised methods for learning in SNNs. They
were proposed and investigated, e.g., in (Koerding and
Koenig, 2000; 2001; Maass et al., 2002; Natschlaeger
et al., 2002; Pavlidis et al., 2005; Seung, 2003; Xie and
Seung, 2004). However, these methods are beyond the
scope of this review, since they address other information
coding paradigms than spike-time coding.

Finally, we remark that further investigations in the
area considered are important in order to fully understand
the mechanisms of information processing in biological
neural systems and to use their computational power in
ANN/SNN.

Acknowledgments

The work was partially supported by the Polish Ministry
of Education and Science, project no. 1445/T11/2004/27.

References

Barber D. (2003): Learning in spiking neural assemblies, In:
Advances in Neural Information Processing Systems 15,
(S.T.S. Becker and K. Obermayer, Eds.). — MIT Press,
Cambridge, MA, pp. 149–156.

Belatreche A., Maguire L.P., McGinnity M. and Wu Q.X.
(2003): A Method for Supervised Training of Spiking
Neural Networks. — Proc. IEEE Conf. Cybernetics Intel-
ligence – Challenges and Advances, CICA’2003, Reading,
UK, pp. 39–44.

Bi G.Q. (2002): Spatiotemporal specificity of synaptic plasticity:
Cellular rules and mechanisms. — Biol. Cybern., Vol. 87,
No. 5–6, pp. 319–332.

Bienenstock E. (1995): A Model of Neocortex. — Network:
Computation in Neural Systems, Vol. 6, No. 2, pp. 179–
224.

Bohte S. (2003): Spiking Neural Networks. — Ph.D.
thesis, University of Amsterdam, Faculty of
Mathematics and Natural Sciences, available at:
http://homepages.cwi.nl/∼bohte.

Bohte S., Kok J. and La Poutré H. (2000): Spike-prop: Error-
backprogation in multi-layer networks of spiking neu-
rons. — Proc. Euro. Symp. Artificial Neural Networks
ESANN’2000, Bruges, Belgium, pp. 419–425.

Bohte S., Kok J. and Poutr’e H.L. (2002): Error-
backpropagation in temporally encoded networks of
spiking neurons. — Neurocomp., Vol. 48, No. 1–4,
pp. 17–37.

Bohte S.M. (2004): The Evidence for Neural Information
Processing with Precise Spike-times: A Survey. — Natural
Comput., Vol. 3, No. 4, pp. 195–206.

Bonhoeffer T., Staiger V. and Aertsen A. (1989): Synaptic plas-
ticity in rat hippocampal slice cultures: Local Hebbian
conjunction of pre- and postsynaptic stimulation leads to
distributed synaptic enhancement. — Proc. Nat. Acad. Sci.
USA, Vol. 86, No. 20, pp. 8113–8117.

Carnell A. and Richardson D. (2004): Linear alge-
bra for time series of spikes. — Available at:
http://www.bath.ac.uk/∼Emasdr/spike.ps

Cohen H. (1993): A Course in Computational Algebraic Number
Theory. — New York: Springer.

Gabbiani F. and Midtgaard J. (2001): Neural information
processing, In: Encyclopedia of Life Sciences, Nature Pub-
lishing Group, www.els.net, Vol. 0, pp. 1–12.

Gerstner W. and Kistler W. (2002a): Spiking Neuron Models.
Single Neurons, Populations, Plasticity. — Cambridge:
Cambridge University Press.

Gerstner W. and Kistler W. (2002b): Mathematical formulations
of Hebbian learning. — Biol. Cybern., Vol. 87, No. 5–6,
pp. 404–415.

Gerstner W., Kempter R., van Hemmen J. and Wagner H. (1996):
A neuronal learning rule for sub-millisecond temporal cod-
ing. — Nature, Vol. 383, No. 6595, pp. 76–78.

Guetig R., Aharonov R., Rotter S. and Sompolinsky H. (2003):
Learning input correlations through non-linear temporally
asymmetric Hebbian plasticity. — J. Neurosci., Vol. 23,
No. 9, pp. 3697–3714.

Hebb D. (1949): The Organization of Behavior. — Cambridge:
Wiley.

Hertz J., Krogh A. and Palmer R. (1991): Introduction to
the Theory of Neural Networks. — Redwood-City, CA:
Addison-Wesley.

Kasiński A. and Ponulak F. (2005): Experimental demonstra-
tion of learning properties of a new supervised learning
method for the spiking neural networks, In: Proc. 15-th Int.
Conf. Artificial Neural Networks: Biological Inspirations,
Vol. 3696, Lecture Notes in Computer Science. — Berlin:
Springer, pp. 145–153.

Kepecs A., Van Rossum M., Song S. and Tegner J. (2002):
Spike-timing-dependent plasticity: common themes and di-
vergent vistas. — Biol. Cybern., Vol. 87, No. 5–6, pp. 446–
458.

Kistler W. (2002): Spike-timing dependent synaptic plasticity: A
phenomenological framework. — Biol. Cybern., Vol. 87,
No. 5–6, pp. 416–427.

Koerding K. and Koenig P. (2000): Learning with two sites of
synaptic integration. — Network: Comput. Neural Syst.,
Vol. 11, pp. 1–15.

A. Kasiński and F. Ponulak112

Koerding K. and Koenig P. (2001): Supervised and unsupervise
learning with two sites of synaptic integration. — J. Comp.
Neurosci., Vol. 11, No. 3, pp. 207–215.

Legenstein R., Naeger C. and Maass W. (2005): What can a
neuron learn with spike-timing-dependent plasticity? —
(submitted).

Maass W. (1997): Networks of spiking neurons: The third gener-
ation of neural network models. — Neural Netw., Vol. 10,
No. 9, pp. 1659–1671.

Maass W. (1998): On the role of time and space in neural com-
putation, In: Proc. Federated Conf. CLS’98 and MFCS’98,
Mathematical Foundations of Computer Science 1998,
Vol. 1450, Lecture Notes in Computer Science. — Berlin:
Springer, pp. 72–83.

Maass W. (1999): Paradigms for computing with spiking neu-
rons, In: Models of Neural Networks, (L. van Hemmen,
Ed.). — Berlin: Springer.

Maass W. (2002): Paradigms for computing with spiking neu-
rons, In: Models of Neural Networks. Early Vision and
Attention, (J.L. van Hemmen, J.D. Cowan and E. Domany,
Eds.). — New York: Springer, pp. 373–402.

Maass W. (2003): Computation with spiking neurons, In: The
Handbook of Brain Theory and Neural Networks, 2nd Ed.,
(M. Arbib, Ed.). — MIT Press, Cambridge, pp. 1080–
1083.

Maass W. and Bishop C. (Eds.) (1999): Pulsed Neural Networks.
— Cambridge: MIT Press.

Maass W. and Zador A. (1999): Computing and learning with
dynamic synapses. — NeuroCOLT2 Technical Report Se-
ries NC2-TR-1999-041.

Maass W., Natschlaeger T. and Markram H. (2002): Real-
time computing without stable states: A new framework
for neural computation based on perturbations. — Neural
Comput., Vol. 14, No. 11, pp. 2531–2560.

Markram H., Wang Y. and Tsodyks M. (1998): Differential sig-
naling via the same axon of neocortical pyramidal neurons.
— Proc. Nat. Acad. Sci., Vol. 95, No. 9, pp. 5323–5328.

Markram H., Luebke J. and Frotscher B.S.M. (1997): Regulation
of synaptic efficacy by coincidence of postsynaptic APs and
EPSPs. — Science, Vol. 275, No. 5297, pp. 213–215.

Mehta M.R., Lee A.K. and Wilson M.A. (2002): Role of expe-
rience of oscillations in transforming a rate code into a
temporal code. — Nature, Vol. 417, No. 6891, pp. 741–
746.

Moore S.C. (2002): Back-Propagation in Spiking Neural Net-
works. — M.Sc. thesis, University of Bath, available at:
http://www.simonchristianmoore.co.uk.

Natschlaeger T., Maass W. and Markram H. (2002): The “liq-
uid computer”, a novel strategy for real-time computing on
time series. — Special issue on Foundations of Information
Processing of TELEMATIK, Vol. 8, No. 1, pp. 32–36.

Pavlidis N.G., Tasoulis D.K., Plagianakos V.P., Nikiforidis G.
and Vrahatis M.N. (2005): Spiking neural network train-
ing using evolutionary algorithms. — Proc. Int. Joint Conf.
Neural Networks, IJCNN’05, Montreal, Canada.

Pfister J.P., Barber D. and Gerstner W. (2003): Optimal
Hebbian Learning: A Probabilistic Point of View, In:
ICANN/ICONIP 2003, Vol. 2714, Lecture Notes in Com-
puter Science. — Berlin: Springer, pp. 92–98.

Pfister J.-P., Toyoizumi T., Barber D. and Gerstner W. (2005):
Optimal spike-timing dependent plasticity for precise
action potential firing. — (submitted), available at:
http://diwww.epfl.ch/∼jpfister/papers/
Pfister_05a.pdf.

Ponulak F. (2005): ReSuMe—new supervised learn-
ing method for spiking neural networks. — Tech.
Rep., Institute of Control and Information Engineer-
ing, Poznan University of Technology, available at:
http://d1.cie.put.poznan.pl/∼fp/.

Ponulak F. and Kasiński A. (2005): A novel approach towards
movement control with spiking neural networks. — Proc.
3-rd Int. Symp. Adaptive Motion in Animals and Ma-
chines, Ilmenau, (Abstract).

Popović D. and Sinkjaer T. (2000): Control of Movement for the
Physically Disabled. — London: Springer.

Ruf B. (1998): Computing and Learning with Spiking Neurons –
Theory and Simulations. — Ph.D. thesis, Institute for The-
oretical Computer Science, Technische Universitaet Graz,
Austria.

Ruf B. and Schmitt M. (1997): Learning temporally encoded
patterns in networks of spiking neurons. — Neural Proces.
Lett., Vol. 5, No. 1, pp. 9–18.

Rumelhart D., Hinton G. and Williams R. (1986): Learning
representations by back-propagating errors. — Nature,
Vol. 323, pp. 533–536.

Schrauwen B. and Van Campenhout J. (2004): Improving Spike-
Prop: Enhancements to an Error-Backpropagation Rule
for Spiking Neural Networks. — Proc. 15-th ProRISC
Workshop, Veldhoven, the Netherlands.

Seung S. (2003): Learning in spiking neural networks by rein-
forcement of stochastic synaptic transmission. — Neuron,
Vol. 40, No. 6, pp. 1063–1073.

Sougne J.P. (2001): A learning algorithm for synfire chains, In:
Connectionist Models of Learning, Development and Evo-
lution, (R.M. French and J.P. Sougne, Eds.). — London:
Springer, pp. 23–32.

Spears W.M., Jong K.A.D., Baeck T., Fogel D.B. and de Garis H.
(1993): An overview of evolutionary computation. — Proc.
Europ. Conf. Machine Learning, Vienna, Austria, Vol. 667,
pp. 442–459.

Tao H.-Z.W., Zhang L.I., Bi G.-Q. and Poo M.-M. (2000): Se-
lective presynaptic propagation of long-term potentiation
in defined neural networks. — J. Neurosci., Vol. 20, No. 9,
pp. 3233–3243.

Thorpe S. J., Delorme A. and VanRullen R. (2001): Spike-based
strategies for rapid processing. — Neural Netw., Vol. 14,
No. 6–7, pp. 715–726.

Comparison of supervised learning methods for spike time coding in spiking neural networks 113

Tiňo P. and Mills A.J. (2005): Learning beyond finite memory
in recurrent networks of spiking neurons, In: Advances in
Natural Computation – ICNC 2005, (L. Wang, K. Chen
and Y. Ong, Eds.), Lecture Notes in Computer Science. —
Berlin: Springer, pp. 666–675.

VanRullen R., Guyonneau R. and Thorpe S.J. (2005): Spike
times make sense. — TRENDS in Neurosci., Vol. 28,
No. 1, pp. 1–4.

Weisstein E.W. (2006): Gram-Schmidt Orthonormaliza-
tion, from MathWorld–A Wolfram Web Resource. —
Available at: http://mathworld.wolfram.com/
Gram-SchmidtOrthonormalization.html.

Xie X. and Seung S. (2004): Learning in neural networks by
reinforcement of irregular spiking. — Phys. Rev., Vol. 69,
No. 4, pp. 1–10.

Xin J. and Embrechts M.J. (2001): Supervised Learning with
Spiking Neuron Networks. — Proc. IEEE Int. Joint Conf.
Neural Networks, IJCNN’01, Washington D.C., pp. 1772–
1777.

Received: 17 November 2005
Revised: 2 March 2006

