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The area if Iterative Learning Control (ILC) has great potential for applications to systems with a naturally repetitive action
where the transfer of data from repetition (trial or iteration) can lead to substantial improvements in tracking performance.
There are several serious issues arising from the "2D" structure of ILC and a number of new problems requiring new ways
of thinking and design. This paper introduces some of these issues from the point of view of the research group at Sheffield
University and concentrates on linear systems and the potential for the use of optimization methods and switching strategies
to achieve effective control.
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1. Introduction

Iterative learning control is technique for improving track-
ing response in systems that repeat a given task over and
over again (each repetition sometimes being called a pass
or trial). It is assumed that a plant model{

x(t + 1) = Φx(t) + Γu(t), x(0) = x0,

y(t) = Cx(t) +Du(t)
(1)

is given where A,B,C and D are matrices of appropri-
ate dimensions, u(·) is the input variable, x(·) is the state
variable, x0 is the initial condition for x(·), and y(·) is the
output variable. For notational simplicity, it is assumed
that D = 0. Furthermore, a reference signal r(t) is given
over a finite time-interval t ∈ [0, T ]. The control objec-
tive is to find a control input u(t) so that the corresponding
output y(t) tracks r(t) precisely. In contrast to the stan-
dard tracking problem, when the system (1) has reached
the final time point t = T , the state x of the system is
reset to the same initial condition x0, and, after resetting,
the system is again required to track the same reference
signal r(·). Several important industrial applications fit
into the ILC framework. Reported applications of ILC
include robotics (Zilouchian, 1994; Norrlöf, 2002), chem-
ical batch processing (Lee et al., 1996a), and servo sys-
tems (Lee and Lee, 1993), to name but a few. For a de-
tailed discussion on ILC applied to industrial problems,
see (Longman, 2000).

Arimoto et al. (1984) originally formalized ILC for

an academic community by suggesting that information
from repetitions 1, 2, . . . , k− 1 could be used to construct
a new, improved input time series uk, where k is the repe-
tition number. He also demonstrated, in a simple way, that
this can be done, in principle, in a way that ensures that the
tracking error will ultimately go to zero as the number of
repetitions increases. In summary, ILC has the property
that experience from previous repetitions or iterations can
be used to ensure that the ILC system will gradually learn
the control action that will result in perfect tracking.

Remark 1. Note that in the ILC community it is now
widely accepted that (Uchiyama, 1978) is the first publi-
cation to introduce the ILC concept. However, because
this publication is written in Japanese, non-Japanese re-
searchers were not aware of this publication when the
ILC research initially started in the USA and Western Eu-
rope. Therefore, the publication (Arimoto et al., 1984)
was referenced as being the starting point for ILC re-
search. However, it seems that there are earlier publica-
tions than Uchiyama’s on topics related to ILC. For ex-
ample, in (Cryer et al., 1976), the authors (who worked
for General Motors Truck and Bus) proposed the follow-
ing discrete-time ’iterative control’ (as they call it) in the
frequency domain:

uk+1(ejωTs) = uk(ejωTs) + βG−1(ejωTs)ek(ejωTs),
(2)

where β ∈ R, 0 < β < 1 is a design parameter and
G(ejωTs) is the discrete-time Fourier transform of the im-
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pulse response g(t) of the plant in question. This is clearly
an ILC algorithm and the authors apply this algorithm in
the context of laboratory road simulation. Another even
earlier reference to ILC concepts seems to be the USA
Patent US3555252 – Learning control of actuators in con-
trol systems of 1971, see (Chen and Moore, 2000) for de-
tails.

Example 1. In order to clarify the difference between
familiar feedback control and ILC, consider a dynamical
system

(p2 + 5p+ 6)y(t) = (p+ 1)u(t), (3)

where p := d
dt and t ∈ [0, 6]. This system is sampled at

intervals of Ts = 0.1 seconds using zero-order hold result-
ing in a discrete-time plant model (Φ,Γ, C). The system
is required to track a reference signal r(t) = sin(2πt/6)
and the system is controlled with a PID-controller,

u(t) = Kpe(t) +KI

∫ t

0

e(τ) dτ +KDė(t), (4)

whereKp = 15,KI = 8 andKD = 0, which is also sam-
pled using zero-order hold with the same sampling time.
Fig. 1 shows the output y(t), implying that the system is
only capable of tracking the reference signal to a moder-
ate degree of accuracy. Note that the same tracking re-
sult is obtained during each repetition, because the PID-
controller has fixed parameters. Fig. 2, on the other hand,
shows the l2-norm (Euclidean norm) of the tracking error
ek(t) := r(t) − yk(t) as a function of the iteration index
(number or round) k with the ILC algorithm

uk+1(t) = uk(t) + γek(t+ 0.1), (5)

where γ = 9. Note that at first sight this algorithm
seems to be non-causal, because uk+1(t) is a function of
ek(t + 0.1). However, on iteration k + 1, ek(t) is past
data and it is available for the whole range t ∈ [0, T ]. In
general, it is possible (and typically necessary) to make
uk+1(t) a function of ek(s) for s ≥ t. Based on Fig. 2
it seems that the tracking error does indeed tend to zero
as k → ∞, but the convergence is not monotonic in the
sense that errors do increase in early repetitions but ulti-
mately reduce to zero. In the following section it will be
shown that this algorithm converges to a zero tracking er-
ror for an arbitrary time-invariant linear plant (assuming
that CΓ �= 0) if the learning gain γ satisfies the inequality
|1 − γCΓ| < 1.

�
Since the initial work by Cryer, Uchiyama and Ari-

moto, ILC has established itself as an independent re-
search topic in the control community. The review paper
(Moore, 1998), for example, contains roughly 300 refer-
ences on ILC. There have also been several books writ-
ten on ILC, including (Moore, 1993; Bien and Xu, 1998;

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Result from the PID−controller

Time t

r(
t)

,y
(t

)

r(t) 

y(t) 

Fig. 1. Response for the PID-controller (4).
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Fig. 2. Convergence behaviour of the Arimoto algorithm.

Chen and Wen, 1999; Xu and Tan, 2003). The number
of Ph. D. theses written on ILC, including (Amann, 1996;
de Roover, 1997; Norrlöf, 2000; Hätönen, 2004), is an-
other indicator of ILC entering the main stream of control
theory.

2. Formal definition of ILC

The system model is central to the analysis. To derive a
precise mathematical definition of the ILC problem, con-
sider the following standard continuous-time time-varying
linear state-space model defined over a finite time-interval
t ∈ [0, T ] (defining the length of time allocated for each
task):

ẋ(t) = A(t)x(t) +B(t)u(t), x(0) = x0,

y(t) = C(t)x(t),
(6)
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or the corresponding linear time-varying discrete-time
system with sampling time Ts = h,

x(t+ h) = Φ(t)x(t) + Γ(t)u(t), x(0) = x0,

y(t) = C(t)x(t), (7)

where the state x(·) ∈ R
n, the output y(·) ∈ R

m, the input
u(·) ∈ R

m. The operatorsA(·),Φ(·), B(·),Γ(·) as well as
C(·) in (6) and (7) are matrices of appropriate dimensions.
Note that in (6) time t is a continuous parameter whereas
in (7) it only takes discrete values t = 0, h, 2h, . . . T .
In order to avoid technical difficulties in the analysis, it
is typically assumed that matrices are either constant or,
more generally, continuous with respect to time t.

The control objective is defined in terms of a refer-
ence signal r(t). The task is to construct u(t) so that y(t)
tracks r(t) as accurately as possible. In addition, the sys-
tem (6) (or the corresponding discrete-time model (7)) is
required to follow the reference signal in a repetitive man-
ner, i.e., after the system has reached the final time point
t = T , the state of the system is reset to the initial con-
dition x0 and the system attempts to track the same refer-
ence signal r(t) again.

Control systems design in ILC takes a quite specific
form. If uk(t) is the input applied at trial k ∈ N and
ek(t) := r(t) − yk(t) is the resulting tracking error, the
control design problem is to construct a control law (or an
algorithm) expressed, for generality, as a functional rela-
tionship typified by the equation

uk+1(t) = f
(
ek+1(·), . . . ek−s(·), uk(·), . . . , uk−r(·)

)
.

(8)
The control law is required to have the property that
limk→∞ uk = u∗ (i.e., the control signal converges to
the control signal that generates r exactly. As a conse-
quence, limk→∞ ek = 0 in a suitable topology. Fur-
thermore, for real-world causality (and hence implemen-
tation) reasons, it is specifically required that the depen-
dence of uk+1(t) on ek+1 only requires knowledge of its
values on 0 < s ≤ t.

Existence of a solution. Note that in the problem def-
inition it is assumed that there exists an input u∗ which
gives perfect tracking. If this is not the case, the problem
can be modified to require that the algorithm should con-
verge to a fixed point u∗ where u∗ is the solution of the
optimization problem

u∗ = argmin
u∈U

‖r −Gu‖2, (9)

where U is set of possible inputs and ‖ · ‖ is a suitable
norm.

Assuming that perfect tracking is possible, we have
r = Gu∗ and hence u∗ can be formally obtained from the
reference and initial condition data using the inverse of the
plant model. Such an approach leads to an ILC algorithm
with the property of convergence in one iteration. To see

this in the linear case, consider the inverse algorithm for
linear systems

uk+1 = uk +G−1
e ek. (10)

A simple calculation then indicates that

e1 = r − y1 = r −Gu1

= r −G[u0 +G−1e0] = 0,
(11)

independent of the choice u0 (and hence e0).
This algorithm is clearly a theoretical construct. It

cannot be realized in practice due to the fundamental prob-
lem that an exact plant model is never available. ‘Infinite’
iteration must therefore be accepted as a practical reality.

It is ironic that theoretical studies of ILC are often
based on assumed exact models of the plant. This is
justified scientifically by the need to understand ILC in
the nominal case and create benchmark algorithms with
known properties. This approach requires that the robust-
ness of the methods in the presence of modelling error be
tested both through theoretical analysis and experimental
work.

The original and modified ILC problem definition
generate at least the following two fundamental design
questions that have to be answered before any further al-
gorithm design can take place:

• Is the algorithm design to be done with the
continuous-time system (6) or with the discrete-time
model (7)?

• What topology (norm or measure of error magnitude)
‖ · ‖ is to be used in the algorithm design?

The first question is in fact a very subtle one: Because in
ILC the control algorithm uses information from previous
repetitions, this information has to be recorded using suit-
able media. However, this is only possible with digital de-
vices, and hence it seems to be natural to use the discrete-
time model (7). However, as was demonstrated in pre-
vious work on ILC, see (Amann, 1996), convergence re-
sults obtained for discrete-time models can be sometimes
over-optimistic and hide problems with robustness when
the discrete-time algorithm is applied on a plant that is
originally a continuous-time system. Thus it could be ar-
gued that the continuous-time model (7) is most useful in
control design. This discussion indicates that, whatever
model type is chosen, the theoretical convergence results
have to be always checked with a simulation model which
takes into account the hybrid nature of the problem, i.e.,
the controller is a discrete-time system and the plant in is
a continuous-time system.

The answer to the second question could be the fol-
lowing one: select a normed space that is easy to work
with. For example, in this paper, the infinite-dimensional
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function space L2[0, T ] and the finite dimensional Eu-
clidean space of sequences (time series) on [0, T ] are used
exclusively. Sequences (of ILC iterates) in these spaces
are regarded as familiar square-summable sequences in
the space l2. This is due the fact that all such spaces are
complete inner-product spaces, and optimization in these
spaces is far simpler than in a general Banach space set-
ting. The Hilbert space setting is quite general and, for
linear systems, results in the rather complete theory of
norm-optimal iterative learning control introduced by the
first author, which will be discussed further on.

Note: Exponentially weighted spaces have a place in
the toolbox of tractable ILC analysis but are not consid-
ered here for brevity. Other, analytically more difficult,
spaces and norms can be considered if computational
approaches are used to solve the problem.

Convergence is naturally the most important require-
ment for an ILC algorithm. However, additional require-
ments have been suggested in the research literature (see,
for example, (Bien and Xu, 1998)), one of the most com-
mon ones being as follows:

(i) Complexity: Convergence should be achieved with a
minimal amount of information about the plant.

(ii) Robustness: Convergence should be achieved even if
there is uncertainty in the plant model.

(iii) Resetting: Some form of convergence should be
achieved even if the resetting is not perfect, i.e., the
initial condition for each iteration lies inside a ball
of radius δ centred at x0 or, in a more mathematical
notation, xk(0) ∈ Bδ(x0) ∈ R

n for k = N.

Note: Some authors consider the first assumption as an es-
sential part of ILC. However, in, e.g., robotics, either ac-
curate models are available from the robot manufacturer
or they can be obtained rather easily using modern iden-
tification techniques. Consequently, it seems unwise (and
rather strange) to discard this plant information in ILC al-
gorithm design.

3. ILC and two-dimensionality

As was explained in the previous section, the basic idea
behind ILC is to use the repetitive nature of the problem
definition to allow the system to learn the input function
that results in asymptotically perfect tracking. The learn-
ing mechanism, however, introduces a new axis, namely,
the iteration axis k. This results in a two-dimensional sys-
tem, where the independent variables (t, k) are the finite
time axis t ∈ [0, T ] and the infinite iteration axis k ∈ N.
As a first step towards a convergence/stability analysis,
note that, due to the finite nature of the time axis, the out-
put of a finite-dimensional linear time-varying system can

never become unbounded in finite time. Hence, in con-
trast to classical feedback control, it can be expected that
the properties of the ILC system along the time axis play
an important but not dominant role in formal convergence
analysis. The iteration axis, on the other hand, is infinite.
As the number of iterations increases, it is intuitive that the
infinite sequence (k = 0, 1, 2, 3, . . . ) of ‘output profiles’
yk(t) for t ∈ [0, T ] can converge, diverge or oscillate, de-
pending on the chosen learning mechanism (control law).
Also, even if convergent, the individual signals may be-
come unacceptably large before convergence finally oc-
curs.

How then can the question of convergence/stability
be approached mathematically? In answering this ques-
tion the following example is useful.

Example 2. Consider the following ILC algorithm:

uk+1(t) = uk(t) + [Kek](t), (12)

whereK is a ‘learning-gain operator’, and the plant model
(represented as a linear operator G plus an initial condi-
tion term z0) has the form

yk+1(t) = [Guk+1](t) + z0(t) (13)

for t ∈ [0, T ]. In order to analyse the convergence prop-
erties of this algorithm, it is necessary to find how the
tracking error ek(t) := r(t) − yk(t) evolves as a func-
tion of the iteration index k. To find this ‘evolution equa-
tion’, apply the control algorithm (12) to the plant model
yk+1(t) = [Guk+1](t) + z0(t) to give

[Guk+1](t) + z0(t) = [Guk](t) + z0(t) + [GKek](t).
(14)

Using the process model (13) and the definition of the
tracking error ek(t), this equation can be written equiv-
alently as

ek+1(t) = [Lek](t), (15)

where L = (I − GK). Hence, L is the operator that
maps ek(·) to ek+1(·), and it is clear that its mathematical
properties fully define the properties of the ILC algorithm,
including convergence.

In the previous example, L is often called the learn-
ing operator that maps the tracking error from trial to trial.
In fact, most of the existing linear ILC algorithms in the
research literature result in the error evolution equation
ek+1 = Lek, k = 0, 1, 2, . . . , or, more generally,

ek+1 = Lek + b, k = 0, 1, 2, . . . . (16)

It is important to analyse the conditions under which this
kind of iterative process converges. This analysis can be
set firmly in the context of multi-pass or repetitive sys-
tems theory developed since the mid-1970s by the first
author and colleagues (based on well-known branches of
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applied analysis), and it leads to a number of convergence
conditions. The most general of these is a spectral radius
condition

ρ(L) < 1, (17)

where ρ(·) is the spectral radius of a given operator). The
spectral radius condition is implied by a simpler contrac-
tion mapping condition (i.e., ‖L‖ < 1, where ‖·‖ is a suit-
able operator norm). In general, the spectral radius condi-
tion guarantees only asymptotic convergence whereas the
contraction mapping condition guarantees monotonic con-
vergence. Readers are invited to study these ideas as they
provide an excellent introduction to the complexities of it-
erative theory from a control point of view and also add
useful background details to what follows. For a more
general stability analysis of 2D-systems, see (Edwards
and Owens, 1982; Rogers and Owens, 1992).

4. Convergence properties

As a motivational example, consider the following
discrete-time version of the Arimoto-law (see (Moore,
1993) for details):

uk+1(t) = uk + γek(t+ 1), (18)

which is used to control the system (1). In order to
analyse the performance of this algorithm, note that, be-
cause in ILC the time-axis is finite, the system model (1)
can be written equivalently in a “super-vector” form as
�yk = Ge�uk + �d, where

Ge =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
CΓ 0 0 . . . 0
CΦΓ CΓ 0 . . . 0

...
...

...
. . .

...

CΦN−2Γ CΦN−3Γ . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

�d =

⎡
⎢⎢⎢⎢⎢⎢⎣

Cx0

CΦx0

CΦ2x0

...

CΦN−1x0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(19)
The elementsCΦjB of the matrixGe are the Markov

parameters of the plant (1), and d is the initial condition
response. Furthermore, the ‘super-vectors’ �uk and �yk are
defined as

�uk := [uk(0) uk(1) . . . uk(N − 1)]T,
�yk := [yk(0) yk(1) . . . yk(N − 1)]T. (20)

The tracking error �ek+1 is defined with the equation

�ek+1 := �r − �yk+1 = r −
(
Ge�uk+1 + �d

)
=

(
r − �d

)
−Ge�uk+1

(21)

and, consequently, the possibly non-zero initial condition
response can be embedded into the reference signal via the
map r → r−d. From now on (without loss of generality),
it is therefore assumed that �d = 0 or, equivalently, xk+1 =
0. The control law (18) can be written in the super-vector
notation as �uk+1 = �uk +Gc�ek, where

Gc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 γ 0 . . . 0
0 0 γ . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . γ

0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (22)

Using similar algebraic manipulations as in Exam-
ple 2, Section 3, it can be shown that the Arimoto law
leads to an error evolution equation �ek+1 = L�ek,

L

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
0 1 − γCΓ 0 . . . 0
0 −γCΦΓ 1 − γCΓ . . . 0
...

...
...

. . .
...

0 −γCΦN−2Γ −γCΦN−3Γ . . . 1 − γCΓ

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(23)

The condition for asymptotic convergence is that the spec-
tral radius of L be strictly less than one (or, equivalently,
the modulus of each eigenvalue of L be strictly less than
one). Because L is a lower-triangular matrix, the eigen-
values λi of L are the diagonal elements of L, i.e., λ1 = 1
and λi = 1 − γCΓ for i = 2, . . . , N . If r(0) = Cxk(0)
for each k, it can be shown using a ‘lifting technique’ (see
(Hätönen, Owens and Moore, 2004) for details) that the
unity eigenvalue is associated with the initial conditions
(unchanged by the control action), and hence the only ef-
fective eigenvalue is λ = 1 − γCΓ of the multiplicity of
N − 1 and thus ρ(L) = |1 − γCΓ|.

This is a remarkable result, because the convergence
depends only on C, Γ and γ (i.e., |1− γCΓ| < 1) and not
on the internal dynamics of the plant as described by the
matrix Φ. The practical problem is that the convergence is
only asymptotic and, therefore, as Fig. 2 indicates, the l2-
norm (or any other norm) can grow to a very large value on
some iterations before terminal convergence. Clearly, the
tracking performance of the algorithm can be extremely
poor when the l2 norm is large. This is, in most practi-
cal applications of ILC, not acceptable, because a large
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l2 norm may relate to a low product quality, a loss of
time or materials, or it might possibly result in permanent
damage in the system being controlled. Therefore, even
though the Arimoto algorithm and other theoretically con-
vergent model independent algorithms are very appealing
theoretically, their applicability to real ILC problems is
questionable. There is a real need in the industry for al-
gorithms that result in improved error performance and
preferably have some form of monotonic convergence,
e.g., ||ek+1|| ≤ ||ek||, ∀k ≥ 0. This is discussed in
the next section.

5. Norm-optimal ILC. A benchmark ILC
solution

In this section an optimization based design concept called
Norm-Optimal Iterative Learning Control (NOILC) is
introduced and its mathematical properties are derived.
Note that using optimization to design ILC algorithms has
generated a lot of interest in the ILC community, see, e.g.,
(Togai and Yamano, 1985; Gorinevsky, 1992; Tao et al.,
1994; Gunnarsson and Norrlöf, 2000).

The material presented in this section is based on the
work of the first author and his team as initiated by the
paper (Amann, 1996). Only the main result in terms of
convergence analysis will be presented. In this section
only the relevant propositions are presented. If the reader
is interested in the actual proofs, he/she should consult
references such as (Amann, 1996; Amann et al., 1996;
Amann et al., 1998; Hätönen and Owens, 2004).

The starting point in NOILC is to write the plant
model in the abstract operator form

y = Gu + z0, (24)

where G is the system input-output (convolution) opera-
tor, u ∈ U and y, z0 ∈ Y , where Y and U are the input
and output spaces, respectively. In NOILC, both U and Y
are chosen to be real Hilbert spaces. Furthermore, G is
assumed to be a linear and bounded operator from U to Y .
In (24), z0 describes the effect ofnon-zero initial condi-
tions on the plant output and, as was shown in Section 4,
it can be assumed that z0 = 0 without loss of general-
ity. As a motivation for the use of optimization, note that
the ultimate goal of any ILC algorithm is to ensure that
e = 0, i.e., to iteratively solve (in the limit) the optimiza-
tion problem

min
u∈U

‖e‖2 (25)

subject to plant dynamics and the relation e = r − Gu.
From now on it is assumed that the reference signal be-
longs to the range of the plantG, and hence an optimizing
solution u∗ satisfying e∗ = r −Gu∗ = 0 does exist.

Theoretically, if G and r are known, and r belongs
to the range of G, and G is injective, the unique optimiz-
ing solution u∗ can be solved directly with the equation

u∗ = G−1r. In practice, however, G is never known pre-
cisely, and alternative ways of solving the optimization
problem (25) have to be considered. In NOILC, optimal
u∗ is generated by solving the following sequence of op-
timization problems for iterates uk+1 :

min
uk+1∈U

Jk+1(uk+1), (26)

where

Jk+1(uk+1) = ‖ek+1‖2 + ‖uk+1 − uk‖2 (27)

subject to the constraint equation ek+1 = r−Guk+1. The
norms are assumed to be induced norms from the inner
products 〈·, ·〉Y in Y and 〈·, ·〉U in U , respectively; in other
words, ‖ek+1‖2

Y = 〈ek+1, ek+1〉Y and ‖uk+1 − uk‖2
U =

〈uk+1 − uk, uk+1 − uk〉U . The first term in (27) reflects
the design criterion of ‖ek+1‖2 being small during every
repetition. The second term penalizes the input functions
uk+1 that are ‘too’ different from the previous trial input
uk. There are at least two arguments that explain why this
term should be useful in the cost function:

• The resulting algorithm will be of the form uk+1 =
uk + δk+1, and hence the algorithm will contain the
internal model of rk = r, which is necessary for zero
convergence (Hätönen, Owens and Moore, 2004).

• The input sequence {uk} will be smooth along the it-
eration axis k, and it will introduce elements of cau-
tion and robustness into the algorithm.

Note: In (Lee et al., 1996b), the same cost function
was considered, and this work was also published in
1996; therefore, the idea of using this particular cost
function can be traced back to at least two independent
sources. The work of (Amann, 1996) has the considerable
benefit that a Hilbert space setting enables the general
construction of ILC laws that apply to both continuous
and sampled data plants plus plants with delays and many
other complex dynamic (albeit linear) effects.

To illustrate the useful properties of the resulting al-
gorithm, let u∗k+1 be the optimal solution for iteration k+1
and e∗k+1 the corresponding optimal tracking error for it-
eration k + 1. With this notation the non-optimal choice
uk+1 = uk gives the following interlacing result:

‖e∗k+1‖2 ≤ J(u∗k+1) ≤ ‖e∗k‖2, (28)

and hence the algorithm will result in monotonic conver-
gence, i.e., ‖e∗k+1‖ ≤ ‖e∗k‖. Note that for this interlacing
result only the boundedness of G and the existence of an
optimizing solution u∗k+1 (which can be non-unique) is
required, and the linearity of G does not play any role!
Hence it can be expected that the NOILC algorithm can
also work for non-linear plant models. Initial results on
this topic can be found from (Hatzikos et al., 2004), where
the authors use genetic algorithms to solve the NOILC op-
timization problem for non-linear plants.
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5.1. Abstract convergence analysis. In order to show
rigorously that the algorithm converges to the correct so-
lution u∗ in the linear case, the first step is to solve the
optimization problem (26). This is achieved by calculat-
ing the Frechet derivative of (26) and setting it to zero,
which is the necessary and sufficient condition for opti-
mality. The Frechet derivative can be calculated from the
equation

〈Jk+1(uk+1), δuk+1〉 =
d

dε
Jk+1(uk+1 + εδuk+1) = 0,

(29)
and it turns out that the optimal solution is

uk+1 = uk +G∗ek+1, (30)

whereG∗ is the adjoint operator ofG in the chosen Hilbert
space topologies. Multiplying (30) with G gives

yk+1 = yk +GG∗ek+1, (31)

which then gives

(I +GG∗)ek+1 = ek. (32)

It can be easily shown that the operator I + GG∗ in
(32) is positive and, hence, (I +GG∗) is invertible while
the error evolution equation becomes

ek+1 = (I +GG∗)−1ek = Lek, (33)

where L := (I +GG∗)−1 is the ‘learning operator’. The
following proposition can be derived.

Proposition 1. Assume that r ∈ Rg (G), where Rg (G)
is the range of the operator G. Then the sequence {uk}
satisfies limk→∞ ‖uk+1 − uk‖ = 0, and the sequence ek

satisfies limk→∞ ‖ek‖ = 0.

Hence, in this general case, not only will the error
reduce from trial to trial, it will also converge monoton-
ically to zero. If GG∗ is a strictly positive operator, the
convergence is geometric.

Proposition 2. If the operator GG∗ satisfies GG∗ ≥ σ2I
for some σ > 0, then the following estimate holds:

‖ek+1‖ ≤ 1
1 + σ2

‖ek‖, (34)

and the norm of the tracking error converges geometri-
cally to zero.

It was also shown in (Amann et al., 1998) and
(Amann et al., 1996) that if the plant is a continuous-time
system, σ2 in Proposition 2 is in fact zero, whereas in the
discrete-time case it is non-zero. In summary, continuous-
time systems result in guaranteed monotonic convergence,
whereas discrete-time systems result in guaranteed geo-
metric convergence.

The analysis of the sequence {uk} shows that in the
discrete-time case the sequence converges in norm to u∗,
whereas in the continuous-time case a similar result does
not yet exist (as it depends crucially on the reference sig-
nal r). However, the convergence to a fixed point u∗ can
be guaranteed also in the continuous-time case, if the fol-
lowing ‘relaxed’ algorithm is used:

uk+1 = αuk +G∗ek+1, (35)

where α ∈ (0, 1). A simple calculation indicates that the
limit solves the linear quadratic optimal tracking problem

min
u∈U

{J(u) = ‖e‖2 + (1 − α)‖u‖2}. (36)

However, in this case the error converges to a non-zero
vector, but the norm of this vector can be reduced by let-
ting α approach unity.

5.2. Causal implementation. An example using opti-
mal control theory. Despite the generality of the above
analysis, it is essential that the formal results be translated
into useful, implementable controllers, which use only
past data, knowledge of the reference signal r and knowl-
edge of the plant model G. Consider the continuous-time
linear time-invariant plant model (possibly a MIMO sys-
tem)

ẋk(t) = Axk(t) +Buk(t), xk(0) = x0,

yk(t) = Cxk(t),
(37)

where t ∈ [0, T ], and without loss of generality assume
that x0 = 0. With these assumptions, the input-output be-
haviour of the dynamical system (37) can be equivalently
written as y(t) = [Gu](t), where G : U → Y is defined
with the formula

[Gu](t) =
∫ t

0

CeA(t−τ)Bu(τ) dτ. (38)

The inner products are selected to be

〈u1, u2〉U =
∫ T

0

uT
1(t)Ru2(t) dt (39)

and

〈y1, y2〉Y =
∫ T

0

yT
1(t)Qy2(t) dt+ yT

1(T )Fy2(T ), (40)

where R,Q and F are symmetric positive definite matri-
ces. These definitions, together with the constraint equa-
tion e(t) = r(t)− [Gu](t), result in the following familiar
differential equation for optimal uk+1:

ψ̇k+1(t) = −ATψk+1(t) − CTQek+1(t),
ψk+1(T ) = CTFek+1(T ),
uk+1(t) = uk(t) +R−1BTψk+1(t). (41)
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This equation is anti-causal because of the terminal
condition ψk+1(T ) = CTFek+1(T ) and thus cannot be
used to implement the algorithm. However, using the stan-
dard techniques of optimal control theory, a causal imple-
mentation of (41) has the form

uk+1(t) = uk(t) −R−1BTM(t),
M(t) := [K(t)(xk+1(t) − xk(t)) − ξk+1(t)] .

(42)

It can be shown that this implementation is equivalent
to (41) if K(t) satisfies the Riccati-equation:

K̇(t) = −ATK(t) −K(t)A

+K(t)BR−1BTK(t) − CTQC,

K(T ) = CTFC,

(43)

and ξk+1(t) satisfies the differential equation

ξ̇k+1(t) = −(A−BR−1BTK(t))Tξk+1(t)
− CTQek(t) (44)

which is computable in reverse time as it is driven by the
tracking error from the previous trial k. In summary, the
algorithm consists of the following steps:

(1) Select suitable values forR andQ and simulateK(t)
in reverse time using (43).

(2) Select an initial guess u0 and feed it into the real
plant. Record the input u0(·), the corresponding
tracking error e0(·), and the state x0(·), and set the
iteration index k equal to one.

(3) Solve the so-called predictive term ξk(·) in reverse
time using (44).

(4) Run a new experiment using the control law (42).
Record the input uk(·), the corresponding tracking
error ek(·), and the state xk(·). Set k → k + 1 and
go to Step 3.

Remark 2. It is important to note that in the imple-
mentation of the algorithm the Riccati equation for K(t)
has to be solved only once, whereas the predictive term
ξk(t) has to solved between each trial via numerical inte-
gration. Furthermore, the implementation requires a full
knowledge of the state of the system and, if not available,
a state observer is needed.

Remark 3. The inner product (40) might at first sight
look slightly exotic. However, the addition of the term
yT
1Fy2 guarantees that the algorithm results in a uniform

zero tracking error even if CB = 0, i.e., the relative de-
gree of the plant is more than one. See (Amann, 1996;
Amann et al., 1998) for details.

A similar causal implementation exists also for linear
time-varying discrete-time systems, see (Amann et al.,
1996) for details.

5.3. Predictive extensions. So far in this section the
standard NOILC algorithm has been introduced and its
convergence properties have been analysed. The power
of the ideas lies in their great generality, i.e., providing a
guarantee of monotone convergence to a zero error inde-
pendent of the details of plant dynamics. Plant dynamics
do, however, have an impact on the rate of convergence.
For example, the presence of non-minimum-phase zeros
is known to introduce initially fast convergence but in-
finitessimally slow terminal convergence. Consideration
must be given to ensuring that the rate of convergence
is acceptable for the application, see (Amann, 1996) and
(Longman, 2000) for a more detailed discussion on this
topic.

In optimal control terms, convergence speeds do in-
crease as the weighting matrix R reduces. However, intu-
ition suggests that faster convergence might be achieved
if future tracking errors and future input differences are
also added to the cost function. This was proposed by the
first author in (Amann et al., 1998) as part of a predictive
receding horizon control design where the performance
index is replaced by

Jk+1,n(�uk+1)

=
n∑

i=1

λi−1(‖ek+1,i‖2 + ‖uk+1,i − uk+1,i−1‖2), (45)

where �uk+1 := [uk+1,1 uk+1,2 . . . uk+1,n]. Here uk+1,j

refers to the input for iteration k + j calculated during it-
eration k + 1 and ek+1,j refers to the (predicted) track-
ing error for iteration k + j calculated during iteration
k + 1. Furthermore, in the following material the defi-
nition �ek+1 := [ek+1,1 ek+1,2 . . . ek+1,n] is used. Fi-
nally, uk+1 refers to the input control applied to the real
plant during iteration k+1, and ek+1 = r−Guk+1 is the
resulting tracking error from this particular choice of the
input function.

The proposed criterion (45) includes the error not
only from the current trial but also the predicted error
from the next n − 1 trials (n is known as the prediction
horizon) as well as the corresponding changes in the in-
put. The weight parameter λ > 0 determines the im-
portance of more distant (future) errors and incremental
inputs. Furthermore, just as in generalized predictive con-
trol (Camacho and Bordons, 1998), a receding horizon
principle is proposed in (Amann et al., 1998). In this ap-
proach, at trial k + 1 only the input uk+1,1 is used as an
input into the plant, and the predictive optimization is re-
peated again at the next trial.

By including more future signals into the perfor-
mance criterion (45) (i.e., by increasing n), it is argued by
the authors that, as n increases, the algorithm should be-
come less ‘short sighted’, and faster convergence should
be obtained when compared to the non-predictive algo-
rithm resulting from the minimisation of (26). This was
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rigorously proved in (Amann et al., 1998) when the input
uk+1,1 was used as the ‘true’ input. In addition, the re-
sulting algorithm from (45) has a causal implementation if
the original plant can be described with a state-space rep-
resentation. This implementation takes requires a multi-
model set-up with n − 1 plant models running in parallel
with the plant.

Although little has yet been derived about the robust-
ness of this algorithm, it is known that, as n → ∞, the
error sequence increasingly behaves in a way that satisfies
(in the strong operator topology sense) the relation

||ek+1|| ≤ 1
λ
||ek||, ∀k ≥ 0, (46)

suggesting that the choice of λ > 1 is crucial and in-
creasing λ may tend to improve convergence rates. As
a further recent extension of these ideas, it was noted in
(Hätönen and Owens, 2004) that it is possible to use the
receding horizon principle for any other input uk+1,j or,
more generally, the implemented control input function
can be taken as a positive convex combination of the in-
puts uk+1,j . In this appoach the input used for iteration
k + 1 is given by

uk+1 =
n∑

j=1

αjuk+1,j , (47)

where αj ≥ 0 and
∑n

j=1 αj = 1. The convex combi-
nation approach in fact leads into a quicker convergence
rate when compared to the receding horizon approach, see
(Hätönen and Owens, 2004) for details.

6. Parameter-optimal ILC

In the previous section the possibility of using optimiza-
tion techniques in ILC were discussed, and it was shown
how the NOILC approach and its predictive modifica-
tion result in geometric convergence for an arbitrary lin-
ear (possibly time-varying) plant. The implementation of
the different versions of the algorithm could, however, be
a non-trivial task. This is due to the fact that both the
feedback and feedforward term are generated by a time-
varying non-causal dynamical system, and they have to
be solved by using numerical integration. In addition,
the feedback term requires a full knowledge of the state
of the system, which either requires instrumentation that
can measure the states (possibly resulting in an expensive
measurement set-up) or the inclusion of a state-observer
into the NOILC algorithm. Therefore, it is an important
question whether or not there exist structurally (in terms of
implementation and instrumentation) simpler algorithms
that would still result at least in monotonic convergence,
as is discussed in (Owens and Feng, 2003). A natural
starting point for answering this question is the Arimoto-
type ILC algorithm

uk+1(t) = uk(t) + γek(t+ 1) (48)

because it is a feedforward algorithm (i.e., it does not re-
quire any additional instrumentation or other ‘real-time
components’), and the corrective term is simply a learn-
ing gain multiplied with the shifted tracking error from
the previous trial. However, if γ is not selected ‘opti-
mally’, Section 4 showed that the algorithm results only
in asymptotic convergence and may exhibit poor transient
performance. One possible improvement is to select γ by
making it iteration varying. This iteration variation is con-
structed by solving ‘optimal’ γk+1 for each iteration using
a suitable cost function. Because the norm of the input
difference is ‖uk+1 − uk‖2 = γ2‖ek+1‖2, a parallel cost
function to NOILC for this algorithm could be

Jk+1(γk+1) = ‖ek+1‖2 + wγ2
k+1, (49)

where w > 0 is a weighting parameter introduced to limit
the value of γ used. Note thatw can be constant or “adap-
tive”. The authors have introduced the form

w = w1 + w2||ek||2,
w1 ≥ 0, w2 ≥ 0, w1 + w2 > 0

(50)

to allow for varying “caution” as the algorithm progresses.
The convergence analysis for this algorithm is presented
in the following subsection. For the proofs of the proposi-
tions, see (Owens and Feng, 2003).

6.1. Convergence analysis of the simple POILC algo-
rithm. As a starting point note that the constraint equa-
tion for the cost function (49) can be written as yk =
Geuk, where Ge is the lifted plant model

Ge =

⎡
⎢⎢⎢⎢⎢⎢⎣

CΔ 0 0 . . . 0
CΦΓ CΓ 0 . . . 0
CΦ2Γ CΦΓ CΓ . . . 0

...
...

...
. . .

...

CΦN−1Γ CΦN−2Γ . . . . . . CΓ

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(51)
and

uk := [uk(0) uk(1) . . . uk(N − 1)]T,
yk := [yk(1) yk(1) . . . yk(N)]T

(52)

are the lifted input and output super-vectors. Using this
description of the plant model, it is easy to show that the
optimal update law for the optimal γk+1 is given by the
following equation:

γk+1 =
eT

kGeek

w + eT
kG

T
eGeek

. (53)

The next proposition shows with an optimal update for
γk+1 the algorithm results in monotonic convergence.

Proposition 3. The algorithm (48), where γk+1 is cal-
culated using (53), results in the monotonic convergence
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property ‖ek+1‖ ≤ ‖ek‖. In particular, ‖ek+1‖ = ‖ek‖ if
and only if either ek = 0 or γk+1=0.

Note that as in the NOILC case, monotonicity again
arises from optimality and is independent of the plant
model or the weighting parameter w. The next proposi-
tion illustrates the behaviour of the sequence of optimal
learning gains {γ∗k} in the limit.

Proposition 4. Suppose that w1 > 0. The sequence of
optimal learning gains {γ∗k} generated by (53) satisfies
limk→∞ γ∗k = 0.

This result shows that the algorithm becomes more
cautious as k increases, possibly enhancing the robustness
properties of the algorithm.

Unfortunately, neither of the above propositions nec-
essarily imply that the error ek → 0 as k → ∞. It turns
out that convergence to the zero error is dependent on the
plant dynamics, this dependence being expressed in terms
of positivity conditions, see the following proposition.

Proposition 5. Consider the algorithm (48) with the up-
date law (53) for γk+1. Suppose that Ge +GT

e is positive-
definite; in other words, ∃σ ∈ R, σ > 0 so that vTGev =

vT(Ge+GT
e

2 )v ≥ σvTv for arbitrary v ∈ R
N . Then the

resulting error sequence satisfies limk→∞ ek = 0.

Remark 4. Note that if w1 = 0 in (50), Proposition 5 can
be modified to show that the algorithm leads to geometric
convergence to a zero tracking error.

Remark 5. Note that in (Hätönen, 2004), it was shown
that a sufficient condition for Ge + GT

e to be positive-
definite is that zG(z) = zC(zI−Φ)−1Γ be a positive-real
transfer function.

Note that if the matrix Ge +GT
e is negative-definite,

a similar analysis as in Proposition 5 shows that the algo-
rithm will converge monotonically to a zero tracking error.
However, if Ge +GT

e is negative-definite, it can be always
made positive-definite by multiplying Ge with -1. There-
fore in this section (without loss of generality) the state-
ment ‘Ge + GT

e is not a positive-definite matrix’ means
that Ge + GT

e is either a semi-definite or a non-definite
matrix.

What happens if GT
e + Ge is not a positive-definite

matrix? This is a more complex question, but the follow-
ing proposition shows that the algorithm can indeed con-
verge to a non-zero solution.

Proposition 6. Assume that GT
e + Ge is not a positive-

definite matrix. Then, for any non-zero point in the limit
set {e∞ : eT

∞Gee∞ = 0} initial control inputs u0 exist
such that the POILC algorithm (48) converges to e∞.

In summary, a zero tracking error in the limit is guar-
anteed when Ge +GT

e is a positive-definite matrix, but in

other cases the limiting tracking error can be (and can be
seen to be) a non-zero vector. A more detailed conver-
gence analysis of this algorithm can be found in (Owens
and Feng, 2003) and, more recently, as part of the publi-
cation (Owens and Daley, 2008).

Remark 6. Positivity can be regarded as a property of
the plant or as an objective of the control design analysis
and/or implementation. In this context,

• The plant G may already contain control loops in-
troduced to ensure that positivity conditions are sat-
isfied, see (Hätönen, 2004; Owens and Feng, 2003);
or

• A change of the norm to an exponentially weighted
norm (Owens and Feng, 2003) may induce positivity
at the expense of strict monotonicity of the Euclidean
norm, see (Owens and Feng, 2003).

Remark 7. The existence of non-zero limits is estab-
lished above and is a reality for any non-positive system.
Further work is being done on the form and properties of
these limit sets and their implications for practical POILC
implementations. The analysis is complex only because
the limit set lies in a high dimensional space (of dimen-
sion equal to the number of samples in the time interval of
interest). The analysis is needed because most systems, in
practice, are non-positive and hence non-zero limits will
be the norm rather than the exception.

6.2. Limit sets, dynamics and switching strategies.
The recent publication (Owens and Daley, 2008) provided
considerable insight into the issue of convergence to non-
zero errors in parameter optimal ILC. The essential struc-
ture of the results obtained can be summarised (where
M = G for consistency with the notation in the refer-
ence) as a decomposition of the limit set into two subsets,
one S−∞, which attracts iterative trajectories, and one S+∞,
which repels such trajectories.

Theorem 1.

1. A point e ∈ S∞ = {e : eTMe = 0} attracts local
trajectories of the ILC algorithm if it lies in the at-
tracting component S−

∞ ⊂ S∞ defined by the equa-
tions

eTMe = 0,B(e) =
eT (M +MT )Me

w + ||Me||2 ∈ (0, 2).

(54)

2. If, however, it satisfies eTMe = 0 and one of the
inequalities

B(e) > 2 , B(e) < 0, (55)

then it repels local trajectories and is said to lie in
the repelling component S+

∞ ⊂ S∞.
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Note: The cases where eTMe = 0 and B(e) = 0 or
B(e) = 2 are not considered here. They lie on the bound-
ary between the two sets defining attracting components
and repelling components, respectively, and will require
further analysis to resolve their characteristics.

In practice, points on the attracting component will
attract error iterates leading to convergence to a non-zero
limit error. In contrast, if the algorithm leads to an er-
ror time series on some iteration that is close to the re-
pelling component, the algorithm will appear to be con-
verging slowly but, in reality, it is simply “pausing” be-
fore it is repelled and further monotonic convergence –
clearly non-desirable in practice as slow convergence is
a waste of resource whether that is time or experimental
cost. Examples can be found in the reference (Owens and
Daley, 2008) which indicate that even simple non-positive
plants can exhibit such behaviour.

Convergence to non-zero limit errors is undesirable
unless that limit error is small. A conceptual solution to
the problem is presented in (Owens and Daley, 2008) us-
ing switching. The essence of the idea is that, using the
ILC law

uk+1 = uk + βk+1Kk+1ek (56)

and the POILC optimal parameter defined by

βk+1 =
eT

kMk+1ek

w + ||Mk+1ek||2 , Mk+1 = GKk+1, (57)

the iteration dependent dynamical systems {Kk+1} are el-
ements of a well defined, sufficiently rich and numerous
set of matrix representations of dynamical “filters”. The
algorithm is constructed to switch between members of
this set in a deterministic manner with the resultant amaz-
ing property that the error sequence {||ek||}k≥0 will con-
verge to zero even though the plant itself is non-positive.

The paper (Owens and Daley, 2008) provides a com-
plete description of such deterministic switching algo-
rithms and illustrates the wide range of successful switch-
ing strategies that can be considered. It also presents a
statistical analysis of the algorithms that suggest that ran-
dom switching is beneficial although the nonlinear nature
of the problem makes exact theoretical analysis difficult.

6.3. Inverse and adjoint algorithms. So far the
POILC approach results in zero tracking error only for
some processes, namely, those where the symmetric part
of the plant model Ge is a positive definite matrix. Con-
sider now a more general algorithm (in the super-vector
notation)

uk+1 = uk + γk+1Kek, (58)

where K is an arbitrary matrix (normally representing a
dynamical system or a set of such operations). A simple
calculation shows that this update law is equivalent to the
Arimoto algorithm uk+1 = uk + γk+1ek when applied

to the plant GeK . Hence, if the series connection GK
has a positive-definite symmetric component, the results
from the previous section immediately imply monotonic
convergence to a zero tracking error. The positive-definite
condition onGK leads ‘naturally’ to the following design
options:

K =

{
G−1 the “inverse algorithm”,

GT the “adjoint algorithm”.
(59)

In both cases, GK satisfies (assuming exact mod-
els) the desirable positivity condition noted previously.
The convergence results for these algorithms can be found
in (Hätönen et al., 2003) and, more generally, in (Harte
and Owens, 2005). Both algorithms exhibit theoretically
good robustness against modelling uncertainties. Further-
more, both algorithms have been applied successfully to
industrial-scale problems, see (Ratcliffe et al., 2004; Da-
ley et al., 2004).

Robustness analysis for these algorithms is possible
and was done for the inverse model algorithm in (Harte
and Owens, 2005) and for the adjoint algorithm in a forth-
coming paper authored by Owens and Daley to appear in
the International Journal of Robust and Nonlinear Con-
trol. These results are based on a rigorous formulation of
the frequency domain characteristics of ILC on finite time
intervals and a definition of robust monotonic convergence
that requires retention of the property of monotonic con-
vegrence of the tracking error to zero despite the presence
of the modelling error in plant dynamics. To summarize
the ideas, suppose that G(z) = G0(z)U(z), where G0

is a nominal model and U represents a multiplicative un-
certainty. The two algorithms summarised above then be-
come

K =

{
G−1

0 the “approximate inverse algorithm”,

GT
0 the “approximate adjoint algorithm”.

(60)
The POILC analysis must then assume that U = 1 for the
purposes of calculating a value of βk+1. The analyses in
the two papers mentioned above indicate that the resul-
tant algorithm is robust monotone stable if (necessary and
almost sufficient conditions)

| 1
β0

− U(z)| < 1
β0
, ∀|z| = 1, (61)

for the inverse algorithm and

| 1
β∗ − U(z)|G(z)|2| < 1

β∗ , ∀|z| = 1, (62)

for the adjoint algorithm. The calculation of the required
value of β∗ based on the plant model and initial error data
is described in the relevant reference.

These robustness results have simple frequency do-
main interpretations that are discussed in the references.
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It is worth noting here that they clearly indicate the need
for U(z) to be positive real and for the “gain” to be suffi-
ciently small. They also indicate the sensitivity of the ad-
joint algorithm to resonance in the nominal model along
with the relative robustness of the adjoint algorithm to
high frequency dynamics in the uncertainty U . These in-
sights are very valuable but only apply to the two algo-
rithms described. The possibility that better algorithms
exist must be considered and the relevant theoretical con-
vergence and robustness conditions established.

6.4. High-order algorithms. In the above, the de-
scription has been simplified by the use of simple feed-
back of the previous trial error ek on trial k+1. Intuitively,
if more data are used in POILC, then improved ILC per-
formance should be obtained. With this in mind, a num-
ber of publications have investigated the so-called high-
order POILC, see, for example, (Owens and Feng, 2003;
Hätönen, 2004) and, more generally, the work (Hätönen,
Owens and Feng, 2006). The idea can be illustrated by the
control update law

uk+1 =
∑

i=1,M1

αk+1,iuk+1−i +
∑

i=1,M2

βk+1,iek+1−i,

(63)
where the parameter vectors αk+1 = [α1, . . . , αM1 ]T and
βk+1 = [β1, . . . , βM2 ]T are selected by minimizing an
objective function of a typical form (withW1 andW2 pos-
itive definite and symmetric),

J = ||ek+1||2 + αT
k+1W1αk+1 + βT

k+1W2βk+1. (64)

These high order ideas are recognized as worthy of a fu-
ture study but it is already known that their value is ulti-
mately limited by the facts that (1) non-zero limit sets for
the error exist in almost all cases when G is non-positive
and (2) in the final phases of convergence, errors and in-
puts are almost co-linear. As a consequence, the benefits
of high-order terms are concentrated in the fist few itera-
tions and are ultimately lost.

7. Robustness issues

ILC algorithms are commonly applied in situations that
are typified by

(a) imprecise knowledge of a plant model,

(b) non-linearities and parasitic dynamics,

(c) disturbances that change from trial to trial,

(d) imprecise resetting of the initial condition.

Although a number of results have been obtained in each
case (see, e.g., Chen and Wen, 1999; Harte and Owens,
2005; Furuta and Yamakita, 1987), it is fair to say that

theoretical knowledge and CAD tools relevant to the un-
derstanding of these problems are currently very limited.
Much more work is needed in this area. The following
comments indicate that the possible results for ILC may
take specific forms. The observations are qualitative but
based on a reasonable mathematical intuition.

Modelling errors: To illustrate the impact of mod-
elling errors, consider the following ILC algorithm:

uk+1 = uk + βKek, (65)

which is trivially stable if, and only if, GeK has a spec-
trum in the open right-half-plane and β is sufficiently
small. Clearly, the choice of K will affect the robust-
ness of the scheme. To illustrate the ideas, suppose that
K = G−1

o , whereGo is an approximate model and a mul-
tiplicative model uncertainty U is defined by Ge = UGo.
In this situation, robustness is clearly connected to the
spectrum of the matrix representation of the uncertainty
and requires that the spectrum is ‘sign-definite’. These ob-
servations indicate that robustness analysis is more com-
plex than that needed in non-ILC situations (which often
uses norm and hence direction insensitive methods) and
can explain, to some degree, why progress in producing
useful analysis and design tools for attacking plant uncer-
tainty has been slow.

Optimization and the effect of disturbances: Finally,
in an optimization framework, robustness with respect to
bounded input disturbances is amenable to geometric in-
terpretation. Clearly, convergence to the zero error is not,
in general, possible, but a degree of learning can still take
place. The basis for believing this is based on the observa-
tion that optimization methods generate descent directions
for the norm of the error signal. Hence, provided the dis-
turbance does not ‘reverse’ the descent direction, learning
is still possible. Intuition says that the condition for learn-
ing is related to the error/disturbance signal-noise ratio.
As a consequence, learning is achieved until the error and
disturbance have a similar magnitude. Much more work
is required to usefully quantify these ideas.

8. Experimental performance

As part of a collaborative programme, a multi-axis test fa-
cility was constructed at the University of Southampton
to practically test ILC on a wide range of dynamic sys-
tems and in an industrial-style application involving the
handling of payloads. The apparatus consists of a three-
axis gantry robot supported above one end of a 6m long
industrial plastic chain conveyor. The completed facility
will also include a second robot at the other end of the
conveyor and a payload return mechanism. The overall
objective is to be able to use iterative learning control to
place payloads (tins of peas) onto the conveyor at one end,
move them along the conveyor, then remove them at the
other end using the second robot. The return mechanism
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will continuously cycle the payloads round the system, al-
lowing the investigation of ILC algorithm long-term sta-
bility.

Fig. 3. Illustration of the gantry robot.

Each axis of the gantry robot has been modelled in-
dividually in both torque control and speed control modes
of operation. The axes dynamics have been determined
by performing a series of open loop frequency response
tests. By performing tests over a wide range of frequen-
cies, Bode plots of gain and phase against a logarithmic
frequency scale can be produced. Furthermore, transfer
functions were fitted into the Bode plots, resulting in a
parametric model for each axis that can be used to build
Ge for each of the axis.

Figure 4 shows the MSE of the tracking error multi-
plied by 1000 as function of iteration round for each axis
using the adjoint algorithm from Section 6.2. The y-axes
in the figure are in a logarithmic scale so that changes
in the tracking error can be observed during later itera-
tion rounds, where it becomes extremely small. From this
figure it is clear that the algorithm converges to almost a
zero tracking error, and the convergence speed is accept-
able for this particular task. Figures 5–7 show e300(t) =
r(t) − y300(t) for each axis. These figures demonstrate
further the accuracy of the tracking after learning.

9. Conclusions

This paper described the area of Iterative Learning Control
(ILC) as a branch of control systems design. It was neces-
sarily highly selective and concentrated on work originat-
ing in the Sheffield Group and with collaborators includ-
ing problem formulation, new issues for design that arise
out of the essentially 2D nature of the dynamics and con-
trol specifications, and the impact of plant dynamics on

0 50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

0 50 100 150 200 250 300
10

−5

10
0

10
5

0 50 100 150 200 250 300
−6

−4

−2

0

X−axis 

Y−axis 

Z−axis 

lo
g(

M
S

E
x1

00
0)

lo
g(

M
S

E
x1

00
0)

lo
g(

M
S

E
x1

00
0)

Iteration k 

Iteration k 

Iteration k 

Fig. 4. Log mean squared error×1000 for each of the axes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−4

T
ra

ck
in

g 
er

ro
r 

(m
)

X−axis tracking error at k=300

Time (s)

Fig. 5. Tracking error r(t) − y300(t) for the X-axis.

ILC performance. The stability (convergence) of learning
dominates the analysis (just as stability dominates classi-
cal control design methods), and the need for monotonic-
ity of the Euclidean norms of the signal time series is pro-
posed as a sensible design objective.

The use of optimization methods has been put for-
ward by Owens and co-workers and is seen to be a method
of ensuring monotone convergence. It has the advantage
that, by choosing quadratic objective functions, it releases
classical methods of optimal control and optimization for
use in this area. In several important cases (the so-called
Norm Optimal ILC (NOILC)), ILC algorithms can be ex-
pressed in terms of familiar objects such as Riccatti equa-
tions and ‘co-state’ equations and consist of a combination
of off-line (inter-trial) computations (used to form ‘feed-
forward’ signals) and state feedback.

ILC, as most control designs, does have to address
the issues of the complexity of computation and imple-
mentation. One of the interesting facts to emerge from
the work of Owens and colleagues is that monotone con-
vergence is retained for simplified Parameter-Optimal ILC
(POILC) approaches. These approaches offer the attrac-
tive feature of relative simplicity but, being sub-optimal
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in the NOILC sense, consideration must be given to the
issues of convergence rates and whether or not the error
actually does converge to zero. It is known that non-zero
limit errors can occur but that a careful choice of the con-
trol structure does offer the possibility of either reducing
their magnitudes or, under well defined conditions (that
depend on plant dynamics), ensuring that e = 0 is the only
possible limit. One proposed solution to this problem has
been the use of carefully constructed switching strategies
but, more generally, the form and nature of limit sets need
to be more fully understood. In addition, the area requires
that a more effective robustness theory be developed. Cur-
rent work at Sheffield has made progress in this area, but
much more needs to be done.

Finally, ILC offers theoretical, computational and ap-
plications challenges. Some solutions have been obtained
and a number of new directions opened up. Practical stud-
ies have underlined the potential of these new algorithms
and their robustness in practice. There are a multitude
of open problems needing attention. This paper has only
touched upon some of the issues. Interested readers will
find more information in the references and future publi-
cations.
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