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A class of finite-dimensional stationary dynamic control systems described by linear stochastic ordinary differential state
equations with a single point delay in the state variables is considered. Using a theorem and methods adopted directly from
deterministic controllability problems, necessary and sufficient conditions for various kinds of stochastic relative controlla-
bility are formulated and proved. It will be demonstrated that under suitable assumptions the relative controllability of an
associated deterministic linear dynamic system is equivalent to the stochastic relative exact controllability and the stochastic
relative approximate controllability of the original linear stochastic dynamic system. Some remarks and comments on the
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1. Introduction

Controllability is one of the fundamental concepts in
mathematical control theory and plays an important
role in both deterministic and stochastic control theories
(Klamka, 1991; Klamka, 1993; Mahmudov, 2003; Mah-
mudov and Denker, 2000). Controllability is a qualita-
tive property of dynamic control systems and is of par-
ticular importance in control theory. Systematic studies
of controllability started at the beginning of the 1960s,
when the theory of controllability based on the state space
description for both time-invariant and time-varying lin-
ear control systems was worked out. Roughly speak-
ing, controllability generally means that it is possible to
steer a dynamic control system from an arbitrary ini-
tial state to an arbitrary final state using a set of admis-
sible controls. In the literature there are many differ-
ent definitions of controllability for both linear (Klamka,
1991; Klamka, 1993; Mahmudov, 2001; Mahmudov and
Denker, 2000) and nonlinear dynamic systems (Klamka,
2000; Mahmudov, 2002; Mahmudov, 2003; Mahmudov
and Zorlu, 2003), which do depend on the class of dy-
namic control systems and the set of admissible controls
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(Klamka, 1991; Klamka, 1996). Therefore, for linear and
nonlinear deterministic dynamic systems there exist many
different necessary and sufficient conditions for global
and local controllabilities (Klamka, 1991; Klamka, 1993;
Klamka, 1996; Klamka, 2000).

In recent years controllability problems for various
types of linear dynamic systems have been considered in
many publications and monographs. An extensive list of
these publications can be found, e.g., in the monograph
(Klamka, 1991) or in the survey papers (Klamka, 1993;
Klamka, 1996; Klamka, 2000). However, it should be
emphasized that most works in this direction are mainly
concerned with deterministic controllability problems for
finite-dimensional linear dynamic systems with uncon-
strained controls and without delays.

For stochastic control systems (both linear and non-
linear) the situation is by far less satisfactory. In re-
cent years the extensions of deterministic controllabil-
ity concepts to stochastic control systems have been dis-
cussed only in a limited number of publications. In the
papers (Bashirov and Kerimov, 1997; Bashirov and Mah-
mudov, 1999; Ehrhard and Kliemann, 1982; Mahmu-
dov, 2001; Mahmudov and Denker, 2000; Zabczyk, 1991)
different kinds of stochastic controllability were discussed
for linear finite dimensional stationary and nonstation-
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ary control systems. The papers (Fernandez-Cara et
al., 1999; Kim Jong Uhn, 2004; Mahmudov, 2001; Mah-
mudov, 2003) are devoted to a systematic study of approx-
imate and exact stochastic controllability for linear infinite
dimensional control systems defined in Hilbert spaces.
Stochastic controllability for finite dimensional nonlin-
ear stochastic systems was discussed in (Arapostathis et
al., 2001; Balasubramaniam and Dauer, 2001; Mahmu-
dov and Zorlu, 2003; Sunahara et al., 1974; Sunahara et
al., 1975). Using the theory of bounded nonlinear opera-
tors and linear semigroups, various different types of sto-
chastic controllability for nonlinear infinite dimensional
control systems defined in Hilbert spaces were consid-
ered in (Mahmudov, 2002; Mahmudov, 2003). In (Klamka
and Socha, 1977; Klamka and Socha, 1980), Lyapunov
techniques were used to formulate and prove sufficient
conditions for stochastic controllability of nonlinear fi-
nite dimensional stochastic systems with point delays in
state variables. Moreover, it should be pointed out that
the functional analysis approach to stochastic controlla-
bility problems is also extensively discussed for both lin-
ear and nonlinear stochastic control systems in the papers
(Fernandez-Cara et al., 1999; Kim Jong Uhn, 2004; Mah-
mudov, 2001; Mahmudov, 2002; Mahmudov, 2003; Sub-
ramaniam and Balachandran, 2002).

In the present paper we shall study stochastic con-
trollability problems for linear dynamic systems, which
are natural generalizations of controllability concepts well
known in the theory of infinite dimensional control sys-
tems (Klamka, 1991; Klamka, 1993, Ch. 3). Specifically
we shall consider stochastic relative exact and approxi-
mate controllability problems for finite-dimensional lin-
ear stationary dynamic systems with single constant point
delays in the state variables described by stochastic or-
dinary differential state equations. More precisely, us-
ing techniques similar to those presented in (Mahmudov,
2001; Mahmudov, 2001; Mahmudov and Denker, 2000),
we shall formulate and prove necessary and sufficient con-
ditions for stochastic relative exact controllability in a pre-
scribed time interval for linear stationary stochastic dy-
namic systems with one constant point delay in the state
variables.

Roughly speaking, it will be proved that under suit-
able assumptions the relative controllability of a determin-
istic linear associated dynamic system is equivalent to the
stochastic relative exact controllability and the stochastic
relative approximate controllability of the original linear
stochastic dynamic system. This is a generalization of
some previous results concerning the stochastic control-
lability of linear dynamic systems without delays in the
control (Mahmudov, 2001; Mahmudov, 2001; Mahmudov
and Denker, 2000) to a control delayed case. It is well
known (Klamka, 1991) that the controllability concept for
linear dynamic systems is strongly connected with the so-
called minimum energy control problem. Therefore, us-

ing a quite general method presented in (Klamka, 1991)
and under the assumption that the stochastic dynamic sys-
tem is stochastically relatively exactly controllable, a min-
imum energy control problem is formulated and solved.

The paper is organized as follows: Section 2 contains
the mathematical model of a linear, stationary stochastic
dynamic system with a single constant point delay in the
state variables. Moreover, in this section the basic nota-
tion, definitions of stochastic relative exact controllability
and stochastic approximate relative controllability as well
as some preliminary results are included. In Section 3, us-
ing results and methods taken directly from deterministic
controllability problems, necessary and sufficient condi-
tions for exact and approximate stochastic relative con-
trollability are formulated and proved. Section 4 is de-
voted to the study of the minimum energy control prob-
lem. In this section we use some optimization methods to
solve the so-called minimum energy control problem and
to show a relevant analytic formula. Section 5 presents a
simple numerical example which illustrates the theoreti-
cal deliberations. Finally, Section 6 contains concluding
remarks and provides some open controllability problems
for more general stochastic dynamic systems.

2. System Description

Throughout this paper, unless otherwise specified, we use
the following standard notation:. Let (Ω, F, P ) be a com-
plete probability space with a probability measure P on
Ω and a filtration {Ft | t ∈ [0, T ]} generated by an n-
dimensional Wiener process {w(s) : 0 ≤ s ≤ t} defined
on the probability space (Ω, F, P ).

Let L2(Ω, Ft, R
n) denote the Hilbert space of all Ft-

measurable square integrable random variables with val-
ues in R

n. Moreover, let LF
2 ([0, T ], R

n) denote the
Hilbert space of all square integrable and Ft-measurable
processes with values in R

n. We write xt = x(t + s) for
s ∈ [−h, 0] to denote the segment of the trajectory, i.e.,
xt ∈ LF

2 ([−h, 0], L2(Ω, Ft, R
n)).

In the theory of linear, finite-dimensional, time-
invariant stochastic dynamic control systems, we use the
mathematical model given by the following stochastic or-
dinary differential state equation with a single point delay
in the state variable:

dx(t)=
(
A0x(t)+A1x(t − h)+B0u(t)

)
dt+σdw(t)

for t ∈ [0, T ], T > h (1)

given the function initial condition

x0 ∈ LF
2

(
[−h, 0], L2(Ω, FT , Rn)

)
, (2)

where the state x(t) ∈ L2(Ω, Ft, R
n) = X and the values

of the control u(t) ∈ R
m = U , A0 and A1 are n × n

dimensional constant matrices, B0 is a n×m dimensional
constant matrix, σ is an n×n dimensional constant matrix,
and h > 0 is a constant point delay.
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In the sequel, for simplicity, we shall assume that the
set of admissible controls is Uad = LF

2 ([0, T ], Rm).
It is well known (see, e.g., (Mahmudov, 2001;

Mahmudov, 2001; Mahmudov and Denker, 2000) or
(Mahmudov and Zorlu, 2003) for details) that for a given
initial condition (2) and any admissible control u ∈ Uad

for t ∈ [0, T ] there exists a unique solution x(t; x0, u) ∈
L2(Ω, Ft, R

n) of the linear stochastic differential state
equation (1) which can be represented in every time in-
terval t ∈ [kh, (k+1)h), k = 0, 1, 2, . . . by the following
integral formula:

x(t; x0, u) = x(kh; x0, u)

+

t∫

kh

(A0x(s; x0, u)+A1x
(
s−h; x0, u)

)
ds

+

t∫

kh

B0u(s) ds +

t∫

kh

σ dw(s).

Thus, taking into account the above integral formula
and using the well-known method of steps, we obtain the
explicit solution of the delayed state equation (1) for t > 0
in the following compact form (Klamka, 1991, Ch. 4):

x(t; x0, u) = x(t; x0, 0) +

t∫

0

F (t − s)B0u(s) ds

+

t∫

0

F (t − s)σ dw(s),

where F (t) is the n × n dimensional fundamental matrix
for the delayed state equation (1), which satisfies the ma-
trix integral equation

F (t) = I +

t∫

0

F (s)A0 ds +

t−h∫

0

F (s)A1 ds

for t > 0, with the initial conditions

F (0) = I, F (t) = 0 for t < 0.

Moreover, for t > 0, x(t; x0, 0) is given by

x(t; x0, 0) = exp(A0t)x0(0)

+

0∫

−h

F (t − s − h)A1x0(s) ds

or, equivalently,

x(t; x0, 0) = exp(A0t)x0(0)

+

h∫

0

F (t − s))A1x0(s − h) ds.

Let us denote by M∗ the transposition of a given
arbitrary matrix M . Now, for a given final time T >
h, taking into account the form of the integral solution
x(t; x0, u), let us introduce the following operators and
sets (Klamka, 1991, Ch. 4).

Define the bounded linear control operator LT ∈
L(LF

2 ([0, T ], Rm), L2(Ω, FT , Rn)) by

LT u =

h∫

0

exp(A0(T − s))B0u(s) ds

+

T∫

h

F (T − s)B0u(s) ds.

Its adjoint bounded linear operator L∗
T ∈

L2(Ω, FT , Rn) → LF
2 ([0, T ], Rm) has the follow-

ing form:

L∗
T z =

⎧
⎪⎨

⎪⎩

(B∗
0 exp(A∗

0(T−t))+B∗
0F ∗(T−t))E{z | Ft}

for t ∈ [h, T ],

B∗
0 exp(A∗

0(T − t))E{z | Ft} for t ∈ [0, h).

Moreover, we define the set of all the states reach-
able in the final time T from a given initial state x0 ∈
L2([−h, 0], Rn), using a set of admissible controls,

RT (Uad) = {x(T ; x0, u) ∈ L2(Ω, FT , Rn) : u ∈ Uad}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t; x0, 0) + ImLT +

T∫

0

exp(A0(T − s))σ dw(s)

for T ≤ h,

x(t; x0, 0) + ImLT +

T∫

0

F (T − s)σ dw(s)

for T > h.

Finally, we introduce the concept of the linear con-
trollability operator (Klamka, 1991; Klamka, 1993; Mah-
mudov, 2001; Mahmudov and Denker, 2000) CT ∈
L(L2(Ω, FT , Rn), L2(Ω, FT , Rn)), which is closely re-
lated to the control operator LT and is defined by

CT = LT L∗
T

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T∫

0

exp(A0(T−t))B0B
∗
0 exp(A∗

0(T−t))E{· |Ft} dt

for T ≤ h,
T∫

h

F (T − t)B0B
∗
0F ∗(T − t)E{· | Ft} dt

+

h∫

0

exp(A0(T − t))B0B
∗
0

× exp(A∗
0(T−t))E{· |Ft} dt for T > h.
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Moreover, let us recall the n×n-dimensional relative
controllability matrix (Klamka, 1991, Ch. 4),

GT =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T∫

0

exp(A0(T − t))B0B
∗
0 exp(A∗

0(T − t)) dt

for T ≤ h,
T∫

h

F (T − t)B0B
∗
0F ∗(T − t) dt

+

h∫

0

exp(A0(T−t))B0B
∗
0 exp(A∗

0(T−t)) dt

for T > h.

In the proofs of the main results we shall also use
the relative controllability operator CT (s) and the relative
controllability matrix GT (s), both depending on time s ∈
[0, T ]. The former is defined as

CT (s) = LT (s)L∗
T (s)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T∫

s

exp(A0(T−t))B0B
∗
0 exp(A∗

0(T−t))E{· |Ft} dt

for T ≤ h,
T∫

s

F (T − t)B0B
∗
0F ∗(T − t)E{· | Ft} dt

+

s∫

0

exp(A0(T − t))B0B
∗
0

× exp(A∗
0(T − t))E{· | Ft} dt for T > h.

In turn, the latter is

GT

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T∫

s

exp(A0(T − t))B0B
∗
0 exp(A∗

0(T − t)) dt

for T ≤ h,
T∫

s

F (T − t)B0B
∗
0F ∗(T − t) dt

+

s∫

0

exp(A0(T − t))B0B
∗
0 exp(A∗

0(T − t)) dt

for T > h.

In the theory of dynamic systems with delays in
the control or state variables, it is necessary to distin-
guish between two fundamental concepts of controllabil-
ity, namely, the relative controllability and the absolute
controllability (see, e.g., (Klamka, 1991; Klamka, 1993;
Klamka, 2000) for more details). In this paper we shall
concentrate on the weaker concept of relative controlla-
bility. On the other hand, since for the stochastic dy-
namic system (1) the state space L2(Ω, Ft, R

n) is in fact
an infinite-dimensional space, we distinguish exact (or

strong) controllability and approximate (or weak) control-
lability. Using the above notation for the stochastic dy-
namic system (1) we define the following stochastic rela-
tive exact and approximate controllability concepts:

Definition 1. The stochastic dynamic system (1) is said to
be relatively exactly controllable on [0, T ] if

RT (Uad) = L2(Ω, FT , Rn),

that is, if all the points in L2(Ω, FT , Rn) can be exactly
reached at time T from any arbitrary initial condition x0 ∈
LF

2 ([−h, 0], L2(Ω, FT , Rn)).

Definition 2. The stochastic dynamic system (1) is said to
be relatively approximately controllable on [0, T ] if

RT (Uad) = L2(Ω, FT , Rn),

that is, if all the points in L2(Ω, FT , Rn) can be approxi-
mately reached at time T from any arbitrary initial condi-
tion x0 ∈ LF

2 ([−h, 0], L2(Ω, FT , Rn)).

Remark 1. From Definitions 1 and 2 it directly fol-
lows that the exact relative controllability is generally a
stronger concept than the approximate relative control-
lability. However, it should be mentioned that there are
many cases when these two concepts coincide.

Remark 2. Since the stochastic dynamic system (1) is lin-
ear, without loss of generality in the above two definitions
it is enough to assume the zero initial condition.

Remark 3. It should be pointed out that in the case of de-
layed states or controls the above controllability concepts
depend on the time interval [0, T ].

Remark 4. Since for T ≤ 0 the stochastic dynamic sys-
tem (1) is in fact a dynamic system without delay, we shall
generally assume that T > h.

Remark 5. Since the stochastic dynamic system (1) is
stationary the controllability matrix GT (s) has the same
rank at least for all s ∈ [0, T − h], cf. (Klamka, 1991,
Ch. 4).

Remark 6. From the form of the controllability opera-
tor CT it follows immediately that this operator is self-
adjoint.

In the sequel we study the relationship between the
controllability concepts for the stochastic delayed dy-
namic system (1) and the controllability of the associated
deterministic delayed dynamic system of the following
form:

y′(t)=A0y(t)+A1y(t−h)+B0v(t) for t ∈ [0, T ], (3)

where the admissible control v ∈ L2([0, T ], Rm).
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First of all, following (Klamka, 1991, Ch. 4), we
shall introduce the concept of the so-called “defining
equation” for the deterministic delayed system (3). Let

Qk(t) = A0Qk−1(t) + A1Qk−1(t − h)

for k = 1, 2, 3, . . . and t > 0, with the initial condition

Q0(0) = B0, Q0(t) = 0 for t �= 0.

Thus, for example, the sequence of the n×n dimensional
matrices Qk(t) derived from the determining equation has
the following form:

Q0(0) = B0, Q0(jh) = 0, for j = 1, 2, 3, . . . ,

Q1(0) = A0B0, Q1(h) = A1B0, Q1(jh) = 0,

for j = 2, 3, 4, . . . ,

Q2(0) = A2
0B0, Q2(h) = (A0A1 + A1A0)B0,

Q2(2h) = A2
1B0, Q2(jh) = 0, for j = 2, 3, 4, . . . .

For notational simplicity,write

Qn(t; T )
= {Q0(t), Q1(t), Q2(t), . . . , Qn−1(t), for t ∈ [0, T )}.

Recall the following lemma concerning the relative
controllability of the deterministic delayed system (3) in
the time interval [0, T ]:

Lemma 1. (Klamka, 1991, Ch. 4). The following condi-
tions are equivalent:

(i) the deterministic system (3) is relatively controllable
on [0, T ],

(ii) the controllability matrix GT is nonsingular,

(iii) rankQn(t; T ) = n.

Remark 7. It should be pointed out that for linear, time-
invariant dynamic systems without delays the length of
the time interval [0, T ] is inessential in controllability in-
vestigations. However, for linear time-invariant dynamic
systems with delays the situation is quite different. The
length of the time interval [0, T ] acquires an important
role. For example, for T < h, from the defining equa-
tion we have

Qn(t; T ) = {B0, A0B0, A
2
0B0, . . . , A

n−1
0 B0}.

Hence, by Lemma 1, the relative controllability of a sys-
tem with a delay is equivalent to that of a dynamic system
without delays.

Now, let us formulate the following auxiliary well-
known lemma, which will be used in the sequel in the
proofs of the main results.

Lemma 2. (Mahmudov, 2001; Mahmudov and Denker,
2000; Mahmudov and Zorlu, 2003) For every z ∈
L2(Ω, FT , R

n), there exists a process q ∈ LF
2 ([0, T ],

R
n×n) such that

CT z = GT Ez +

T∫

0

GT (s)q(s) dw(s).

Taking into account the above notation, definitions
and lemmas, in the next section we shall formulate and
prove the conditions for relative exact and relative ap-
proximate controllabilities for the stochastic dynamic sys-
tem (1).

3. Stochastic Relative Controllability

In this section, using the lemmas given in Section 2, we
shall formulate and prove the main result of the paper,
which says that the stochastic relative exact controllability
and, in consequence, also the relative approximate con-
trollability of the stochastic system (1) are in fact equiva-
lent to the relative controllability of the associated linear
deterministic system (3).

Theorem 1. The following conditions are equivalent:

(i) The deterministic system (3) is relatively controllable
on [0, T ],

(ii) The stochastic system (1) is relatively exactly con-
trollable on [0, T ]

(iii) The stochastic system (1) is relatively approximately
controllable on [0, T ].

Proof. (i) ⇒ (ii) Let us assume that the deterministic
system (3) is relatively controllable on [0, T ]. Then it is
well known (see, e.g., (Klamka, 1991; Klamka, 1993) or
(Klamka and Socha, 1977)) that the relative controllability
matrix GT (s) is invertible and strictly positive definite at
least for all s ∈ [0, T − h] (Klamka, 1991, Ch. 4). Hence,
for some γ > 0 we have

〈GT (s)x, x〉 ≥ γ ‖x‖2

for all s ∈ [0, T − h] and for all x ∈ R
n. To prove the rel-

ative exact controllability of the stochastic system (1) on
[0, T ], we use the relationship between the the controlla-
bility operator CT and the controllability matrix GT given
in Lemma 2 to write E 〈CT z, z〉 in terms of 〈GT Ez, Ez〉.

First of all, we obtain

E 〈CT z, z〉 = E
〈
GT Ez +

T∫

0

GT (s)q(s) dw(s),

Ez +

T∫

0

q(s) dw(s)
〉
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= 〈GT Ez, Ez〉 + E

T∫

0

〈GT (s)q(s), q(s)〉 ds

≥ γ

⎛

⎝‖Ez‖2 + E

T∫

0

‖q(s)‖2 ds

⎞

⎠

= γE ‖z‖2
.

Hence, in the operator sense, we have CT ≥ γI ,
which means that the relative controllability operator CT

is strictly positive definite and, consequently, that the in-
verse linear operator C−1

T is bounded. Therefore, the
stochastic relative exact controllability of the stochastic
dynamic system (1) on [0, T ] directly follows from the
results given in (Klamka, 1991, Ch. 3). Moreover, in
the next section, using the fact that the operator C−1

T is
bounded, we shall construct a control u0(t), t ∈ [0, T ]
which steers the stochastic dynamic system (1) from a
given initial state x0 to a desired final state xT at time
T .

(ii) ⇒ (iii) This implication is obvious (see, e.g., (Klamka,
1991; Mahmudov, 2001; Mahmudov, 2002; Mahmudov,
2003, Ch. 3)).

(iii) ⇒ (i) Assume that the stochastic dynamic system (1)
is stochastically relatively approximately controllable on
[0, T ], and hence its controllability operator is positive
definite, i.e., CT > 0 (Klamka, 1991, Ch. 3). Then, using
the resolvent operator R(λ, CT ) and following directly the
functional analysis method given in (Mahmudov, 2001;
Mahmudov and Denker, 2000; Mahmudov and Zorlu,
2003) for stochastic dynamic systems without delays, we
obtain that the deterministic system (3) is approximately
relatively controllable on [0.T ]. However, taking into ac-
count that the state space for the deterministic dynamic
system (3) is finite dimensional, i.e., exact and approxi-
mate controllabilities coincide (Klamka, 1991, Ch. 3), we
conclude that the deterministic dynamic system (3) is rel-
atively controllable on [0.T ].

Remark 8. Let us observe that for a special case when
T ≤ h, the stochastic relative exact or relative approxi-
mate controllability problems in [0, T ] for a stochastic dy-
namic system with a delay in the state variables (1) are
reduced to the standard stochastic exact or approximate
controllability problems for a stochastic dynamic system
without delays in the control (Klamka, 1991, Ch. 4).

Corollary 1. (Mahmudov, 2001; Mahmudov and Denker,
2000) Suppose that T ≤ h. Then the stochastic dynamic
control system (1) is stochastically relatively exactly con-
trollable in [0, T ] if and only if

rank[B0, AB0, A
2B0, . . . , A

n−1B0] = n.

Corollary 2. (Mahmudov and Denker, 2000). A stochas-
tic dynamic system without delay (A1 = 0) is stochasti-
cally exactly controllable in any time interval if and only
if the associated deterministic dynamic system without de-
lay is controllable.

4. Minimum Energy Control

The minimum energy control problem is strongly con-
nected with the controllability concept (see, e.g., (Klamka,
1991) for more details). First of all, observe that for an
exactly controllable linear control system on [0, T ] there
exist in general many different admissible controls u(t),
defined for t ∈ [0, T ] and transferring the initial state x0 to
the desired final state xT at a given time T . Therefore, we
may ask which of these possible admissible controls is an
optimal one according to a given criterion. In the sequel,
we shall consider the minimum energy control problem
for the stochastic dynamic system (1) with the optimality
criterion representing the energy of control. This optimal-
ity criterion has the following form:

J(u) = E

T∫

0

‖u(t)‖2 dt.

Theorem 2. Assume that the stochastic dynamic sys-
tem (1) is relatively exactly controllable on [0, T ]. Then,
for an arbitrary final state xT ∈ L2(Ω, FT , Rn) and an
arbitrary matrix σ, the admissible control

u0(t) = B∗
0F ∗(T − t)E

{

C−1
T

(

xT − x(T ; x0, 0)

−
T∫

0

F (T − s)σ dw(s)

)

| Ft

}

defined for t ∈ [0, T ] transfers the delayed dynamic sys-
tem (1) from a given initial state x0 ∈ L2([−h, 0], Rn) to
the final state xT at time T .

Moreover, among all admissible controls ua(t) trans-
ferring the initial state x0 to the final state xT at time T ,
the control u0(t) minimizes the integral performance in-
dex

J(u) = E

T∫

0

‖u(t)‖2 dt.

Proof. First of all, observe that, since the stochastic
dynamic system (1) is relatively exactly controllable on
[0, T ], the controllability operator CT is invertible and its
inverse C−1

T is a bounded linear operator, i.e., C−1
T ∈

L(L2(Ω, FT , Rn), L2(Ω, FT , Rn)). Moreover,

x(t; x0, u) = x(t; x0, 0) +

t∫

0

F (t − s)B0u(s) ds

+

t∫

0

F (t − s)σ dw(s).
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Substituting the control u0(t), t ∈ [0, T ] into the gen-
eral integral formula for the solution, one can easily obtain

x(t; x0, u
0) = x(t; x0, 0)

+

t∫

0

F (t − s)B0B
∗
0F ∗(t − s)E

{

C−1
T

×
(

xT −x(T ; x0, 0)−
T∫

0

F (T−s)σ dw(s)

)}

|Fs ds

+

t∫

0

F (t − s)σ dw(s).

Hence, for a given final time t = T , we simply have the
following equality:

x(T ; x0, u
0) = x(T ; x0, 0)

+

T∫

0

F (T − s)B0B
∗
0F ∗(t − s)E

{

C−1
T

×
(

xT −x(T ; x0, 0)−
T∫

0

F (T−s)σ dw(s)

)}

|Fs ds

+

T∫

0

F (T − s)σ dw(s).

Thus, taking into account the form of the operator
CT , we have

x(T ; x0, u
0) = x(T ; x0, 0)

+ CT C−1
T

(

xT −x(T ; x0, 0)−
T∫

0

F (T−s)σ dw(s)

)

+

T∫

0

exp(A(T − s))σ dw(s)

= x(T ; x0, 0) + xT − x(T ; x0, 0)

−
T∫

0

F (T − s)σ dw(s) +

T∫

0

F (T − s)σ dw(s)

= xT .

Therefore, for t = T we see that the control u0(t) trans-
fers the system from the initial state x0 ∈ L2(Ω, FT , Rn)
to the final state xT ∈ L2(Ω, FT , Rn) at time T .

In the second part of the proof, using a general
method presented in (Klamka, 1991, Ch. 1), we shall show
that the control u0(t), t ∈ [0, T ] is optimal for the perfor-
mance index J . To this end, suppose that u′(t), t ∈ [0, T ]
is any other admissible control which also steers the initial
state x0 to the final state xT at time T . Hence, since the

delayed dynamic system (1) is relatively exactly control-
lable on [0, T ], using the relative controllability operator
defined in Section 2, we have

LT (u0(·)) = LT (u′(·)).

Using the basic properties of the scalar product in R
n

and the form of the relative controllability operator LT ,
we obtain

E

T∫

0

〈
(u′(t) − u0(t)), u0(t)

〉
dt = 0.

Moreover, using once again the basic properties of the
scalar product in R

n, we have

E

T∫

0

‖u′(t)‖2 dt

= E

T∫

0

∥
∥u′(t) − u0(t)

∥
∥2

dt + E

T∫

0

∥
∥u0(t)

∥
∥2

dt.

Since

E

T∫

0

∥
∥u′(t) − u0(t)

∥
∥2

dt ≥ 0,

we conclude that, for any admissible control u′(t), t ∈
[0, T ],

E

T∫

0

∥
∥u0(t)

∥
∥2

dt ≤ E

T∫

0

‖u′(t)‖2 dt.

Hence the control u0(t), t ∈ [0, T ] is optimal control for
the performance index J , and thus it is a minimum energy
control.

5. Example

As a simple illustrative example, consider a stochastic de-
layed dynamic control system of the form (1) defined in a
given time interval [0, T ], T > 1, with one constant point
delay h = 1, with an arbitrary 3 × 3 dimensional matrix
σ, and with the following constant matrices:

A0 =

⎡

⎢
⎣

1 0 0
0 1 0
0 0 1

⎤

⎥
⎦ , A1 =

⎡

⎢
⎣

−1 1 0
1 0 1
0 1 1

⎤

⎥
⎦ ,

B0 =

⎡

⎢
⎣

0 0
1 0
0 1

⎤

⎥
⎦ .
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Hence, n = 3, m = 2 and

Q3(t; T ) = {Q0(t), Q1(t), Q2(t), for t ∈ [0, T )}.

Moreover, using the notation given in Section 2, we have

Q3(t; T )

=
[

Q0(0)
|
| Q1(0)

|
| Q1(h)

|
| Q2(0)

|
| Q2(h)

|
| Q2(2h)

]

=
[

B0
|
| A0B0

|
| A1B0

|
| A2

0B0
|
| (A0A1+A1A0)B0

|
| A2

1B0

]
.

Substituting the matrices A0, A1, and B0 given
above, we easily obtain

rankQ3(t; T )

= rank

⎡

⎢
⎢
⎣

0 0 |
| 0 0 |

| 1 0 |
| 0 0 |

| 2 0 |
| −1 1

1 0 |
| 1 0 |

| 0 1 |
| 1 0 |

| 0 2 |
| 0 1

0 1 |
| 0 1 |

| 1 1 |
| 0 1 |

| 2 4 |
| 2 1

⎤

⎥
⎥
⎦

= 3 = n.

Hence, by Lemma 1, the deterministic system with delay
is relatively controllable in each time interval [0, T ] for
T > 1. Therefore, by Theorem 1, the stochastic dynamic
system with delay is stochastically relatively exactly con-
trollable in each time interval [0, T ] for T > 1.

However, since

rank
[

B0
|
| A0B0

|
| A2

0B0

]

= rank

⎡

⎢
⎢
⎣

0 0 |
| 0 0 |

| 0 0
1 0 |

| 1 0 |
| 1 0

0 1 |
| 0 1 |

| 0 1

⎤

⎥
⎥
⎦ = 2 < 3 = n,

the deterministic system without delay is not controllable
in any time interval and thus the deterministic system with
delay is not relatively controllable in [0, T ] for T ≤ 1.
Therefore, by Corollary 1 the stochastic delayed system
is not stochastically relatively exactly controllable in each
time interval [0, T ] for T ≤ 1.

6. Concluding Remarks

In the paper, sufficient conditions for the stochastic rel-
ative exact controllability of a linear stationary finite-
dimensional stochastic dynamic control system with a sin-
gle constant point delay in the control have been formu-
lated and proved. It should be pointed out that these
conditions extend the stochastic exact controllability con-
ditions for dynamic control systems without delays re-
cently published in the papers (Mahmudov, 2001; Mah-
mudov, 2002; Mahmudov and Denker, 2000) to the case
of a constant point delay in the state variables. Finally, it

should be pointed out that, using standard techniques pre-
sented, e.g., in the monograph (Klamka, 1991, Ch. 4), it
is possible to extend the results presented in this paper to
nonstationary linear stochastic control systems with many
time variable point delays in the state variables or in the
control. Extensions to stochastic absolute exact and ap-
proximate controllabilities are also possible.
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