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A new direct method is presented which reduces a given high-order representation of a control system with delays to a first-
order form that is encountered in the study of neutral delay-differential systems. Using the polynomial system description
(PMD) setting due to Rosenbrock, it is shown that the transformation connecting the original PMD with the first-order form
is Fuhrmann’s strict system equivalence. This type of system equivalence leaves the transfer function and other relevant
structural properties of the original system invariant.
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1. Introduction

One of the most basic procedures in control systems
theory is to transform a given system of differential or
difference equations into a low-order form which is sim-
pler but equivalent to the original system. The objective
is to make identification, analysis and synthesis easier.
The transformation involved, however, must preserve
the relevant system properties such as controllability,
observability and minimality if the conclusions about the
reduced system are to remain valid about the original
one. For systems described by ordinary differential or
difference equations, Rosenbrock (1970) introduced the
concept of polynomial matrix description (PMD). The
resulting matrix has elements which are polynomials
in a single indeterminate. He also introduced the no-
tion of strict-system-equivalence between polynomial
system matrices. However, a more general definition
of strict-system-equivalence was given by Fuhrmann
(1977) and this may be regarded mathematically as
the equivalence of two polynomial system matrices
through the multiplication of zero coprime matrices.
For delay-differential control systems, the resulting
PMD is a two-variable polynomial matrix, i.e. it has
elements which are polynomials in two indeterminates.
In fact, over the recent years, multivariate polynomial
matrices have found many applications in n-D circuits,
systems, controls, signal processing and other areas.

The problem of reducing a two-variable PMD to a
first order form describing delay-differential systems was
first studied by Pugh et al. (1998a). Their method in-
volves the construction of certain block polynomial ma-
trices from which factors have to be removed to ensure
that the resulting transformations are polynomial. Fur-
thermore, the equivalence transformation involved could
not be set out directly in terms of the given initial poly-
nomial matrix. A two-stage method for the reduction of a
two-variable polynomial matrix to first order form used
in the study of singular Roesser type 2-D discrete sys-
tems was given by Pugh et al. (2005a), and for singular
Fornasini-Marchesini type 2-D discrete systems a direct
method was given by Boudellioua (2006). In this paper,
a new direct method similar to the one given in (Pugh
et al., 2005a; Boudellioua, 2006) is proposed for a class
of delay-differential systems. The resulting PMD is one
which arises in the theory of neutral delay-differential sys-
tems as studied by Byrnes et al. (1984). The transforma-
tion connecting the original and final PMDs is shown to
be that of Fuhrmann’s strict system equivalence (F-SSE).
This type of equivalence, also referred to as zero coprime
system equivalence, was studied in the context of multi-
dimensional systems by Levy (1981), Johnson (1993) and
Pugh et al. (1996), and was shown to preserve many of the
relevant original system properties. Furthermore, it was
shown by Pugh et al. (1998b; 2005a) and Boudellioua
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(2006) that this transformation plays an important role in
a number of areas of multidimensional systems theory.

2. Polynomial Matrix Descriptions and
Equivalence

Consider the following first order system described by
the following neutral delay-differential equations given by
Byrnes et al. (1984):

p∑

i=0

Eiẋ(t−ih) =
w∑

i=0

Aix(t−ih)+
l∑

j=0

Bju(t−jh),

y(t) =
r∑

k=0

Ckx(t−kh)+
v∑

n=0

Dnu(t−nh),

(1)

where x(t) is the state vector, u(t) denotes the input vec-
tor, y(t) signifies the output vector, h is a positive real
constant, the matrices Ei, Ai, Bj , Ck and Dn are constant
real matrices of appropriate dimensions and Ei may be
singular. Then the system (1) can be written in the poly-
nomial matrix form
[

ρE(σ) − A(σ) B(σ)
−C(σ) D(σ)

][
x(t)

−u(t)

]
=

[
0

−y(t)

]
,

(2)
where ρ = d/dt denotes the differential operator and σ a
backward shift operator, i.e., σx(t) = x(t− h), and E(σ)
may be singular.

The polynomial matrix

PF (ρ, σ) =

[
ρE(σ) − A(σ) B(σ)

−C(σ) D(σ)

]
(3)

is called a polynomial matrix description (PMD) in the
first-order form associated with the system (1).

A more general description than (3) having an arbi-
trary but fixed order is given by the PMD

P (ρ, σ) =

[
T (ρ, σ) U(ρ, σ)

−V (ρ, σ) W (ρ, σ)

]
, (4)

where T (ρ, σ), U(ρ, σ), V (ρ, σ) and W (ρ, σ) are r × p,
r×n, m×p and m×n polynomial matrices, respectively.

A matrix description (4) in which T (ρ, σ) has full
row rank and V (ρ, σ) = H(ρ, σ)T (ρ, σ) for some rational
matrix H(ρ, σ) is called an admissible matrix description
and its transfer function is

G(ρ, σ) = H(ρ, σ)U(ρ, σ) + W (ρ, σ). (5)

A basic transformation proposed for the study of sys-
tems described by (4) is Fuhrmann’s strict system equiv-
alence (F-SSE) as given by Levy (1981) and Johnson

(1993). This transformation is based on zero coprime
equivalence (ZC-E) characterized by the following defi-
nition.

Definition 1. Two polynomial matrices P1(ρ, σ) and
S1(ρ, σ), of appropriate dimensions, are said to be zero
left coprime (ZLC) if the matrix

[
P1(ρ, σ) S1(ρ, σ)

]
(6)

has full rank for all (ρ, σ) ∈ C2. Similarly, P2(ρ, σ)
and S2(ρ, σ) of appropriate dimensions are said to be zero
right coprime (ZRC) if the matrix

[
PT

2 (ρ, σ) ST
2 (ρ, σ)

]T

(7)

has full rank for all (ρ, σ) ∈ C2.

As in the ordinary-differential case, the zero structure
of a multidimensional system is a crucial indicator of sys-
tem behavior. It was shown by Zerz (2000) that the con-
trollability and observability of a multidimensional sys-
tem is strongly connected to the zero structure of the asso-
ciated polynomial matrix. This zero structure is captured
by the determinantal ideals defined by the following.

Definition 2. The i-th order determinantal ideal I [P ]
i of

a polynomial matrix P (ρ, σ) ∈ Rr1×r2 [ρ, σ] is defined to
be the ideal generated by the i-th order minors of P (ρ, σ).

The determinantal ideals

I [P ]
i , i = 1, 2, . . . , min(r1, r2)

satisfy the following inclusion:

R[ρ, σ] ⊇ I [P ]
1 ⊇ I [P ]

2 ⊇ . . .I [P ]
μ , (8)

where μ is the normal rank of P (ρ, σ).

Example 1. Consider the two-variable polynomial ma-
trix given by

P (ρ, σ) =

[
ρ2 0 ρ

0 σ2 ρσ

]
. (9)

The ideals generated by the first and second order minors
are

I [P ]
2 = 〈ρ3σ, ρσ2〉,

I [P ]
1 = 〈ρ, σ2〉. (10)

It is clear that I [P ]
1 ⊃ I [P ]

2 as every element of I [P ]
2 can

be expressed in terms of elements of I [P ]
1 . �

Definition 3. Let P(m, n) denote the class of (r + m) ×
(r + n) admissible PMDs where m, n are fixed positive
integers and r > −min(m, n). Two PMDs P1(ρ, σ) and



Equivalence and reduction of delay–differential systems 17

P2(ρ, σ) are said to be ZC-E if there exist polynomial ma-
trices S1(ρ, σ), S2(ρ, σ) of appropriate dimensions such
that

S2(ρ, σ)P1(ρ, σ) = P2(ρ, σ)S1(ρ, σ), (11)

where P1(ρ, σ), S1(ρ, σ) are ZLC and P2(ρ, σ), S2(ρ, σ)
are ZRC.

In (Pugh et al., 1996; Pugh et al., 2005b), it was
shown that ZC-E reveals some fundamental algebraic
properties amongst its invariants.

Lemma 1. (Pugh et al., 2005b) Suppose that two polyno-
mial matrices P (ρ, σ) and Q(ρ, σ) ∈ P(m, n) are ZC-E.
Let

I [P ]
j , ∀j = 1, . . . , h = min(r[P ] + m, r[P ] + n), (12)

denote the determinantal ideal of order j generated by the
j × j minors of P (ρ, σ), and

I [Q]
i , ∀i = 1, . . . , k = min(r[Q] + m, r[Q] + n), (13)

denote the determinantal ideal of order i generated by the
i × i minors of Q(ρ, σ).

Then

I [P ]
h−i = I [Q]

k−i, ∀i = 0, . . . , h̄, (14)

where h̄ = min(h − 1, k − 1), and

I [P ]
h−i = 〈1〉, ∀i > h (15)

or
I [Q]

k−i = 〈1〉 if i < h or i < k. (16)

The transformation of F-SSE, which is a special case
of ZC-E, is used in the reduction of multivariate PMDs
and is defined by the following.

Definition 4. Two polynomial system matrices P1(ρ, σ)
and P2(ρ, σ) ∈ P(m, n) are said to be F-SSE if they are
related by the following:
[

M(ρ, σ) 0
X(ρ, σ) Im

]

︸ ︷︷ ︸
S1(ρ,σ)

[
T1(ρ, σ) U1(ρ, σ)

−V1(ρ, σ) W1(ρ, σ)

]

︸ ︷︷ ︸
P2(ρ,σ)

=

[
T2(ρ, σ) U2(ρ, σ)

−V2(ρ, σ) W2(ρ, σ)

]

︸ ︷︷ ︸
P1(ρ,σ)

[
N(ρ, σ) Y (ρ, σ)

0 In

]

︸ ︷︷ ︸
S2(ρ,σ)

,

(17)

where P1(ρ, σ), S1(ρ, σ) are ZLC, P2(ρ, σ), S2(ρ, σ) are
ZRC, and M(ρ, σ), N(ρ, σ), X(ρ, σ) and Y (ρ, σ) are
polynomial matrices of appropriate dimensions.

In the case when the system matrices
P1(ρ, σ), P2(ρ, σ) have the same size and the matri-
ces M(ρ, σ), N(ρ, σ) are unimodular, the transformation
in (17) is called Rosenbrock’s strict system equivalence
(R-SSE). Clearly, R-SSE is a special case of F-SSE. In
fact, the latter can be generated from the former together
with a trivial expansion or deflation of the PMDs.
However, it should be pointed out here that, unlike in
the single variable case, two PMDs which are R-SSE
cannot be always obtained from each other by a finite
sequence of elementary row or column operations, see
(Sebek, 1988).

Lemma 2. (Johnson, 1993) The transformation of F-SSE
given in (17) preserves the transfer function of P (ρ, σ)
and, in the sense described in Lemma 1, the determinantal
ideals of the matrices

T (ρ, σ), P (ρ, σ),
[
T (ρ, σ) U(ρ, σ)

]
,

[
T (ρ, σ)

−V (ρ, σ)

]
.

(18)

3. Reduction to the First Order

Let P (ρ, σ) be a two-variable PMD given by (4), with
s = r + m and z = r + n. First write P (ρ, σ) as

P (ρ, σ) =
q∑

i=0

Pi(σ)ρi

= P0(σ)ρ0 + P1(σ)ρ1 + · · · + Pq(σ)ρq , (19)

where Pi(σ), i = 0, 1, . . . , q are s×z polynomial matrices
and q = degρ P (ρ, σ), i.e., the degree of P (ρ, σ) in ρ.

Now construct the block polynomial matrices

E(σ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −Iz . . . 0 0 0
0 0 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . 0 −Iz 0
Pq(σ) Pq−1(σ) . . . P2(σ) P1(σ) 0

0 0 . . . 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)
and

A(σ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Iz 0 . . . 0 0 0
0 −Iz . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . −Iz 0 0
0 0 . . . 0 −P0(σ) Zm

0 0 . . . 0 Zn 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(21)

where Zn =
[

0n,r In

]
and ZT

m =
[

0m,r Im

]
.
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Theorem 1. Let P (ρ, σ) be a PMD given by (19)
and the matrices E(σ) and A(σ) be constructed as in
(20) and (21), respectively. Then the [(zq + m) + m] ×
[(zq + m) + n] PMD in the first-order form (3)

Q(ρ, σ) =

⎡

⎢⎢⎢⎣

ρE(σ) − A(σ)

[
0(zq+m−n),n

In

]

[
0m,zq −Im

]
0

⎤

⎥⎥⎥⎦,

(22)
is F-SSE with P (ρ, σ).

Proof. First prove that Q(ρ, σ) is related to the original
PMD, P (ρ, σ), by the following:

S1(ρ, σ)P (ρ, σ) = Q(ρ, σ)S2(ρ, σ), (23)

where

S1(ρ, σ) =

⎡

⎢⎢⎢⎣

0z(q−1),r 0z(q−1),m

Ir 0r,m

0(m+n),r 0(m+n),m

0m,r Im

⎤

⎥⎥⎥⎦ ,

and

S2(ρ, σ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρq−1Iz

ρq−2Iz

...

Iz

−V (ρ, σ) W (ρ, σ)
0n,r In

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

The matrix Q(ρ, σ) in (22) can be represented in the form

Q(ρ, σ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iz −ρIz · · · 0 0 0 0
0 Iz · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 0 · · · Iz −ρIz 0 0
α β · · · γ δ −Zm 0
0 0 · · · 0 −Zn 0 In

0 0 · · · 0 0 −Im 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

where α = ρPq(σ), β = ρPq−1(σ), γ = ρP2(σ), δ =
ρP1(σ) + P0(σ).

From this it can be easily deduced that

S1(ρ, σ)P (ρ, σ) = Q(ρ, σ)S2(ρ, σ)

=

⎡

⎢⎢⎢⎣

0z(q−1),r 0z(q−1),n

T (ρ, σ) U(ρ, σ)
0m+n,r 0m+n,n

−V (ρ, σ) W (ρ, σ)

⎤

⎥⎥⎥⎦. (26)

Now it remains to prove that Q(ρ, σ), S1(ρ, σ) are
ZLC and P (ρ, σ), S2(ρ, σ) are ZRC. This follows from
the fact that the highest-order minor of the matrix

[
Q(ρ, σ) S1(ρ, σ)

]
, (27)

obtained by deleting the columns z(q − 1) + 1, . . . , zq,
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Iz −ρIz · · · 0 0 0 0
0 Iz · · · 0 0 0 0
...

...
. . .

...
...

...
...

0 0 · · · Iz 0 0 0
ρPq(σ) ρPq−1(σ) · · · ρP2(σ) 0 Er 0

0 0 · · · 0 In 0 0
0 0 · · · 0 0 0 Im

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (28)

where ET
r =

[
Ir 0r,m

]
, is equal to ±1.

Similarly, the matrix

[
P (ρ, σ)
S2(ρ, σ)

]
:=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P (ρ, σ)
ρq−1Iz

ρq−2Iz

...

Iz

−V (ρ, σ) W (ρ, σ)
0n,r In

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

clearly contains a block identity matrix Iz , therefore it has
a highest order minor equal to 1. �

It is interesting to note that the resulting first-order
form obatined in (22) involves delays only in the state
variables. Furthermore, from the computational aspect,
Q(σ, ρ) can be obtained from P (ρ, σ) in a simple manner,
as shown by the following result.

Theorem 2. The first-order form Q(σ, ρ) in (22) can be
obtained from P (ρ, σ) in (4) by using a trivial expansion
on P (ρ, σ) followed by a finite sequence of elementary
row and column operations.

Proof. Let PE(ρ, σ) denote the trivial expansion of
P (ρ, σ), such that PE(ρ, σ) have the same size as Q(ρ, σ),
i.e.,

PE(ρ, σ) =

[
Izq+m−r 0

0 P (ρ, σ)

]
. (30)

Clearly, PE(ρ, σ) and P (ρ, σ) are F-SSE since they are
related by the following transformation:

[
0

Ir+n

]
P (ρ, σ) = PE(ρ, σ)

[
0

Ir+m

]
. (31)
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Now let PN (ρ, σ) denote the normalized PMD of P (ρ, σ)
given by

PN (ρ, σ) =

⎡

⎢⎢⎢⎣

I 0 0 0
0 P (ρ, σ) −Zm 0
0 −ZT

n 0 In

0 0 Im 0

⎤

⎥⎥⎥⎦

:=

⎡

⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0
0 T (ρ, σ) U(ρ, σ) 0 0
0 −V (ρ, σ) W (ρ, σ) Im 0
0 0 −In 0 In

0 0 0 Im 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(32)

PE(ρ, σ) in (30) and PN (ρ, σ) in (32) are related by the
following R-SSE:

PE(ρ, σ) = EL(ρ, σ)PN (ρ, σ)ER(ρ, σ), (33)

where

EL(ρ, σ) =

⎡

⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0
0 0 −I −W (ρ, σ) 0
0 0 0 −I 0
0 I 0 U(ρ, σ) 0
0 0 I W (ρ, σ) I

⎤

⎥⎥⎥⎥⎥⎥⎦
(34)

and

ER(ρ, σ) =

⎡

⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0
0 0 0 I 0
0 0 I 0 I

0 I 0 −V (ρ, σ) W (ρ, σ)
0 0 0 0 I

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(35)
Clearly, EL(ρ, σ) and ER(ρ, σ) are unimodular and can
be generated by a finite sequence of elementary row and
column operations, respectively, since each contains a
block identity matrix in all rows and in all column po-
sitions.

On the other hand, PN (ρ, σ) and Q(ρ, σ) are related
by the R-SSE

PN (ρ, σ) = FL(ρ, σ)Q(ρ, σ)FR(ρ, σ), (36)

where

FL(ρ, σ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 . . . 0 0 0 0
0 0 . . . 0 0 0 0
...

...
. . .

...
...

...
...

0 0 . . . I 0 0 0
−ρPq(σ) ζ . . . ξ I 0 0

0 0 . . . 0 0 I 0
0 0 . . . 0 0 0 I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(37)
where ζ = −ρPq−1(σ), ξ = −ρPq−2(σ), and

FR(ρ, σ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I ρ 0 . . . 0 0
0 I ρ . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . ρ 0
0 0 0 . . . I 0
0 0 0 . . . 0 I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

Again, FL(ρ, σ) and FR(ρ, σ) are unimodular matrices
which can be generated by a finite sequence of elemen-
tary row and column operations, respectively, since each
contains a block identity matrix in all rows and in all col-
umn positions.

It follows that Q(ρ, σ) in (22) can be obtained from
PE(ρ, σ) in (30) by a finite sequence of elementary row
and column operations since they are related by the fol-
lowing R-SSE:

Q(ρ, σ) = F−1
L (ρ, σ)E−1

L (ρ, σ)PE(ρ, σ)
× E−1

R (ρ, σ)F−1
R (ρ, σ). (39)

4. Example

Consider the single-input-single-output second-order sys-
tem described by the following delay-differential equa-
tions:

ẍ(t) = −ẍ(t − 2h) + 2ẋ(t − 2h) − ẋ(t − h)
− 3ẋ(t) + ü(t − 2h) − ü(t − h)
− u̇(t − 2h) + 2u̇(t) + u(t − 2h) − u(t − h),

y(t) = −ẍ(t − 2h) + 2ẍ(t) + ẋ(t − 2h)
− ẋ(t − h) + 4ẋ(t) + x(t) + 2ü(t − 2h)
− ü(t − h) + 5u̇(t − h) + u(t − 2h)
− u(t − h) + 3u(t), (40)

where x(t) is the state variable, u(t) denotes the input
variable, y(t) signifies the output variable and h is a pos-
itive real constant. Then the PMD associated with (40) is
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given by

P (ρ, σ) :=

[
TP (ρ, σ) UP (ρ, σ)
−VP (ρ, σ) WP (ρ, σ)

]
, (41)

where

TP (ρ, σ) = (σ2 + 1)ρ2 − (2σ2 − σ − 3)ρ
+ σ2 − 4σ + 1,

UP (ρ, σ) = (σ2 − σ)ρ2 − (σ2 − 2)ρ + σ2 − σ,

VP (ρ, σ) = −(σ + 2)ρ2 + (σ2 − σ)ρ + 4σ + 1,

WP (ρ, σ) = (2σ2 − σ)ρ2 + 5σρ + σ2 − σ + 3.

Here r = 1, m = n = 1, q = 2 and s = z = 2.

Using Maple, the transfer function G[P ](ρ, σ) of
P (ρ, σ) is given by

G[P ](ρ, σ)
= [(σ2+1)ρ2−(2σ2−σ − 3)ρ + σ2 − 4σ+1]−1

× [−(σ3+σ2−2σ)ρ4

+ (σ4−σ3+3σ2 − 2σ − 4)ρ3−(σ4−4σ3+2σ)ρ2

+ (σ4−6σ3+13σ+2)ρ+4σ3−2σ2−2σ+3]. (42)

The reduced Gröbner bases of the determinantal ideals
generated by the minors of the matrices in Lemma 1 asso-
ciated with P (ρ, σ) are given by

I [ TP UP ]
1 + = 〈σ8 − 2σ7 + 11σ6 − 32σ5 + 39σ4,

− 2σ3 − 19σ2 − 4σ + 4, 16ρ + 3σ7

− 6σ6 + 35σ5 − 98σ4 + 137σ3

− 50σ2 − 27σ + 10〉,

I
�

TP
−VP

�

1 = 〈σ8 + 17σ6 − 35σ5 + 22σ4 + 103σ3

− 29σ2 − 114σ − 9,

179880ρ + 1879σ7 − 1563σ6

+ 37934σ5 − 93203σ4 + 202249σ3

− 68516σ2 − 12719σ + 102237〉,
I [P ]

1 = 〈1〉,
I [P ]

2 = 〈(2σ4 − 2σ3 + σ2 + σ)
× ρ4

(−3σ4 + 8σ3 + 8σ2 − 4
)
ρ3

+
(
2σ4 − 16σ3 + 13σ2 + 12σ + 3

)
ρ2

− (
σ4 − 2σ3 + 24σ2 − 13σ − 11

)
ρ

+ σ4 − σ3 + 5σ2 − 14σ + 3〉. (43)

Writing P (ρ, σ) in the form (19), we have

P (ρ, σ) =

[
σ2 − 4σ + 1 σ2 − σ

−4σ − 1 σ2 − σ + 3

]

︸ ︷︷ ︸
P0(σ)

ρ0

+

[
−2σ2 + σ + 3 −σ2 + 2

−σ2 + σ 5σ

]

︸ ︷︷ ︸
P1(σ)

ρ1

+

[
σ2 + 1 σ2 − σ

σ + 2 2σ2 − σ

]

︸ ︷︷ ︸
P2(σ)

ρ2.

Then, constructing the 6 × 6 PMD in the first-order
form Q(ρ, σ) corresponding to (22) gives

Q(ρ, σ) :=

[
TQ(ρ, σ) UQ(ρ, σ)
−VQ(ρ, σ) WQ(ρ, σ)

]

=

⎡

⎢⎢⎢⎣

I2 −ρI2 0 0
ρP2(σ) ρP1(σ) + P0(σ) −Z1 0

0 −ZT
1 0 1

0 0 1 0

⎤

⎥⎥⎥⎦ .

(44)

The matrices E(σ) and A(σ) corresponding respectively
to (20) and (21) are given by

E(σ) =

⎡

⎢⎣
0 −I2 0

P2(σ) P1(σ) 0
0 0 0

⎤

⎥⎦ ,

A(σ) =

⎡

⎢⎣
−I2 0 0
0 −P0(σ) Z1

0 ZT
1 0

⎤

⎥⎦ . (45)

By virtue of Theorem 1, the polynomial matrix
P (ρ, σ) in (41) and the corresponding PMD in the first-
order form Q(ρ, σ) in (44) are related by an F-SSE of the
form (23), with

S1(ρ, σ) =

⎡

⎢⎢⎢⎣

02,1 02,1

1 0
02,1 02,1

0 1

⎤

⎥⎥⎥⎦ ,

S2(ρ, σ) =

⎡

⎢⎢⎢⎣

ρI2

I2

−VP (ρ, σ) WP (ρ, σ)
0 1

⎤

⎥⎥⎥⎦ . (46)
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In fact, it can be easily verified that

S1(ρ, σ)P (ρ, σ) = Q(ρ, σ)S2(ρ, σ)

=

⎡

⎢⎢⎢⎣

02,1 02,1

TP (ρ, σ) UP (ρ, σ)
02,1 02,1

−VP (ρ, σ) WP (ρ, σ)

⎤

⎥⎥⎥⎦, (47)

where TP (ρ, σ), UP (ρ, σ), VP (ρ, σ) and WP (ρ, σ) are
given by (42).

The matrices Q(ρ, σ), S1(ρ, σ) are ZLC and the
matrices P (ρ, σ), S2(ρ, σ) are ZRC since the matrix
[Q(ρ, σ) S1(ρ, σ)] has the highest order minor

∣∣∣∣∣∣∣∣∣

I2 02,1 02,1 02,1 02,1

ρP2(σ) −Z1 0 E2 02,1

0 0 1 0 0
0 1 0 0 1

∣∣∣∣∣∣∣∣∣

(48)

which is equal to 1.

Similarly, the matrix

[
P (ρ, σ)
S2(ρ, σ)

]
:=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TP (ρ, σ) UP (ρ, σ)
−VP (ρ, σ) WP (ρ, σ)

ρ 0
0 ρ

1 0
0 1

−VP (ρ, σ) WP (ρ, σ)
0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)

contains a block identity matrix and therefore has a
highest order minor which is equal to 1.

The transfer function G[Q](ρ, σ) of Q(ρ, σ) is given
by

G[Q](ρ, σ)

=
[
(σ2+1)ρ2−(2σ2−σ − 3)ρ+σ2−4σ+1

]−1

× [−(σ3+σ2−2σ)ρ4

+ (σ4−σ3+3σ2−2σ−4)ρ3−(σ4−4σ3+2σ)ρ2

+ (σ4−6σ3+13σ+2)ρ+4σ3−2σ2−2σ+3]
= G[P ](ρ, σ) (50)

and the reduced Gröbner bases of the determinantal ideals
generated by the minors of the matrices in Lemma 1 asso-

ciated with Q(ρ, σ) are given by

I [ TQ UQ ]
i = 〈1〉, i = 1, . . . , 4,

I [ TQ UQ ]
5 = 〈σ8 − 2σ7 + 11σ6 − 32σ5 + 39σ4,

− 2σ3 − 19σ2 − 4σ + 4,

16ρ + 3σ7 − 6σ6 + 35σ5 − 98σ4

+ 137σ3 − 50σ2 − 27σ + 10〉
= I [TP UP ]

1 ,

I
�

TQ

−V Q

�

i = 〈1〉, i = 1, . . . , 4,

I
�

TQ

−V Q

�

5 = 〈σ8 + 17σ6 − 35σ5 + 22σ4 + 103σ3

− 29σ2 − 114σ − 9,

179880ρ + 1879σ7 − 1563σ6

+ 37934σ5 − 93203σ4 + 202249σ3

− 68516σ2 − 12719σ + 102237〉
= I [T T

P −V T
P ]T

1 ,

I [Q]
j = 〈1〉, j = 1, . . . , 4,

I [Q]
5 = 〈1〉

= I [P ]
1 ,

I [Q]
6 = 〈(2σ4 − 2σ3 + σ2 + σ)ρ4

× (−3σ4 + 8σ3 + 8σ2 − 4
)
ρ3

+
(
2σ4 − 16σ3 + 13σ2 + 12σ + 3

)
ρ2

− (
σ4 − 2σ3 + 24σ2 − 13σ − 11

)
ρ

+ σ4 − σ3 + 5σ2 − 14σ + 3〉
= I [P ]

2 , (51)

which agrees with Lemmas 1 and 2.

5. Conclusions

A new direct method for order reduction has been pro-
posed for PMDs describing a class of delay-differential
control systems. The resulting PMD is associated with
delay-differential systems of neutral type. The exact con-
nection between the original PMD and the reduced first-
order PMD was set out and shown to be Fuhrmann’s strict
system equivalence. Furthermore, the reduced PMD can
be easily computed from the original one using a triv-
ial expansion followed by a finite sequence of elementary
row and column operations. On the other hand, the trans-
fer function and the zero structure of the original PMD are
preserved making it possible to analyze the original sys-
tem in terms of its reduced form. The resulting PMD may
be larger in size than the one obtained by the method used
by Pugh et al (1998a). However, the method presented in
this paper has the advantage of providing a priori both the
final reduced PMD and the transformation involved.
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