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1. Introduction

1.1. Topological derivatives in shape optimization.
Topological derivatives are introduced for linear problems
in (Sokolowski and Zochowski, 1999) and for variational
inequalities in (Sokolowski and Zochowski, 2005). The
mathematical theory of asymptotic analysis is applied in
(Nazarov and Sokolowski, 2003; 2006) for the derivation
of topological derivatives in shape optimization of ellip-
tic boundary values problems. Numerical solutions of
shape optimization problems for variational inequalities
obtained by the level set method combined with topologi-
cal derivatives are presented in (Fulmanski et al., 2007)

In the paper we present topological derivatives for
semilinear elliptic boundary value problems. In the first
part, asymptotic analysis of a class of boundary value
problems for a second order semilinear differential equa-
tion is performed. In the second part, the convergence
of our finite element approximation for the topological
derivatives is proved, and the results of numerical experi-
ments are presented as well.

Topological sensitivity analysis aims to provide an
asymptotic expansion of a shape functional with respect
to the size of a small hole created inside the domain. For
a criterion j(Ω) = J (uΩ; Ω), where Ω ⊂ R

N (N = 2
or 3) and uΩ is a solution of a set of partial differential

equations defined over Ω, this expansion can be generally
written in the form

j(Ω\(O + ωε))−j(Ω) = f(ε)TΩ(O, ω)+o(f(ε)). (1)

Here ε and O denote respectively the diameter and the
center of the hole, ω is a fixed domain containing the ori-
gin O and f(ε) is a positive function tending to zero with
ε. The coefficient TΩ is commonly called the topological
derivative.

1.2. Semilinear elliptic equation. Let Ω and ω be
bounded domains in R

3 with the smooth boundaries ∂Ω
and ∂ω and the compact closures Ω and ω, respectively.
The origin O of the coordinate system is assumed to be-
long to the domains Ω and ω. The following sets are in-
troduced:

ωε =
{
x ∈ R

3 : ξ := ε−1x ∈ ω
}

,

Ω(ε) := Ω \ ωε,
(2)

where x = (x1, x2, x3) are Cartesian coordinates in the
domain Ω and ε > 0 is a small parameter. The upper
bound ε0 > 0 is chosen in such a way that for ε ∈ (0, ε0]
the set ωε belongs to the domain Ω. We can diminish the
value of ε0 > 0 in the sequel, if necessary. However, the
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notation for the bound ε0 remains unchanged. The set ωε

is called a hole, or an opening, in the domain Ω(ε).
In this paper, we consider a nonlinear elliptic prob-

lem in the singularly perturbed domain Ω(ε) :
{

−Δxuε(x) = F (x, uε(x)), x ∈ Ω(ε),
uε(x) = 0, x ∈ ∂Ω(ε). (3)

Here F ∈ C0,α(Ω×R) and f ∈ C0,α(Ω) are given func-
tions, independent of the parameter ε. Asymptotic analy-
sis in the linear case is well known (see the monographs
(Il’in, 1989; Mazja et al., 1991)), e.g., for the Dirichlet
boundary value problem for the Poisson equation:

{
−Δxuε(x) = f(x), x ∈ Ω(ε),

uε(x) = 0, x ∈ ∂Ω(ε). (4)

According to the method of compound asymptotic
expansions (Mazja et al., 1991), in asymptotic analysis
of (4) there appear two limit problems. The first one is
obtained by formally taking ε = 0, e.g., by filling the hole
ωε : {

−Δxu(x) = f(x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

(5)

and the second one is the boundary value problem, which
furnishes the leading boundary layers term:

{
−Δξw(ξ) = 0, ξ ∈ R

3 \ ω,
w(ξ) = −u(O), ξ ∈ ∂ω,

(6)

where u(O) is the value at the origin of the solution of (5).
As in (Mazja et al., 1981) (see also Ch. 5.7 in (Mazja

et al., 1991)), for the nonlinear problem (3) we obtain also
two limit problems. The first one is nonlinear,

{
−Δxv(x) = F (x, v(x)), x ∈ Ω,

v(x) = 0, x ∈ ∂Ω,
(7)

and the second one is the linear exterior problem (6) with
u(O) := v(O) given by the solution to (7).

Our aim in this paper is the construction of asymp-
totic approximations for solutions to (3) in such a way that
we will be able to obtain an expansion of a given shape
functional

J (uε; Ω(ε)) =
∫

Ω(ε)

J(x, uε(x)) dx, (8)

of the first order with respect to ε, namely,

J (uε; Ω(ε)) = J (v; Ω) + εTΩ(O) + o(ε), (9)

(cf. (1)), where

J (v; Ω) =
∫

Ω

J(x, v(x)) dx, (10)

and TΩ is the topological derivative of the functional J .
Apart from that, we need the linearized problem (7),

which gives us the regular terms in the asymptotic approx-
imation,
{

−ΔxV (x) − F ′
v(x, v(x))V (x) = F(x), x ∈ Ω,

V (x) = g(x), x ∈ ∂Ω.
(11)

The solution V is but the so-called the adjoint state. The
adjoint state is introduced in order to simplify the expres-
sion for the topological derivative.

Appropriate function spaces are employed to analyze
the solvability of all boundary value problems introduced
above. The weighted Hölder spaces Λl,α

β (Ω) are defined

(Mazja and Plamenevskii, 1978) as the closure of C∞
c (Ω\

O) (smooth functions vanishing in the vicinity ofO) in the
norm

‖Z; Λl,α
β (Ω)‖

=
l∑

k=0

sup
x∈Ω

|x|β−l−α+k|∇k
xZ(x)|

+ sup
x,y∈Ω,|x−y|<|x|/2

|x|β |x − y|−α|∇l
xZ(x) −∇l

yZ(y)|.

The standard norm in the Hölder space Cl,α(Ω) is as fol-
lows:

‖Z; Cl,α(Ω)‖

=
l∑

k=0

sup
x∈Ω

|∇k
xZ(x)|

+ sup
x,y∈Ω,|x−y|<|x|/2

|x − y|−α|∇l
xZ(x) −∇l

yZ(y)|.

Here l ∈ {0, 1, . . .}, α ∈ (0, 1) and β ∈ R.
Now we introduce several assumptions which are re-

quired to define the topological derivatives:
(H1) The limit problem (7) has a solution v ∈ C2,α(Ω)
and F ∈ C0,1(Ω × R) with a certain α ∈ (0, 1).
(H2) The linear problem (11) with F ∈ C0,α(Ω), g ∈
C2,α(∂Ω) has a unique solution V ∈ C2,α(Ω),

‖V ; C2,α(Ω)‖ ≤ c(‖F ; C0,α(Ω)‖ + ‖g; C2,α(∂Ω)‖).
(12)

Here and in the sequel c stands for a positive constant that
may change from place to place but never depends on ε.
(H3) F ′

v ∈ C0,α(Ω × R).
If (H3) holds true and F ′

v(x, v(x)) ≤ 0 for x ∈ Ω,
then (H2) is also satisfied.

The hypothesis (H2) means the existence and
uniqueness of classical solutions to the linearized prob-
lem in Hölder spaces C2,α(Ω) with the a priori estimate
(12). It turns out that the linear mapping for the problem
(11), i.e.,

S : {F , g} �−→ V, (13)
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is an isomorphism in the Hölder spaces C0,α(Ω) ×
C2,α(∂Ω) → C2,α(Ω). By a general result in
(Mazja and Plamenevskii, 1978), (see also (Nazarov and
Plamenevsky, 1994)), the operator remains to be an iso-
morphism in weighted Hölder spaces under the proper
choice of indices.

Theorem 1. Under the assumptions (H2) and (H3), the
mapping (13) considered in the weighted Hölder spaces

S : Λ0,α
β (Ω) × C2,α(∂Ω) �−→ Λ2,α

β (Ω)

is an isomorphism if and only if β − α ∈ (2, 3).

The following result on asymptotics is due to
(Kondratiev, 1967; Mazja and Plamenevskii, 1978) (see
also (Mazja and Plamenevskii, 1973) and, e.g., (Nazarov
and Plamenevsky, 1994)).

Theorem 2. If the right hand side in (11) F ∈ Λ0,α
γ (Ω)

and γ − α ∈ (1, 2), then the solution V to (11) can be
decomposed into V (x) = Ṽ (x)+V (O) and the following
estimate holds:

|V (O)| + ‖Ṽ ; Λ2,α
γ (Ω)‖

≤ c(‖F ; Λ0,α
γ (Ω)‖ + ‖g; C2,α(∂Ω)‖). (14)

An assertion, similar to Theorem 1, is valid for the
perforated domain Ω(ε) as well. The following result is
due to (Mazja et al., 1981) (see also (Mazja et al., 1991;
Nazarov and Plamenevsky, 1994))

Theorem 3. Under the assumptions (H2) and (H3), the
linearized problem
{

−Δxvε(x) − F ′
v(x, v(x))vε(x) = Fε(x), x ∈ Ω(ε),

vε(x) = gε(x), x ∈ ∂Ω(ε)
(15)

is uniquely solvable and the solution operator

Sε : {Fε, gε} �−→ vε (16)

is bounded in the weighted Hölder spaces

Sε : Λ0,α
β (Ω(ε)) × Λ2,α

β (∂Ω(ε)) �−→ Λ2,α
β (Ω(ε)) .

Moreover, in the case when β − α ∈ (2, 3) the estimate

‖vε; Λ2,α
β (Ω(ε))‖

≤ cβ(‖Fε; Λ0,α
β (Ω(ε))‖ + ‖gε; Λ2,α

β (∂Ω(ε))‖) (17)

is valid, where the constant cβ is independent of ε ∈
(0, ε0].

Remark 1. Since |x| ≥ cε > 0 in Ω(ε), the weighted
norm ‖ · ; Λ2,α

β (Ω(ε))‖ is equivalent to the usual norm
‖ · ; C2,α(Ω(ε))‖. However; the equivalence constants de-
pend on ε. Thus Λ2,α

β (Ω(ε)) and C2,α(Ω(ε)) coincide al-
gebraically and topologically but are normed in a different

way. The norm of the operator Sε is uniformly bounded
for ε ∈ (0, ε0] for any β, although the constant cβ in (17)
depends on ε provided β /∈ (2, 3), that is, the norm of the
inverse operator is uniformly bounded in ε ∈ (0, ε1] only
in the case of β ∈ (2, 3).

For the nonlinear problem (3), we shall use the clas-
sical solutions to the boundary value problem (3), which
means that for given F ∈ C0,α(Ω × R), α ∈ (0, 1), the
solution lives in C2,α(Ω). We refer to (Ladyzhenskaya
and Ural’tseva, 1968; Gilbarg and Trudinger, 2001) for
a result on the existence and uniqueness of solutions to
semilinear elliptic boundary value-problems. This means,
in particular, that the problem (3) admits a unique solu-
tion uε ∈ C2,α(Ω(ε)) for some 0 < α < 1 and for all
ε ∈ [0, ε0).

2. Topological derivative for semilinear
problems in 3D

We present here a complete analysis of the semilinear el-
liptic problem in three spatial dimensions. Such an anal-
ysis is interesting on its own, since in the existing litera-
ture there is no elementary derivation of the form of topo-
logical derivatives for nonlinear problems besides (Mazja
et al., 1981), (see also (Mazja et al., 1991)), i.e., us-
ing asymptotic approximations of solutions to nonlinear
PDEs. There are some results on topological derivatives
of the shape functional for nonlinear problems, see, e.g.,
(Amstutz, 2006). However, such results are given in terms
of one term exterior approximation of the solutions and
without an asymtotically sharp estimate.

2.1. Formal asymptotic analysis. Referring to (Mazja
et al., 1991), we set

uε(x) = v(x) + w(ε−1x) + εv′(x) + · · · , (18)

where v, v′ and w are components of regular and boundary
layer types, respectively. Thus,

−Δxv(x) − ε−2Δξw(ξ) − εΔxv′(x) + · · ·
= F (x, v(x) + w(ε−1x) + εv′(x) + · · · )
= F (x, v(x)) + (w(ε−1x)

+ εv′(x))F ′
v(x, v(x)) + · · · .

(19)

In view of (7), the first terms on the left and right-hand
sides are cancelled and, moreover, w satisfies the problem
(6) with u(O) = v(O),

{
−Δξw(ξ) = 0, ξ ∈ R

3 \ ω,
w(ξ) = −v(O), ξ ∈ ∂ω,

(20)

while the boundary datum comes from the relation

v(x) + w(ε−1x) + εv′(x)

= v(O) + w(ε−1x) + O(ε), x ∈ ∂ωε.
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We have
w(ξ) = −v(O)P (ξ), (21)

where P is the capacity potential (Landkof, 1966; Pólya
and Szegö, 1951), e.g., a harmonic function in R

3\ω such
that P (ξ) = 1 on ∂ω and

P (ξ) = |ξ|−1cap(ω) + O(|ξ|−2), (22)

where cap(ω) is the capacity of the set ω. Since

w(ε−1x) = −|x|−1εv(O)cap(ω) + O(ε2|x|−2), (23)

we collect coefficients on ε in (19) and obtain
⎧
⎨

⎩

−Δxv′(x) − v′(x)F ′
v(x, v(x))

= −aΦ(x)F ′
v(x, v(x)), x ∈ Ω,

v′(x) = aΦ(x), x ∈ ∂Ω,
(24)

where a = 4πv(O)cap(w) and Φ(x) = (4π|x|)−1 is the
fundamental solution of the Laplace equation in R

3.
Since a direct calculation yields F ′(·, v)Φ ∈

Λ0,α
γ (Ω) with any γ > 1 + α, we obtain the solution

v′ ∈ Λ2,α
β (Ω) of the problem (24) such that v′ − v′(O) ∈

Λ2,α
γ (Ω) where β − α ∈ (2, 3) and γ − α ∈ (1, 2) can be

taken arbitrarily in the prescribed intervals.

2.2. Justification of asymptotic. We search for a so-
lution of the problem (3) in the form

uε(x) = v(x) + w(ε−1x) + εv′(x) + ûε(x), (25)

where ûε is a small remainder, satisfying the problem
⎧
⎨

⎩

−Δxûε(x) = F̂ε(x; û), x ∈ Ω(ε),
ûε(x) = ĝε

Ω(x), x ∈ ∂Ω,
ûε(x) = ĝε

ω(x), x ∈ ∂ω(ε).
(26)

Here

F̂ε(x; û) = F (x, v(x) + w(ε−1x) + εv′(x)
+ ûε(x)) − F (x, v(x))
− ε(v′(x) − aΦ(x))F ′

v(x, v(x)),

ĝε
Ω(x) = −w(ε−1x) − aεΦ(x),

ĝε
ω(x) = −v(x) + v(O) − εv′(x).

(27)

We are going to employ the Banach contraction principle
and, thus, we need to estimate the norms of (27).

Owing to (21), (22), the function x �→ w(ε−1x) +
aεΦ(x) is smooth on the surface ∂Ω, where |x| ≥ c > 0,
and

|w(ε−1x) + aεΦ(x)|
≤ |v(O)||P (ξ) − cap(ω)|ξ|−1|
≤ cε2|x|−2 ≤ cε2,

|∇k
xw(ε−1x) + aε∇k

xΦ(x)|
≤ ε−k|v(O)||∇k

ξ P (ξ) − cap(ω)∇k
ξ |ξ|−1|

≤ cε−k|ξ|−2−k = cε2|x|−2−k ≤ cε2.

(28)

Hence, by the above inequalities for the function
x �→ w(ε−1x) + aεΦ(x), we obtain the following esti-
mates of the norm of ĝε

Ω in the weighted Hölder space :

‖ĝε
Ω; Λ2,α

β (∂Ω)‖ ≤ c‖ĝε
Ω; C2,α(∂Ω)‖

≤ c‖ĝε
Ω; C3(∂Ω)‖ ≤ cε2.

(29)

Moreover, for β − β′ > 0, we have

‖ĝε
ω; Λ2,α

β (∂Ω)‖

≤ c( sup
x∈∂ωε

2∑

k=0

|x|β−2−α+k(|∇k
x(v(x) − v(O))|

+ ε|∇k
xv′(x)|) + sup

x,y∈∂ωε

|x|β |x − y|−α(|∇2
xv(x)

−∇2
yv(y)| + ε|∇2

xv′(x) −∇2
yv′(y)|))

≤ c(εβ−1−α‖v; C2,α(Ω)‖ + ε1+β−β′‖v′; Λ2,α
β′ (Ω)‖).

(30)

Notice that v′ ∈ Λ2,α
β′ (∂Ω) with arbitrary β′ ∈ (2 +

α, 3 + α). We shall further select the indices β and β′ in
an appropriate way.

Write

F(x, V (x)) =F (x, v(x) + V (x))
− F (x, v(x)) − V (x)F ′

v(x, v(x)),
(31)

so that

F̂ε(x; ûε)

= F(x, w(ε−1x) + εv′(x) + ûε(x))

+ (w(ε−1x) + εaΦ(x) + ûε(x))F ′
v(x, v(x)).

(32)

Since (x �→ F ′
v(x, v(x))) ∈ C0,α(Ω), by (H3), we

take into account the representation (22) together with the
inequality β − α > 2 and, as a result, we obtain

‖(w + εaΦ)F ′
v; Λ0,α

β (Ω(ε))‖

≤ c

(

sup
x∈Ω(ε)

|x|β−α

(
|x|
ε

)−2

+

(

sup
x,y∈Ω(ε),|x−y|<|x|/2

|x|β |x − y|−α

·
∣
∣
∣
x

ε
− y

ε

∣
∣
∣
(
|x|
ε

)−3
)

≤ cε2 sup
x∈Ω(ε)

(|x|β−α|x|−2 + |x|β+1−α|x|−3)

≤ cε2.

(33)

To estimate the first term on the right-hand side of
(32), we need the following assumption on F:
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(H4) With a certain κ ∈ (0, 1) and for |V (x)| ≤ C,
x ∈ Ω, the inequality |F(x, V (x))| ≤ c|V (x)|1+κ and
the following relations are valid:

|F(x,V1(x)) − F(y, V2(y))|
≤ c(|x − y|α(|V1(x)| + |V2(y)|)1+κ

+ |V1(x) − V2(y)|(|V1(x)|κ + |V2(y)|κ)),

|F(x, V1(x)) − F(x, V2(x))
− (F(y, V1(y)) − F(y, V2(y)))|

≤ c(|V1(x) − V2(x) − (V1(y) − V2(y))|V(x, y)κ

+ |x − y|α(|V1(x) − V2(x)|
+ |V1(y) − V2(y)|)V(x, y)κ

+ (|V1(x) − V2(x)|
+ |V1(y) − V2(y)|)(|V1(x) − V2(y)|
+ |V1(y) − V2(y)|)(1 + V(x, y))κ−1,

(34)

where

V(x, y) = |V1(x)| + |V2(x)| + |V1(y)| + |V2(y)|.

In other words, the mapping F satisfies the Hölder condi-
tion in both arguments and has a power-law growth in the
second one. Moreover, the second order difference satis-
fies the estimate (34).

Lemma 1. (1) Let V ∈ Λ2,α
β (Ω(ε)) and β − α ∈

(2, 3), α ∈ (0, 1), κ ∈ (0, 1). Then, for x ∈ Ω(ε) and
|x − y| < |x|/2, the estimates

|x|β−α|V (x)|1+κ ≤ c‖V ; Λ2,α
β (Ω(ε))‖1+κ,

|x|β−(β−α) κ
1+κ |x − y|−α|V (x) − V (y)|1+κ

≤ c‖V ; Λ2,α
β (Ω(ε))‖1+κ

are valid.
(2) Under the same restrictions on α, β, κ and x, y as
above,

|x|β−α|w(ε−1x)|1+κ ≤ cε1+κ,

|x|β−(β−α) κ
1+κ |x − y|−α|w(ε−1x) − w(ε−1y)|1+κ

≤ cε.

Proof. First, we readily show the first assertion:

|x|β−α|V (x)|1+κ

≤ |x|β−α|x|−(1+κ)(β−2−α)(|x|β−2−α|V (x)|)1+κ

≤ |x|2−κ(β−2−α)‖V ; Λ2,α
β (Ω(ε))‖1+κ

The second inequality follows from the relation

2 − κ(β − 2 − α) ≥ 2 − 1(3 − 2 − α) > 1 > 0.

Since
1
2
|x| < |y| <

3
2
|x|,

in view of
|x − y| <

x

2
and using the Newton-Leibnitz formula, we conclude that

|x|β−(β−α) κ
1+κ |x − y|−α|V (x) − V (y)|1+κ

≤ c|x|β−(β−α) κ
1+κ |x − y|−α|x|−β+1+α|x − y|

· sup
x∈Ω(ε)

(|x|β−1−α|∇xV (x)|)

≤ c|x|β−(β−α) κ
1+κ |x|1−α|x|−β+1+α‖V ; Λ2,α

β (Ω(ε))‖

while applying the inequalities

β−(β − α)
κ

1 + κ
+ 1 − α − β + 1 + α

= 2 − (β − α)
κ

1 + κ
≥ 2 − (β − α − 2)κ

1 + κ
> 0.

Based on the assumptions β −α > 2 and 1 + κ < 2,
we prove the second assertion. We have

|x|β−α|w(ε−1x)|1+κ ≤ c|x|β−α(1 +
|x|
ε

)−1−κ

= cε1+κ |x|β−α

(ε + |x|)1+κ
≤ cε1+κ.

Owing to the estimate |P (ξ)| ≤ c(1+|ξ|)−1 for the capac-
ity potential and the boundary condition (21), it follows
that

|x|β−(β−α) κ
1+κ |x − y|−α|w(ε−1x) − w(ε−1y)|

≤ c|x|β−(β−α) κ
1+κ |x − y|−α

∣
∣
∣
x

ε
− y

ε

∣
∣
∣
(
1 +

|x|
ε

)−2

· sup
ξ∈R3\ω

(1 + |ξ|)2|∇ξw(ξ)|)

≤ cε|x|β−(β−α) κ
1+κ |x|1−α(ε + |x|)−2

≤ cε.

Indeed, in the first inequality we have again applied
the Newton-Leibnitz formula, and in the second one we
have used the fact that |∇ξP (ξ)| ≤ c(1 + |ξ|)−2 and

β − α − (β − α)
κ

1 + κ
=

β − α

1 + κ
≥ 1.

�

We now list the necessary estimates based on
Lemma 1 and (H5). We start with the boundedness of
the first term in (32) multiplied by a weight. We obtain

|x|β−α|F(x, w(ε−1x) + εv′(x) + ûε(x))|
≤ c|x|β−α(|w(ε−1x)|1+κ + ε1+κ|v′(x)|1+κ

+ |ûε(x))|1+κ)

≤ c(ε1+κ + ‖ûε; Λ2,α
β (Ω(ε))‖1+κ).

(35)
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Second, we verify the boundedness of the weighted
difference, namely,

|x|β |x − y|−α|F(x,

=V (x)
︷ ︸︸ ︷
w(ε−1x) + εv′(x) + ûε(x))

− F(y, V (y))| ≤ c|x|β(|V (x)|1+κ + |x − y|−α|V (x)
− V (y)|(|V (x)|κ + |V (y)|κ))

≤ c
(
ε1+κ + ‖ûε; Λ2,α

β (Ω(ε))‖1+κ

+ (εκ + ‖ûε; Λ2,α
β (Ω(ε))‖κ)|x|β−(β−α) κ

1+κ |x − y|−α

·
{∣∣
∣w
(x

ε

)
− w

(y

ε

)∣∣
∣

+ ε|v′(x) − v′(y)| + |ûε(x) − ûε(y)|
})

≤ c(ε1+κ + ‖ûε; Λ2,α
β (Ω(ε))‖1+κ).

(36)

Now, we deduce the local Lipschitz continuity of the first
part of the mapping (32):

|x|β−α|F(x,

=V1(x)
︷ ︸︸ ︷
w(ε−1x) + εv′(x) + ûε

1(x))

− F(x,

=V2(x)
︷ ︸︸ ︷
w(ε−1x) + εv′(x) + ûε

2(x))|
≤ c|x|β−α|ûε

1(x) − ûε
2(x)|(|V1(x)|κ + |V2(x)|κ)

≤ c‖ûε
1 − ûε

2; Λ
2,α
β (Ω(ε))‖(εκ + ‖ûε

1; Λ
2,α
β (Ω(ε))‖κ

+ ‖ûε
2; Λ

2,α
β (Ω(ε))‖κ).

(37)

Finally, we prove the local Lipschitz continuity for
the weighted second order differences of the mapping F.
For example, the first term on the right-hand side of (34)
gets the bound

c|x|β−(β−α) κ
1+κ |x − y|−α|(V1(x) − V2(x))

− (V1(y) − V2(y))|(εκ + ‖ûε
1; Λ

2,α
β (Ω(ε))‖

+ ‖ûε
2; Λ

2,α
β (Ω(ε))‖)

≤ c‖ûε
1 − ûε

2; Λ
2,α
β

· (Ω(ε))‖(εκ + ‖ûε
1; Λ

2,α
β (Ω(ε))‖κ).

(38)

The other two terms in (34) are estimated in the same way
as in (35) and (36), respectively.

The above estimates allow us to apply the Banach
fixed point theorem to verify the existence of the remain-
der ûε. To this end, we rewrite problem (26) in the
form of an abstract equation in the Banach space R =
Λ2,α

β (Ω(ε)), namely,

ûε = Gûε, (39)

where
Gûε = Sε(F̂ε(.; ûε), ĝε

Ω, ĝε
ω)

and Sε denotes the isomorphism (16). Let ûε belong to
the ball B ⊂ R of radius Cε1+κ. We further need to verify
two properties. First, the mapping C maps the ball B into
itself,

B 
 ûε ⇒ Gûε ∈ B, (40)

and second, the mapping becomes a strict contraction on
the ball, i.e.,

‖Gv−Gw; R‖ ≤ k‖v−w; R‖, v, w ∈ R with k < 1.
(41)

By (29), (30), (33) and (35), (36), we have

‖Gûε; R‖ ≤ c(‖F̂ε; Λ0,α
β (Ω(ε))‖ + ‖ĝε

Ω; Λ2,α
β (Ω(ε))‖

+ ‖ĝε
ω; Λ2,α

β (Ω(ε))‖)
≤ c(ε1+κ + ‖ûε; R‖1+κ

+ ε2 + εβ−1−α + ε1+β−β′
).

(42)

Let us fix β, α and β′, κ such that

(1, 2) 
 β − α − 1 ≥ 1 + κ, (43)

β − β′ ≥ κ. (44)

Recall that β − α and β′ − α belong to the interval (2, 3).
Thus, to satisfy (44), we must put β−α near 3 (satisfying
(43) as well) and β′ − α near 2. This allows us to create a
gap of any length κ ∈ (0, 1).

If (43) and (44) hold true, we obtain

‖Gûε; R‖ ≤ c(4ε1+κ + ‖ûε; R‖1+κ) ≤ Cε1+κ,

while the desired inequality C ≥ c(4 + C1+κε(1+κ)κ) is
achieved by a proper choice of the constant C (e.g., C =
5c) and the bound for the parameter ε0 in the condition
ε ∈ (0, ε0].

By virtue of (37) and (38), the estimate

‖Gv − Gw; R‖ ≤ c(εκ + 2Cκε(1+κ)κ)
︸ ︷︷ ︸

k

‖v − w; R‖

is valid. The necessary relation k < 1 can be achieved by
diminishing, if necessary, the upper bound ε0 for ε again.

Theorem 4. Let the indices β, α and κ ∈ (0, 1) satisfy
(43) and β − 2 > κ, while (H2) and (H4) hold true. Then
there exist positive constants C and ε0 such that, for ε ∈
(0, ε0], the non-linear problem (26) has a unique small
solution ûε, namely,

‖ûε; Λ2,α
β (Ω(ε))‖ ≤ Cε1+κ. (45)

Consequently, the singularity perturbed problem (3) has
at least one solution (25).
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In the theorem we have proven the existence of a
small remainder ûε in (25), i.e., we have verified that the
problem (3) has a unique solution in a small ball centred at
the approximate asymptotic solution. If the uniqueness of
the solution ûε is known, for example, F in (3) gives rise
to a monotone operator, the remainder is unique without
any smallness assumption.

2.3. Formal asymptotic of the shape functional. We
have

J (uε; Ω(ε))

=
∫

Ω(ε)

J(x, v(x)) dx

+
∫

Ω(ε)

(w(ε−1x) + εv′(x))J ′
v(x, v(x)) dx + · · ·

=
∫

Ω

J(x, v(x)) dx

+ ε

∫

Ω

(v′(x) − aΦ(x))J ′
v(x, v(x)) dx + · · ·

(46)

We now introduce the following assumption:

(H5) J ∈ C0,α(Ω × R), J ′
v ∈ C0,α(Ω × R).

Let p ∈ C2,α(Ω) be a solution of the problem

⎧
⎨

⎩

−Δxp(x) − F ′
v(x, v(x))p(x)
= J ′

v(x, v(x)), x ∈ Ω,
p(x) = 0, x ∈ ∂Ω.

(47)

Integrating by parts in Ω \Bδ = {x ∈ Ω : |x| > δ} yields

∫

Ω

(v′(x) − aΦ(x))J ′
v(x, v(x)) dx

= − lim
δ→0

∫

Ω\Bδ

(Δxp(x) + F ′
v(x, v(x))p(x))

· (v′(x) − aΦ(x)) dx

= − lim
δ→0

∫

Ω\Bδ

p(x)(Δx + F ′
v(x, v(x)))(v′(x)

− aΦ(x)) dx − lim
δ→0

∫

∂Ω

∂np(x)(v′(x) − aΦ(x)) dx

+ lim
δ→0

∫

∂Bδ

(∂|x|p(x)(v′(x) − aΦ(x)) − p(x)∂|x|(v′(x)

− aΦ(x))) dx.

By (24), we have v′(x) − aΦ(x) = 0 for x ∈ Ω and

(Δx + F ′
v(x, v(x)))(v′(x) − aΦ(x))

= Δxv′(x)
+ v′(x)F ′

v(x, v(x)) − aΦ(x)F ′
v(x, v(x))

= 0.

On the other hand, ∂|x|p(x)(v′(x) − aΦ(x)) = O(δ−1)
and, hence,

∫

Ω

(v′(x) − aΦ(x))J ′
v(x, v(x)) dx

− lim
δ→0

∫

∂Bδ

(∂|x|p(x)(v′(x) − aΦ(x))

− p(x)∂|x|(v′(x) − aΦ(x))) dx

= −a lim
δ→0

∫

∂Bδ

p(0)(4π|x|2)−1 dsx

= −ap(0) = −4πv(O)p(0)cap(ω).

Thus,

J (uε; Ω(ε)) = J (v; Ω) − ε4πv(O)p(0)cap(ω) + · · · .
(48)

Similarly to the first inequality in (H4), let the following
assumption be valid:

(H6) With σ ∈ (0, 1),

|J(x, v(x) + V (x)) − J(x, v(x)) − V (x)J ′
v(x, v(x))|

≤ c|V (x)|1+σ .

Using this assumption leads to the relation

|J (uε; Ω(ε)) − J (v; Ω(ε))

−
∫

Ω(ε)

(w(ε−1x) + εv′(x) + ûε(x))J ′
v(x, v(x)) dx|

≤ c

∫

Ω(ε)

|w(ε−1x) + εv′(x) + ûε(x)|1+σ dx

≤ c

∫

Ω(ε)

(∣
∣
∣
x

ε

∣
∣
∣
−1−σ

+ |x|−(1+σ)(β−2−α)

· (ε1+σ‖v′; Λ2,α
β (Ω)‖1+σ

+ ‖ûε(x); Λ2,α
β (Ω)‖1+σ)

)
dx

≤ cε1+σ

⎛

⎝
1∫

ε

r−1−σr2 dr

+

1∫

ε

r−(1+σ)(β−2−α)r2 dr(ε1+σ + ε(1+κ)(1+σ)

⎞

⎠

≤ cε1+σ.
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Here we have taken into account the fact that 1 + σ ≤ 2,
(1 + σ)(β − 2 − α) ≤ 2, and both the integrals, extended
on the interval (0, 1), do converge.

It suffices to mention the following inequalities:

|J (uε; Ω(ε)) − J (v; Ω)| ≤ c mes3(ωε) ≤ cε3,
∫

Ω(ε)

|w(ε−1x) + aεΦ(x)||J ′
v(x, v(x))| dx

≤ c

1∫

ε

(r

ε

)−2

r dr ≤ cε2,

∫

Ω(ε)

|ûε||J ′
v(x, v(x))| dx

≤ cε1+κ

∫

Ω(ε)

|x|−(β−2−α) dx ≤ cε1+κ.

This confirms the formal calculations performed above.
Let us formulate the main result in three dimensions.

Theorem 5. Under the assumptions listed above, we have

|J (uε; Ω(ε)) − J (v; Ω) + ε4πv(O)p(0)cap(ω)|
≤ cε1+min(σ,κ).

3. Topological derivative for a mixed
semilinear elliptic problem in two
spatial dimensions

The numerical analysis is performed in two spatial dimen-
sions. Therefore, we introduce a mixed semilinear prob-
lem and analyze the asymptotic in such a case.

Since the proof uses the same arguments as in three
spatial dimensions (note that we use the Hölder norms,
which are insensitive to the space dimension), we pro-
vide only the formal analysis and impose the Neumann
boundary conditions on the hole boundary ∂ωε. Note
that the Dirichlet condition on ∂ωε changes crucially the
form of asymptotic expansions cf. (Il’in, 1989; Mazja
et al., 1981; Mazja et al., 1991).

3.1. Formal asymptotic analysis. Let Ω and ω be
bounded domains in the plane R

2. We consider the non-
linear mixed problem in the singularly perturbed domain
Ω(ε), defined in (2):

⎧
⎨

⎩

−Δxuε(x) = F (x, uε(x)), x ∈ Ω(ε),
uε(x) = 0, x ∈ ∂Ω,

∂nuε(x) = 0, x ∈ ∂ωε.
(49)

Referring to (Il’in, 1989) and especially to (Mazja et al.,
1981; Mazja et al., 1991), we set

uε(x) =v(x) + εw1(ε−1x) + ε2w2(ε−1(x)

+ ε2v′(x) + · · · ,
(50)

where v, v′ and w1, w2 are components of regular and
boundary layer types, respectively. Precisely, v is a
smooth solution of the problem (7) in the two dimensional
entire domain Ω. The Taylor formula yields

v(x) = v(O) + xT∇xv(O) +
1
2
xT∇2

xv(O)x + O(|x|3).

The second term w1 in the asymptotic ansatz (50)
becomes a solution of the exterior problem
{

−Δξw1(ξ) = 0, ξ ∈ R
2 \ ω,

∂n(ξ)w1(ξ) = −∂n(ξ)ξ
T∇xv(O), ξ ∈ ∂ω.

(51)
Such a solution admits the asymptotic representation

w1(ξ) = − 1
2π

ξT

|ξ|2 m(ω)∇xv(O)+O(|ξ|−2), |ξ| → ∞,

where m denotes the virtual mass matrix, see (Pólya and
Szegö, 1951). Then the third term w2 in (32) satisfies the
problem
{

−Δξw2(ξ) = 0, ξ ∈ R
2 \ ω,

∂n(ξ)w2(ξ) = −∂n(ξ)
1
2ξT∇xv(O)ξ, ξ ∈ ∂ω.

(52)
For such a solution, we write down the classical asymp-
totic representation

w2(ξ) =
c

2π
ln

1
|ξ| + O(

1
|ξ| ), |ξ| → ∞,

where the constant c can be calculated as follows:
∫

∂ω

∂n(ξ)w2(ξ) dsξ = −
∫

∂BR

∂

∂|ξ|
c

2π
ln

1
|ξ| dξ = c. (53)

By the Green formula, we compute the left boundary
integral

−
∫

∂ω

∂n(ξ)
1
2
ξT∇2

xv(O)ξ dsξ

=
∫

ω

Δξ
1
2
ξT∇2

xv(O)ξ dξ

= mes2ωΔxv(O)
= −mes2ωF (O; v(O)).

(54)

Finally, the fourth term v′ in (32) is to be found from
the Dirichlet problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δxv′(x) = (− 1
2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O))

+ v′(x))F ′
v(x, v(x)), x ∈ Ω,

v′(x) =
1
2π

xT

|x|2 m(ω)∇xv(O)

+
1
2π

ln
ε

|x|mes2ωF (O; v(O), x ∈ ∂Ω.

(55)
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3.2. Formal asymptotic of the shape functional. We
introduce the following hypotheses:

(H7) F ∈ C0,α(Ω × R), F ′
v ∈ C0,α(Ω × R) for some

α ∈ (0, 1) and F ′
v ≤ 0.

(H8) J ∈ C0,α(Ω × R), J ′
v ∈ C0,α(Ω × R)

By the monotonicity of F , the Lax-Milgram lemma
and the regularity of J , the problem

⎧
⎨

⎩

−Δxp(x) − F ′
v(x, v(x))p(x)

= J ′
v(x, v(x)), x ∈ Ω,

p(x) = 0, x ∈ ∂Ω
(56)

admits a unique solution p ∈ C2,α(Ω).

We replace the solution uε by its asymptotic repre-
sentation (32). As a result, we obtain the first asymptotic
term of order ε2 for the shape functional

J (uε; Ω(ε))

=
∫

Ω(ε)

J(x, v(x)) dx +
∫

Ω(ε)

(εw1(ε−1x)

+ ε2w2(ε−1x) + ε2v′(x))J ′
v(x, v(x)) dx + · · ·

= J (v; Ω(ε)) + ε2

∫

Ω(ε)

(
− 1

2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O))

+ v′(x)J ′
v(x, v(x)

)
dx + · · ·

= J (v; Ω) − ε2mes2ωJ(O; v(O))

+ ε2

∫

Ω

(
− 1

2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O))

+v′(x)) J ′
v(x, v(x)) dx + · · · .

(57)

Now we replace the right-hand side of (56) according
to the equation and twice integrate by parts in the domain
Ω \ Bδ = {x ∈ Ω : |x| > δ}. We have
∫

Ω

(− 1
2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O)) + v′(x))J ′
v(x, v(x)) dx

= − lim
δ→0

∫

Ω\Bδ

(Δxp(x) + F ′
v(x, v(x))p(x))

·
(
− 1

2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O)) + v′(x)
)

dx

= − lim
δ→0

∫

Ω\Bδ

p(x)(Δx + F ′
v(x, v(x)))

(− 1
2π

xT

|x|2 m(ω)∇xv(O) − 1
2π

ln
ε

|x|mes2ωF (O; v(O))

+ v′(x)) dx − lim
δ→0

∫

∂Ω

∂np(x)(− 1
2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O)) + v′(x)) dx

− lim
δ→0

∫

∂Bδ

(∂|x|p(x)(− 1
2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O)) + v′(x))

− p(x)∂|x|(−
1
2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O)) + v′(x)) dx.

On the other hand, the boundary condition (55) im-
plies that

− 1
2π

xT

|x|2 m(ω)∇xv(O) − 1
2π

ln
ε

|x|mes2ωF (O; v(O))

+v′(x) = 0.

Furthermore, for the linearized operator Δx +F ′
v , the for-

mula

(Δx + F ′
v(x, v(x))) +

(
− 1

2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O)) + v′(x)
)

= Δxv′(x)
+ v′(x)F ′

v(x, v(x))

+
(
− 1

2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O))
)

F ′
v(x, v(x)) = 0

is valid because the function

x �→
(
− 1

2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O)
)

is a harmonics. Hence, we obtain that
∫

Ω

(
− 1

2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O); v(O))

+ v′(x))J ′
v(x, v(x)

)
dx
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− lim
δ→0

∫

∂Bδ

(
∂|x|p(x)

(
− 1

2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O))
)

− p(x)∂|x|

(
− 1

2π

xT

|x|2 m(ω)∇xv(O)

− 1
2π

ln
ε

|x|mes2ωF (O; v(O)
))

dx

− lim
δ→0

2∑

i,j,k=1

∫

∂Bδ

[
xi

|x|
∂p

∂xi
(O)

(
− 1

2π

xk

|x|2 mkj
∂v

∂xj
(O)

)

−(p(O) + xi
∂p

∂xi
(O))

(
− 1

2π

xj

|x|3 mjk
∂v

∂xk
(O)

)]
dx

+ lim
δ→0

∫

∂Bδ

[
2∑

i=1

(p(O) + xi
∂p

∂xi
(O))

· ×
(

1
2π

1
|x|mes2ωF (O; v(O))

)]
dx

− lim
δ→0

∫

∂Bδ

⎡

⎣
2∑

i,j,k=1

xi

|x|
∂p

∂xi
(O)

(
− 1

π

xk

|x|2 mkj
∂v

∂xj
(O)

)

−p(O)
(

1
2π

1
|x|mes2ωF (O; v(O))

)]
dx

· lim
δ→0

∫

∂Bδ

⎡

⎣
2∑

i,j=1

xi

|x|
∂p

∂xi
(O)

(
1
π

xi

|x|2 mij
∂v

∂xj
(O)

)

+p(O)
(

1
2π

1
|x|mes2ωF (O; v(O))

)]
dx

= F (O; v(O))mes2ωp(O)

+ ∇xp(O)T m(ω)∇xv(O).

Thus, recalling (57) we conclude the relation

J (uε; Ω(ε))

= J (v; Ω) + ε2[−mes2ωJ(O; v(O))
+ F (O; v(O))mes2ωp(O)

+ ∇xp(O)T m(ω)∇xv(O)] + · · ·

(58)

Theorem 6. Under the assumptions (H1), (H7) and (H8),
the asymptotic expansion (58) is valid with the remainder
o(ε2).

4. Finite element approximations of
topological derivatives

Our aim in this section is to compute a numerical approx-
imation of the topological derivative of the shape func-
tional (8), with uε being the solution of the problem (49),
and give L∞-estimates of the error.

4.1. Family of finite elements. In Ω we consider a
family of triangulations {Th}h>0. With each element T ∈
Th, we associate two parameters ρ(T ) and σ(T ), where
ρ(T ) denotes the diameter of the set T , and σ(T ) is the
diameter of the largest ball contained in T . We set h =
maxT∈Th

ρ(T ). We make the following assumptions on
the triangulations:

(H10) Regularity assumption: There exists σ > 0 such
that ρ(T )/σ(T ) ≤ σ for T ∈ Th and h > 0.

(H11) Inverse assumption: There exists ρ > 0 such that
h/ρ(T ) ≤ ρ for T ∈ Th and h > 0.

(H12) We denote by Ωh = ∪T∈Th
T the domain obtained

by a triangulation, with Ωh as its interior and ∂Ωh its
boundary. Then we assume that the vertices of Th placed
on the boundary ∂Ωh also belong to ∂Ω.

Consider the spaces

Vh =
{
vh ∈ C(Ω) : vh|T ∈ P1(T ) for T ∈ Th

and vh = 0 in Ω \ Ωh}

and

Wh =
{
vh ∈ C(Ωh) : vh|T ∈ P1(T ) for T ∈ Th

}
,

where P1(T ) is the space of polynomials of degree 1 on
T , Vh is a vector subspace of H1

0 (Ω) and Wh is a subspace
of H1(Ω).

We use the Lagrange interpolation operator

Πh : C(Ω) → Wh

Πhz being the unique element in Wh such that Πhz(xi) =
z(xi) for every node xi of the triangulation. In the case of
a function z vanishing on ∂Ω, we extended Πhz to Ω by
zero and we denote this extension by Πhz, too. In the last
case, we have that Πhz ∈ Vh.

4.2. Numerical solution of the semilinear problem.
By virtue of the assumption F ∈ C0,1(Ω × R) and by
the mean value theorem, we deduce the following local
Lipschitz condition: For all M > 0 there exists cM > 0
such that

|F (x, v1) − F (x, v2)| ≤ cM |v1 − v2|, x ∈ Ω,

|v1|, |v2| ≤ M. (59)

Using classical arguments, we can deduce from the mono-
tonicity of F (x, ·) and (59) the existence of a unique so-
lution to (7) in H1

0 (Ω)∩C(Ω). We refer to (Stampacchia,
1965) for the boundedness of the solution. From to the
convexity of Ω, we can deduce that the solution is in
H2(Ω) (Ladyzhenskaya and Ural’tseva, 1968).

The weak formulation of the equation (7) is the fol-
lowing:

a(v, z) = (F (x, v), z)L2(Ω), z ∈ H1
0 (Ω), (60)
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where

a(v, z) =
∫

Ω

∇v(x)∇z(x) dx.

The numerical approximation vh of v is then the solution
of the problem
{

Find vh ∈ Vh such that
a(vh, zh) = (F (x, vh), zh)L2(Ω), for any zh ∈ Vh.

(61)
The proof of the existence of a solution of (61) is

well known (Stampacchia, 1965). It is enough to apply,
in a convenient way, Browder’s fixed point theorem along
with the monotonicity of F (x, ·).

We rewrite problem (56) in the form
{

−Δp(x) = F0(x, p(x)), x ∈ Ω,
p(x) = 0, x ∈ ∂Ω,

(62)

where F0(x, p(x)) = F ′
v(x, v(x))p(x) + J ′(x, v(x)). F0

is linear with respect to the second variable, so that F0 ∈
C0,1(Ω × R).

Then the variational formulation of the linear prob-
lem (56) is the following:

a(p, z) = (F0(x, p), z)L2(Ω), z ∈ H1
0 (Ω). (63)

Thus, numerical approximation of p is the solution of the
variational problem
{

Find ph ∈ Vh such that
a(ph, zh) = (F0(x, ph), zh)L2(Ω) for any zh ∈ Vh.

(64)
Due to the hypotheses (H1) and (H7), the linear problem
(64) has a solution in space Vh.

In the next section we give L∞-estimates for the fi-
nite element approximation of v,∇v, p,∇p and the topo-
logical derivatives in the case of the semilinear elliptic
problem.

4.3. Convergence of finite element approximation for
the semilinear problem and the adjoint state problem.
We are going to use the recent results on the convergence
of the finite element method in W 1,∞ spaces. The topo-
logical derivative is a pointwise expression with the values
of the solution and the adjoint state, as well as with the
values of the gradient of these functions. In order to de-
rive the error estimates in the L∞ norm for the topological
derivative, it is required to have in hand the error estimates
in the W 1,∞ norm for the solutions of the semilinear equa-
tion as well as the linear adjoint state equation. The results
presented below lead to the error estimate for the topo-
logical derivative. We refer the reader to (Casas and Ma-
teos, 2002; Demlov, 2007; Frehse and Rannacher, 1978),
for the proofs of error estimates for linear and semilinear
elliptic equations.

The following L∞-estimate for approximation by fi-
nite elements of solutions to the problem (7) was proved
in (Casas and Mateos, 2002).

Theorem 7. Let v and vh be solutions of the variational
problems (60) and (61), respectively. Then there exists a
constant C > 0 independent of h such that

‖v − vh; L∞(Ωh)‖ ≤ Ch‖v; H2(Ω)‖.
In addition, assuming that Ωh ⊂ Ω, we have the

following estimates, proved in (Demlov, 2007) (see also
(Frehse and Rannacher, 1978)).

Theorem 8. Let v and vh be solutions of the variational
problems (60) and (61), respectively. Then there exists a
constant C > 0 independent of h such that

‖∇v −∇vh; L∞(Ωh)‖∞ ≤ Ch‖v; H2(Ω)‖.
On the other hand, we have the following L∞ - es-

timates for the approximation of solutions to the linear
problem (56).

Theorem 9. Let x0 ∈ Ω, and let p and ph be solutions of
the variational problems (63) and (64), respectively. Then
there exists a constant C > 0 independent of h such that

‖p− ph; L∞(Ωh)‖ + ‖∇p −∇ph; L∞(Ωh)‖
≤ Ch‖p; H2(Ω)‖.

4.4. L∞L∞L∞- estimates for the approximation of the topo-
logical derivative. We denote by TΩ,h numerical ap-
proximation by the finite element method of the topologi-
cal derivative TΩ. Then

TΩ,h(O) = − mes2(ω)J(O, vh(O))

+ ∇xph(O)T m(ω)∇xvh(O)
+ F (O, vh(O))mes2(ω)ph(O).

(65)

We obtain

|TΩ(O) − TΩ,h(O)|
= | − mes2(ω)[J(O, v(O)) − J(O, vh(O))]

+ [∇xp(O)T m(ω)∇xv(O)

−∇xph(O)T m(ω)∇xvh(O)]
+ [F (O, v(O))mes2(ω)p(O)
− F (O, vh(O))mes2(ω)ph(O)]|

≤ mes2(ω)|J(O, v(O)) − J(O, vh(O))|
+ |∇xp(O)T m(ω)∇xv(O)

−∇xph(O)T m(ω)∇xvh(O)|
+ mes2(ω)|F (O, v(O))p(O)
− F (O, vh(O))ph(O)|.

(66)

We have

|J(O, v(O)) − J(O, vh(O))|
≤ c‖v − vh; L∞(Ωh)‖. (67)
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It follows that

|TΩ(O) − TΩ,h(O)|
≤ c‖v − vh; L∞(Ωh)‖

+ |∇xp(O)T m(ω)∇x(v(O) − vh(O))|
+ |∇x(p(O) − ph(O))T m(ω)∇xvh(O)|
+ mes2(ω)|F (O, v(O))(p(O) − ph(O))|
+ mes2(ω)|(F (O, v(O)) − F (O, vh(O)))ph(O)|.

(68)

Therefore,

|F (O, v(O)) − F (O, vh(O))|
≤ c‖v − vh; L∞(Ωh)‖, (69)

and we obtain

|TΩ(O) − TΩ,h(O)|
≤ c‖v − vh; L∞(Ωh)‖

+ c‖∇x(v(O) − vh(O)); L∞(Ωh)‖
+ c‖∇x(p(O) − ph(O)); L∞(Ωh)‖
+ c‖p(O) − ph(O); L∞(Ωh)‖.

(70)

Finally, by Theorems 8 and 9, we deduce the following
result.

Theorem 10. The following error estimate holds for the
evaluation of the topological derivatives:

|TΩ(O) − TΩ,h(O)|
≤ Ch(‖v; H2(Ω)‖ + ‖p; H2(Ω)‖). (71)

4.5. Numerical examples. In this section, we present
some numerical examples to show the behavior of topo-
logical derivative approximation with respect to the evo-
lution of discretization step size. We derive errors and
verify that the computed error satisfies the estimate from
Theorem (10) in each case.

For each of the examples, we choose the domain Ω
as a square (0, 1) × (0, 1) and the following energy func-
tional:

J (v; Ω) =
1
2

∫

Ω

|∇v(x)|2 dx +
1
4

∫

Ω

v4(x) dx

−
∫

Ω

f(x)v(x) dx

(72)

where v is the solution of the nonlinear problem
{

−Δxv(x) = −v(x)3 + f(x), x ∈ Ω,
v(x) = 0, x ∈ ∂Ω.

(73)

We take different right-hand sides f in each of the exam-
ples. The size of discretization is determined by h, which
decreases in each iteration. We compute the error in 20
iterations starting with h = 0.2 and reduce it by 0.01 in
each step.

Example 1. In the first example the function f is given
by

f(x) =f(x1, x2) =
(
(x2

1 + x2
2) sin πx1 sin πx2

)3

+ 2
(
π2(x2

1 + x2
2) − 2

)
sinπx1 sin πx2

− 4π (x1 cosπx1 sinπx2 + sin πx1 cosπx2) .

We calculate the exact solution of (73)

u(x1, x2) =
(
x2

1 + x2
2

)
sin πx1 sin πx2,

and the corresponding adjoint state

p(x1, x2) = −1
2
(
x2

1 + x2
2

)
sin πx1 sin πx2.

Exact and numerical approximations of the topological
derivative are presented in Fig. 1. In Fig. 2 we plot the
relative evolution of the error and the behavior of the error
with respect to the discretization step size.

Fig. 1. Topological derivative: exact TΩ (left) and approximate
TΩ,h (right).

Fig. 2. Error : |TΩ − TΩ,h|∞/|TΩ|∞.
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Example 2. Let us choose

f(x) = f(x1, x2)

= (x1(x1 − 1)x2(x2 − 1))3

− 2 (x2(x2 − 1) + x1(x1 − 1)) .

In this case,

u(x1, x2) = x1(x1 − 1)x2(x2 − 1)

and

p(x1, x2) = −1
2
x1(x1 − 1)x2(x2 − 1).

The exact topological derivative and it numerical ap-
proximation are presented in Fig. 3 and in Fig. 4 we show
the relative evolution of the error and the behavior of the
error with respect to the discretization step size.

Fig. 3. Topological derivative: exact TΩ (left) and approximate
TΩ,h (right).

Fig. 4. Error : |TΩ − TΩ,h|∞/|TΩ|∞.

Example 3. In the last example, we take

f(x1, x2) =
(
100x2

1x
2
2(x1 − 1)2(x2 − 1)2

)3

− 200
[
x2

1(x1 − 1)2(6x2
2 − 6x2 + 1)

+ x2
2(x2 − 1)2(6x2

1 − 6x1 + 1)
]
.

Then

u(x1, x2) = 100x2
1x

2
2(x1 − 1)2(x2 − 1)2

and

p(x1, x2) = −50x2
1x

2
2(x1 − 1)2(x2 − 1)2.

For this last example the exact topological derivative
and it numerical approximation are presented in Fig. 5,
and in Fig. 6 we show the relative evolution of the error
and the behavior of the error with respect to the discretiza-
tion step size.

Fig. 5. Topological derivative: exact TΩ (left) and approximate
TΩ,h (right).

Fig. 6. Error : |TΩ − TΩ,h|∞/|TΩ|∞.
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5. Conclusions

In the paper the form of topological derivatives of the inte-
gral shape functional was obtained for semilinear elliptic
boundary value problems in two and three spatial dimen-
sions. The finite element method was used to compute
an approximation of the topological derivatives. Con-
vergence analysis of the finite element method was per-
formed in two spatial dimensions. Since the application
of topological derivatives in shape optimization requires
pointwise values, we provided L∞-estimates for finite el-
ement approximations. The results of computations con-
firmed the a priori estimate of the numerical approxima-
tion error. The presented results can be used for shape
and topology optimization for semilinear elliptic bound-
ary value problems.
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