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This paper is concerned with the problem of stochastic stability and generalized H2 control for discrete-time fuzzy large-
scale stochastic systems with time-varying and infinite-distributed delays. Large-scale interconnected systems consist of
a number of discrete-time interconnected Takagi–Sugeno (T–S) subsystems. First, a novel Delay-Dependent Piecewise
Lyapunov–Krasovskii Functional (DDPLKF) is proposed, in which both the upper and the lower bound of delays are
considered. Then, two improved delay-dependent stability conditions are established based on this DDPLKF in terms of
Linear Matrix Inequalities (LMIs). The merit of the proposed conditions lies in its reduced conservatism, which is achieved
by circumventing the utilization of some bounding inequalities for cross products of two vectors and by considering the
interactions among the fuzzy subsystems in each subregion. A decentralized generalized H2 state feedback fuzzy controller
is designed for each subsystem. It is shown that the mean-square stability for discrete T–S fuzzy large-scale stochastic
systems can be established if a DDPLKF can be constructed and a decentralized controller can be obtained by solving a set
of LMIs. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed method.

Keywords: fuzzy large-scale stochastic system, delay-dependent, generalized H2 control, infinite-distributed delays, linear
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1. Introduction

Large-scale interconnected systems have received much
attention in recent years. It is an effective mathematical
modelling way to deal with physical, engineering, and so-
cietal systems, which are usually of high dimensions or
exhibit interacting dynamic phenomena. Many methods
have been developed to investigate the stability analysis
and controller design of interconnected systems. In par-
ticular, a decentralized control scheme is preferred in con-
trol design of large-scale interconnected systems (Zhang,
1985). However, due to the effects of nonlinear intercon-
nection among subsystems, there is still no efficient way
to deal with the decentralized control problem of nonlin-
ear interconnected systems.

Fuzzy logic control has been proposed as a sim-
ple and effective approach for complex nonlinear systems
or even nonanalytic systems. The Takagi–Sugeno (T–S)
model is one of the most popular fuzzy systems in model-
based fuzzy control. It is well suited to model-based non-
linear control. By using a T–S fuzzy plant model, one
can describe a nonlinear system as a weighted sum of
some simple linear subsystems. This fuzzy model is de-
scribed by a family of fuzzy IF-THEN rules that repre-
sent local linear input/output relations of the system. The
overall fuzzy model of the system is achieved by smoothly
blending these local linear models together through mem-
bership functions (Takagi, 1985). During the past few
years, various techniques have been developed for sta-
bility analysis and controller synthesis of T–S fuzzy sys-
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tems (Chen et al., 2009; Wang et al., 2007, Gao et al.,
2009a; 2009b and Guerra et al., 2004, Johansson et al.,
1999, Lam, 2008; Zhang et al., 2008b). Recently, sta-
bility analysis and stabilization of fuzzy large-scale in-
terconnected systems was discussed by Tseng (2009) and
Zhang et al. (2006; 2008a; 2009a; 2010). Stability anal-
ysis of discrete fuzzy large-scale systems was discussed
by Wang et al. (2010). Fuzzy adaptive output feed-
back control for large-scale nonlinear systems with dy-
namical uncertainties was studied by Tong et al. (2010).
However, these results are derived based on the Common
Lyapunov–Krasovskii Functional (CLKF). A similar can
be seen in the works of Zhang et al. (2006; 2008a; 2009a;
2010), in which the authors consider the H∞ controller
and filter design for both continuous-time and discrete-
time fuzzy large-scale interconnected systems based on
Piecewise Lyapunov–Krasovskii Functionals (PLKFs). It
is shown that the PLKFs constitute a much richer class
of Lyapunov–Krasovskii functional candidates than the
CLKF. PLKFs are able to deal with a large class of fuzzy
systems and obtained results are less conservative.

As the dual of the robust control problem, the gen-
eralized H2 control for dynamic systems has been exten-
sively investigated. The generalized H2 control problem
is the one in which the conventional H2 norm is replaced
by an operator norm. The closed-loop system is described
in terms of a mapping between the space of time-domain
input disturbances in l2 and the space of time-domain con-
trolled outputs in l∞. Consequently, generalized H2 per-
formance is useful for handling stochastic aspects such as
measurement noise and random disturbances (Wang et al.,
2004). However, to the best of our knowledge, the prob-
lem of generalized H2 stability analysis and controller de-
sign for T–S fuzzy large-scale systems has not been fully
investigated based on PLKFs despite its theoretical and
practical significance.

It is also known that there are many stochastic pertur-
bations that affect the stability and control performance
of practical systems. The study of stochastic systems
has been of great interest since stochastic modeling has
come to play an important role in many engineering ap-
plications. Therefore, analysis and synthesis of stochastic
systems have been investigated extensively and many fun-
damental results for deterministic systems have been ex-
tended to stochastic cases. For example, the stochastic sta-
bilization problem for time-delay systems was dealt with
by Gao et al. (2007a), Gong et al. (2009) and Wang et al.
(2010). Zhang et al. (2009b) studied the H∞ stochastic
control problem for uncertain stochastic piecewise-linear
systems, where the controller was designed based on a
PLKF. Stochastic H∞ filtering and fuzzy filtering prob-
lems for nonlinear networked systems and Itô systems
have also been studied by Dong et al. (2010), Wu et
al. (2008) and Halabi et al. (2009). So far, in compar-
ison with the extensive literature available for stochastic

dynamic systems, H∞/H2 stochastic control results for
fuzzy large-scale stochastic systems are relatively few.

On another research frontier, time delay exists com-
monly in many practical systems, such as chemical pro-
cesses and networked systems, which has been generally
regarded as the main source of instability and poor perfor-
mance. Many authors have studied time-delay systems.
To mention a few, Zhang et al. (2010) studied delay-
independent robust H∞ filtering design for nonlinear in-
terconnected systems with multiple time delays based on
PLKFs. More recently, to reduce the design conservatism,
Gao et al. (2007a; 2007b; 2009a), Wang et al. (2009),
Zhang et al. (2009), Chen et al. (2008; 2009), Qiu et al.
(2009) and Li et al. (2009) studied delay-dependent sta-
bilization control and H∞ filtering design for time delay
systems and fuzzy time delay systems.

Recently, another type of time-delay, namely, dis-
tributed time-delays, has drawn much research interest.
This is mainly because signal propagation is often dis-
tributed during a certain time period with the presence
of an amount of parallel pathways with a variety of axon
sizes and lengths (Wei et al., 2009). In fact, both dis-
crete and distributed delays should be taken into ac-
count when modeling realistic complex systems, and it
is not surprising that various systems with discrete and
distributed delays have drawn increasing research atten-
tion. However, almost all available results have been fo-
cused on continuous-time systems with distributed delays
that are described in the form of a finite or infinite in-
tegral. It is well known that discrete-time systems bet-
ter lend themselves to model digitally transmitted signals
in a dynamic way than their continuous-time analogues.
Therefore, it becomes desirable to study discrete-time sys-
tems with time varying and infinite-distributed delays.
Li et al. (2010) derived a new passivity result for discrete-
time stochastic neural networks with mixed delays.
Wang et al. (2010) studied the state feedback control
problem for a class of discrete-time stochastic systems
with mixed delay and nonlinear disturbances. These re-
sults rely on the existence of a CLKF for all local mod-
els, which tend to be conservative. However, based on the
PLKFs, the problem of decentralized generalized H2 con-
troller design for T–S fuzzy large-scale stochastic systems
with mixed delays remains to be investigated. The aim of
this paper is to lessen such a gap.

Motivated by the aforementioned discussion, in this
paper, we aim to investigate the decentralized generalized
H2 fuzzy-control problem for discrete-time fuzzy large-
scale stochastic systems with mixed delays. Large-scale
fuzzy systems consist of J interconnected discrete-time
T–S fuzzy subsystems. A novel DDPLKF will be in-
troduced, in which both the upper and lower bounds to
delays are considered. Two improved delay-dependent
conditions for the stochastic stability of the closed-loop
discrete-time T–S fuzzy large-scale stochastic delay sys-
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tems are obtained based on DDPLKFs, while a prescribed
generalized H2 attenuation level is guaranteed. The ex-
plicit expression of the desired decentralized fuzzy gener-
alized H2 controller parameters is also derived. A numer-
ical simulation example is used to demonstrate the effec-
tiveness of the proposed control scheme. The main con-
tributions of this paper, which concern primarily new re-
search problems and a new method, are summarized as
follows:

(i) The investigation of the T–S fuzzy large-scale model
is carried out for a class of complex systems that
account for stochastic perturbations, time-varying
delays and infinitely distributed delays, and distur-
bances within the same framework.

(ii) A delay-dependent approach is developed to solve
the problems of stochastic stability analysis and con-
troller synthesis for discrete-time T–S fuzzy large-
scale stochastic systems.

(iii) By applying some new slack matrices in each region,
a more relaxed stabilization criterion, in which the
interactions among the fuzzy subsystems are consid-
ered, is derived.

The merits of the proposed conditions consist in the
reduced conservatism, which is achieved by circumvent-
ing the utilization of some bounding inequalities for cross
products between two vectors and by considering the in-
teractions among the fuzzy subsystems in each subre-
gion Ωi

j .
It is noted that, in recent years, several decentralized

control approaches have also been developed by Zhang
et al. (2006; 2008a; 2009a) for T–S fuzzy large-scale
systems based on PLKFs. However, the approaches of
Zhang et al. (2006; 2008a; 2009a) did not consider
time delays and stochastic factors that affect the sta-
bility and control performance of fuzzy large-scale sys-
tems. Although the approaches of Li et al. (2010) and
Wang et al. (2010) considered mixed delays as in this pa-
per, these results rely on the existence of a CLKF for all
local models and delay-dependent criteria only for time-
varying delays, which tend to be conservative.

2. Problem formulation and some
preliminaries

The following fuzzy dynamic model is described by fuzzy
IF-THEN rules and will be employed here to represent
a complex stochastic nonlinear infinite-distributed delay
large-scale interconnected system S consisting of J in-
terconnected subsystems Si, i = 1, 2, . . . , J . The fuzzy
model of subsystem Si is proposed in the following form:

Rule j: If θi1(t) is W i
j1 and . . . and θip(t) is W i

jp, then

xi(t + 1)

= Ai
jxi(t) + Bi

jui(t) + Ai
1dj

∞∑

d=1

μdxi(t − d)

+ Ai
2djxi(t − d(t)) + Di

jvi(t) +
[
Āi

jxi(t)

+ Āi
1dj

∞∑

d=1

μdxi(t − d) + Āi
2djxi(t − d(t))

+ D̄i
jvi(t)

]
ωi(t) +

J∑

n=1,n�=i

Ci
nxn(t),

zi(t) = Ci
jxi(t),

xi(t) = φi(t), ∀t ∈ Z
−1, j = 1, 2, . . . , ri, (1)

where j ∈ N = {1, 2, . . . , ri} denotes a fuzzy
inference rule; ri is the number of inference rules;
W i

jl, l = 1, 2, . . . , p, is a fuzzy set; θi(t) =
[θi1(t), θi2(t), . . . , θip(t)] ∈ R

si is the premise variable
vector; xi(t) ∈ R

ni is the state vector; ui(t) ∈ R
mi

is the control input vector; zi(t) ∈ R
qi is the con-

trolled output vector; vi(t) ∈ l2[0,∞) is the distur-
bance input; ωi(t) is the Brownian motion that sat-
isfies E[ωi(t)] = 0, E[ω2

i (t)] = 1, E[ωi(j)ωi(l)] =
0, (j �= l); φi(t) (∀t ∈ Z

−1) represent a given ini-
tial condition sequence, independent of the process ωi(t);
(Ai

j , B
i
j , A

i
1dj, A

i
2dj , D

i
j, Ā

i
j , Ā

i
1dj, Ā

i
2dj , D̄

i
j , C

i
j) are all

constant matrices with appropriate dimensions, which
represent the j-th local model of the i-th fuzzy subsys-
tem, and Ci

n is the interconnection between the n-th and
i-th subsystems. The constants μd ≥ 0 (d = 1, 2, . . . )
satisfy the following convergence conditions:

μ̄ =
∞∑

d=1

μd ≤
∞∑

d=1

dμd < ∞, (2)

where d(t) is a time-varying delay in the state. A natural
assumption on d(t) can be made as follows.

Assumption 1. The time delay d(t) is assumed to be time
varying and satisfy 0 < dm ≤ d(t) ≤ dM , where dm and
dM are constant positive scalars representing the lower
and upper delay bounds, respectively.

Remark 1. The delay term
∑∞

d=1 μdxi(t−d) in the fuzzy
system (1) is the so-called infinitely distributed delay in
the discrete-time setting. The description of discrete-time
distributed delays and the H∞ control problem for fuzzy
systems was proposed by Wei et al. (2008). In this paper,
based on a DDPLKF, we aim to study stochastic stability
and generalized H2 control for discrete-time fuzzy large-
scale stochastic systems with time-varying and infinite-
distributed delays.
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Remark 2. In this paper, in much the same way as for
the convergence restriction on delay kernels to infinite-
distributed delays for continuous-time systems, the con-
stants μd (d = 1, 2, . . . ) are assumed to satisfy the conver-
gence condition (2), which can guarantee the convergence
of the terms of infinite delays as well as the Lyapunov
function defined later.

By using a standard fuzzy inference method, that
is, using a center-average defuzzifier product fuzzy infer-
ence, and a singleton fuzzifier, the dynamic fuzzy model
(1) can be expressed by the following global model:

xi(t + 1) =
ri∑

j=1

hi
j(θi(t))

{
Ai

jxi(t) + Bi
jui(t)

+ Ai
1dj

∞∑

d=1

μdxi(t − d) + Ai
2djxi(t − d(t))

+ Di
jvi(t) +

[
Āi

jxi(t)

+ Āi
1dj

∞∑

d=1

μdxi(t − d)

+ Āi
2djxi(t − d(t)) + D̄i

jvi(t)
]
ωi(t)}

+
J∑

n=1,n�=i

Ci
nxn(t),

zi(t) =
ri∑

j=1

hi
j(θi(t)){Ci

jxi(t)
}

, (3)

where

hi
j(θi(t) =

ωi
j(θi(t))

ri∑
i=1

ωi
j(θi(t))

,

ωi
j(θi(t)) =

p∏

l=1

W i
jl(θi(t)),

with W i
jl(θi(t)) being the grade of membership of θil(t)

in W i
jl. Here ωi

j(θi(t)) ≥ 0 has the following basic prop-
erty:

ωi
j(θi(t)) ≥ 0,

ri∑

j=1

ωi
j(θi(t)) > 0, (4)

and therefore

hi
j(θi(t)) ≥ 0,

ri∑

j=1

hi
j(θi(t)) = 1. (5)

In order to facilitate the design of a less conserva-
tive H2 controller, we partition the premise variable space

Ωi ⊆ R
si into s polyhedral regions by the boundaries

(Chen and Feng, 2009)

∂(Ωi
j)

v =
{
θi(t) | hi

j(θi(t)) = 1,

0 ≤ hi
j(θi(t + δ))

︸ ︷︷ ︸
0≤‖δ‖<1

< 1, j ∈ N

}
, (6)

where v is the set of the face indices of the polyhedral
hull satisfying ∂Ωi

j = ∪v∂(Ωi
j)

v. Based on the bound-
aries (6), s independent polyhedral regions Ωi

j , j ∈ Li =
{1, 2, . . . , s} can be obtained satisfying

Ωi
j ∩ Ωi

l = ∂(Ωi
k)v, j �= l, j, l ∈ Li, (7)

where Li denotes the set of polyhedral region indices. In
each region Ωi

j , we define the set

M i(j) :=
{
l | hi

jl(θi(t)) > 0, θi(t) ∈ Ωi
j

}
, j ∈ Li,

M i
j := card(M i(j)). (8)

That is, the variable M i
j is used to represent the number

of demands in the set M i(j) for the region Ωi
j . Note that

M i
j ≥ 1, j ∈ Li.

Considering (5) and (8), in each region Ωi
j , we have

Mi
j∑

l=1

hi
jl(θi(t)) = 1. (9)

Then, we follow the idea of Wang et al. (2007) to rewrite
the fuzzy infinite-distributed delays system (1) to be an
equivalent discrete-time switching fuzzy system in the fol-
lowing form:

Region Rule i:

If θi(t) ∈ Ωi
j , then

Local plant Rule l:

If θi1(t) is M i
jl1 and . . . and θip(t) is M i

jlp, then

xi(t + 1) = Ai
jlxi(t) + Bi

jlui(t) + Ai
1djl

∞∑

d=1

μdxi(t − d)

+ Ai
2djlxi(t − d(t)) + Di

jlvi(t) +
[
Āi

jlxi(t)

+ Āi
1djl

∞∑

d=1

μdxi(t − d) + Āi
2djlxi(t − d(t))

+ D̄i
jlvi(t)

]
ωi(t) +

J∑

n=1,n�=i

Ci
nxn(t),

zi(t) = Ci
jlxi(t),

i = 1, 2, . . . , J, l ∈ M i(j), j ∈ Li, (10)
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where Ωi
j denotes the j-th subregion.

Given a pair of [xi(t), ui(t)], the final output of the
switching fuzzy system is inferred as

xi(t + 1) =
Mi

j∑

l=1

hi
jl(θi(t)){Ai

jlxi(t) + Bi
jlui(t)

+ Ai
1djl

∞∑

d=1

μdxi(t − d) + Ai
2djlxi(t − d(t))

+ Di
jlvi(t) +

[
Āi

jlxi(t)

+ Āi
1djl

∞∑

d=1

μdxi(t − d)

+ Āi
2djlxi(t − d(t)) + D̄i

jlvi(t)
]
ωi(t)}

+
J∑

n=1,n�=i

Ci
nxn(t),

zi(t) =
Mi

j∑

l=1

hi
jl(θi(t)){Ci

jlxi(t)}, θi(t) ∈ Ωi
j .

(11)

In this paper, we consider the generalized H2 con-
troller problem for the fuzzy system (1) or, equiva-
lently, (11).

Assumption 2. When the state of the system transits from
the region Ωi

j to Ωi
l at the time t, the dynamics of the sys-

tem are governed by the dynamics of the region model of
Ωi

j at that time t.

For future use, we define a set Θi that represents all
possible transitions from one region to itself or other re-
gions, that is,

Θi

=
{

(j, l) | θi(t) ∈ Ωi
j , θi(t + 1) ∈ Ωi

l , ∀j, l ∈ Li
}
.

(12)

Here j = l when θi(t) stays in the same region Ωi
j , and

j �= l when θi(t) transits from the region Ωi
j to another

one Ωi
l .

Consider the switching fuzzy system (11) and choose
the following decentralized piecewise fuzzy controller:

ui(t)=−
Mi

j∑

l=1

hi
jl(θi(t))F i

jlxi(t), θi(t) ∈ Ωi
j . (13)

Then the final output of the closed-loop switching

fuzzy system with (11) and (13) is

xi(t + 1) =
Mi

j∑

l=1

Mi
j∑

k=1

hi
jl(θi(t))hi

jk(θi(t))

{
(Ai

jl − Bi
jlF

i
jk)xi(t)

+ Ai
1djl

∞∑

d=1

μdxi(t − d) + Ai
2djlxi(t − d(t))

+ Di
jlvi(t)+

[
Āi

jlxi(t)+Āi
1djl

∞∑

d=1

μdxi(t−d)

+ Āi
2djlxi(t − d(t)) + D̄i

jlvi(t)
]
ωi(t)

}

+
J∑

n=1,n�=i

Ci
nxn(t),

zi(t) =
Mi

j∑

l=1

hi
jl(θi(t)){Ci

jlxi(t)}, θi(t) ∈ Ωi
j .

(14)

Before formulating the problem to be investigated,
we first introduce the following concept for the sys-
tem (14).

Definition 1. The closed-loop stochastic fuzzy system
(14) is said to be mean-square stable with generalized H2

performance if for any ε > 0 there is a δ(ε) > 0 such
that E[‖xi(t)‖2] < ε for every t > 0 when E[‖xi(0)‖2] <
δ(ε). In addition, if limt→∞E[‖xi(t)‖2] = 0 for any ini-
tial condition, then the closed-loop stochastic fuzzy sys-
tem (14) is said to be mean-square asymptotically stable.

Definition 2. Let a constant γ be given. The closed-loop
fuzzy system (14) is said to be stable with generalized H2

performance if both of the following conditions are satis-
fied:

1. The disturbance-free fuzzy system is mean-square
globally asymptotically stable.

2. Assuming zero initial conditions, the controlled out-
put satisfies

‖z‖E∞ < γ‖v‖E2, (15)

z(t) = [zT
1 (t), . . . , zT

J (t)]T ,

v(t) = [vT
1 (t), . . . , vT

J (t)]T

for all non-zero v ∈ l2, the l2-norm being defined as

‖v‖2
E2

= E

{ J∑

i=1

∞∑

t=0

{vT
i (t)vi(t)

}
,

and

‖z‖E∞ = E

{ J∑

i=1

max︸︷︷︸
1≤≺j≤n

|zij(t)|
}

.
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Now, we introduce the following lemma that will be
used in the development of our main results.

Lemma 1. (Wei et al., 2008) Let M ∈ R
n×n be a positive

semi-definite matrix, xi(t) ∈ R
n and constant ai > 0 (i =

1, 2, . . . ). If the series concerned is convergent, then we
have

( ∞∑

i=1

aixi

)T

M
( ∞∑

i=1

aixi

)

≤
( ∞∑

i=1

ai

) ∞∑

i=1

aixiMxi. (16)

Lemma 2. (Zhang et al., 2008) Given three matrices
A ∈ R

m×n, B ∈ R
m×n and M ∈ Rn×n and two positive

definite matrices M ∈ R
n×n and Q ∈ R

n×n such that

ATPA − P + Q ≤ 0,

BTPB − P + Q ≤ 0, (17)

we have

ATPB + BTPA − 2P + 2Q ≤ 0. (18)

3. Main results

For notational simplicity, we write

Hi
jlk=

[ Mi
j∑

l=1

Mi
j∑

k=1

hi
jlh

i
jk(θi(t))Ai

jlk ,

Mi
j∑

l=1

hi
jl(θi(t))Ai

1djl,

Mi
j∑

l=1

hi
jl(θi(t))Ai

1dj2,

Mi
j∑

l=1

hi
jl(θi(t))Di

jl

]
,

W i
jl=

[ Mi
j∑

l=1

hi
jl(θi(t))Āi

jlk ,

Mi
j∑

l=1

hi
jl(θi(t))Āi

1djl,

Mi
j∑

l=1

hi
jl(θi(t))Āi

2djl,

Mi
j∑

l=1

hi
jl(θi(t))D̄i

jl

]
,

ξi(t)=
[
xi(t),

∞∑

d=1

μdxi(t − d), xi(t − d(t)), vi(t)
]
,

A
i
jlk=Ai

jl − Bi
jlF

i
jk. (19)

Theorem 1. Given a constant γ > 0, the closed-loop
discrete-time fuzzy stochastic large-scale system com-
posed of J fuzzy subsystems as (14) with both the time-
varying delay d(t) satisfying 0 < dm ≤ d(k) ≤
dM and infinite-distributed delays is mean-square sta-
ble with generalized H2 performance γ, if there exist a
set of symmetric positive definite matrices P i

j , P i
0 ≥

P i
j , Qi, Ri, Si, Zi, matrices X i

1j , X i
2j, Y i

1j , Y i
2j

and positive constants αi ≤ 1, εi
1, εi

2, for all i =
1, 2, . . . , J and j ∈ Li, such that the following LMIs hold:

(Ci
jl)

TCi
jl − γ2P i

j < 0, (20)

Πi
jmll < 0, (21)

Πi
jmlk + Πi

jmkl < 0, (22)

where j, m ∈ Li, l, k ∈ M i(j), l �= k, (j, m) ∈
Θi, and

Πi
jmlk=

⎡

⎢⎢⎢⎢⎣

Ψi
0jΨ

i
1j Ψi

2j Ψi
3jmlΨ

i
4jmlk

∗ Ψi
5j 0 0 0

∗ ∗ 1
2Ψi

6j 0 0
∗ ∗ ∗ Ψi

7j 0
∗ ∗ ∗ ∗ Ψi

8j

⎤

⎥⎥⎥⎥⎦
,

with

Ψi
0j=−P̄ i

j + symΞi
1j + symΞi

2j ,

P̄ i
j=

⎡

⎢⎢⎣

−P
i
j 0 0 0

∗ − 1
μQi 0 0

∗ ∗ −Ri 0
∗ ∗ ∗ −αiI

⎤

⎥⎥⎦ ,

−P
i
j = −P i

j +
∞∑

d=1

dμdZ
i + dMSi + τRi + μ̄Qi,

Ξi
1j = [X i

j − X i
j 0 0], Ξi

2j = [Y i
j 0 − Y i

j 0],

X i
j = [X i

1j X i
2j 0 0]T, Y i

j = [Y i
1j 0 Y i

2j 0]T,

Ψi
1j =

[√√√√
∞∑

d=1

dμdX
i
j

√
dMY i

j

]
,

Ψi
5j = diag{−Zi − Si},
τ = dM + dm − 1,

Ψi
2j =

⎡

⎢⎢⎣

(Ĉi
p)

T(Ĉi
pεi

1
)T(Ĉi

z)
T(Ĉi

zεi
1
))T

0 0 0 0
0 0 0 0
0 0 0 0

(Ĉi
s)T(Ĉi

sεi
1
))T

0 0
0 0
0 0

⎤

⎥⎥⎦ ,

Ψi
3jml =

⎡

⎢⎢⎣

(Āi
jl)

TP i
m (Āi

jl)
TZi (Āi

jl)
TSi

(Āi
1djl)

TP i
m (Āi

1djl)
TZi (Āi

1djl)
TSi

(Āi
2djl)

TP i
m (Āi

2djl)
TZi (Āi

2djl)
TSi

(D̄i
jl)

TP i
m (D̄i

jl)
TZi (D̄i

jl)
TSi

⎤

⎥⎥⎦ ,
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Ψi
4jmlk =

⎡

⎢⎢⎣

(Ai
jlk)TP i

m (Ai
jlk)TP i

m ρ(Ai
jlk − I)TZi

(Ai
1djl)

TP i
m (Ai

1djl)
TP i

m (Ai
1djl)

TZi

(Ai
2djl)

TP i
m (Ai

2djl)
TP i

m (Ai
2djl)

TZi

(Di
jl)

TP i
m (Di

jl)
TP i

m (Di
jl)

TZi

ρ(Ai
jlk − I)TZi

√
dM (Ai

jlk − I)TSi

(Ai
1djl)

TZi (Ai
1djl)

TSi

(Ai
2djl)

TZi (Ai
2djl)

TSi

(Di
jl)

TZi (Di
jl)

TSi

√
dM (Ai

jlk − I)TSi

(Ai
1djl)

TSi

(Ai
2djl)

TSi

(Di
jl)

TSi

⎤

⎥⎥⎦ ,

Ψi
6j = diag{−P̂ i

0 − P̂ i
εi
1
− Ẑi − Ẑi

εi
2
− Ŝi − Ŝi

εi
2
},

Ψi
7j = diag{−P i

m − Zi − Si}, ρ =

√√√√
∞∑

d=1

dμd,

Ψi
8j = diag{−P i

m − εi
1P

i
m − Zi − εi

2Z
i − Si

− εi
2S

i},
P̂ i

0 = diag{P 1
0 , . . . , P 1

0,n�=i, . . . , P
J
0 },

P̂ i
εi
1

= diag{ε1
1P

1
0 , . . . , εn

1P 1
0,n�=i, . . . , ε

J
1 P J

0 },
Ẑi = diag{ρZi, . . . , ρZi, n �= i, . . . , ρZi},

Ẑi
εi
2

= diag{ε1
2ρZi, . . . , εn

2ρZi, n �= i, . . . , εJ
2 ρZi},

Ŝi = diag{
√

dMSi, . . . ,
√

dMSi, n �= i,

. . . ,
√

dMSi},
Ŝi

εi
2

= diag{ε1
2

√
dMSi, . . . , εn

2

√
dMSi, n �= i,

. . . , εJ
2

√
dMSi},

Ĉi
p =

[
(Ci

1)
TP 1

0 , . . . , (Ci
n,n�=i)

TPn
0,n�=i,

. . . , (Ci
J )TP J

0

]T

,

Ĉi
pεi

1
=

[
ε1
1(C

i
1)

TP 1
0 , . . . , εn

1 (Ci
n,n�=i)

TPn
0,n�=i,

. . . , εJ
1 (Ci

J )TP J
0

]T

,

Ĉi
z =

[
ρ(Ci

1)
TZi, . . . , ρ(Ci

n,n�=i)
TZi,

. . . , ρ(Ci
J )TZi

]T

,

Ĉi
zεi

2
=

[
ε1
2ρ(Ci

1)
TZi, . . . , εn

2ρ(Ci
n,n�=i)

TZi,

. . . , εJ
2 ρ(Ci

J )TZi
]T

,

Ĉi
s =

[√
dM (Ci

1)
TSi, . . . ,

√
dM (Ci

n,n�=i)
TSi,

. . . ,
√

dM (Ci
J )TSi

]T

,

Ĉi
sεi

2
=

[
ε1
2

√
dM (Ci

1)
TSi, . . . , εn

2

√
dM (Ci

n,n�=i)
TSi,

. . . , εJ
2

√
dM (Ci

J )TSi
]T

. (23)

Proof. To investigate the stability problem of the system
(14), we construct the following DDPLKF candidate:

V (t) :=
J∑

i=1

6∑

j=1

V i
j (t),

V i
1 (t) = xi(t)TP i

jxi(t),

V i
2 (t) =

∞∑

d=1

μd

t−1∑

k=t−d

xi(k)TQixi(k),

V i
3 (t) =

∞∑

d=1

μd

−1∑

i=−d

t−1∑

l=t+i

ηi(l)TZiηi(l),

V i
4 (t) =

t−1∑

l=t−d(t)

xi(l)TRixi(l),

V i
5 (t) =

−dm+1∑

j=−dM+2

t−1∑

l=t+j−1

xi(l)TRixi(l),

V i
6 (t) =

−1∑

i=−dM

t−1∑

l=t+i

ηi(l)TSiηi(l),

θi(t) ∈ Ωi
j , (24)

where P i
j , Qi, Zi, Ri, Si, i = 1, 2, . . . , J and j ∈ Li,

are symmetric positive-definite matrices, and

ηi(t) = xi(t + 1) − xi(t),

ηi(t) =
Mi

j∑

l=1

Mi
j∑

k=1

hi
jl(θi(t))hi

jk(θi(t))

× {[(Ai
jl − Bi

jlF
i
jk) − I]xi(t)

+ Ai
1djl

∞∑

d=1

μdxi(t − d)

+ Ai
2djlxi(t − d(t)) + Di

jlvi(t)

+
[
Āi

jlxi(t) + Āi
1djl

∞∑

d=1

μdxi(t − d)

+ Āi
2djlxi(t − d(t)) + D̄i

jlvi(t)
]
ωi(t)}

+
J∑

n=1,n�=i

Ci
nxn(t).

Taking the difference of every term of V i
j along the

system (14) and taking the mathematical expectation, by
Lemmas 1 and 2, we have

E{ΔV i
1 (t)}

= E

{
ξT
i (t)[(Hi

jlk)TP i
mHi

jlk
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+ (W i
jl)

TP i
mW i

jl]ξi(t) − xi(t)TP i
j xi(t)

+ 2ξT
i (t)(Hi

jlk)TP i
m

J∑

n=1,n�=i

Ci
nxn(t)

+
( J∑

n=1,n�=i

Ci
nxn(t)

)T

P i
m

J∑

n=1,n�=i

Ci
nxn(t)

}

≤ E

{
ξT
i (t)

[
(1 + (εi

1)
−1)(Hi

jlk)TP i
mHi

jlk

+ (W i
jl)

TP i
mW i

jl

]
ξi(t)

+ (1 + εi
1)
( J∑

n=1,n�=i

Ci
nxn(t)

)T

P i
m

J∑

n=1,n�=i

Ci
nxn(t)

− xi(t)TP i
j xi(t)

}

≤ E

{
ξT
i (t)

[
(1 + (εi

1)
−1)(Hi

jlk)TP i
mHi

jlk

+ (W i
jl)

TP i
mW i

jl

]
ξi(t)

+ xi(t)
[
2

J∑

n=1,n�=i

(1 + εn
1 )(Ci

n)TPn
0 Ci

n − P i
j

]
xi(t),

(25)

E{ΔV i
2 (t)}

= E

{ ∞∑

d=1

μd

t∑

k=t+1−d

xi(k)TQixi(k)

−
∞∑

d=1

μd

t−1∑

k=t−d

xi(k)TQixi(k)
}

= E{μ̄xi(t)TQixi(t)

−
∞∑

d=1

μdxi(t − d)TQixi(t − d)}

≤ E

{
μ̄xi(t)TQixi(t)

− 1
μ̄

( ∞∑

d=1

μdxi(t − d)
)T

Qi
∞∑

d=1

μdxi(t − d)
}

, (26)

E{ΔV i
3 (t)}

= E

{ ∞∑

d=1

μd

−1∑

i=−d

t∑

l=t+i+1

ηi(l)TZiηi(l)

−
∞∑

d=1

μd

−1∑

i=−d

t−1∑

l=t+i

ηi(l)TZiηi(l)
}

= E

{ ∞∑

d=1

μd

−1∑

i=−d

ηi(t)TZiηi(t)

−
∞∑

d=1

μd

−1∑

i=−d

ηi(t + i)TZiηi(t + i)
}

= E

{ ∞∑

d=1

dμdηi(t)TZiηi(t)

−
∞∑

d=1

μd

t−1∑

l=t−d

ηi(l)TZiηi(l)
}
, (27)

E{ΔV i
4 (t)}

= E

{ t∑

l=t+1−d(t)

xi(l)TRixi(l)

−
t−1∑

l=t−d(t)

xi(l)TRixi(l)
}

= E

{
xi(t)TRixi(t) − xi(t − d(t))TRi

× xi(t − d(t)) +
t−1∑

l=t+1−d(t+1)

xi(l)TRixi(l)

−
t−1∑

l=t+1−d(t)

xi(l)TRixi(l)
}

≤ E

{
xi(t)TRixi(t)

− xi(t − d(t))TRixi(t − d(t))

+
t−dm∑

l=t−dM+1

xi(l)TRixi(l)
}

, (28)

E{ΔV i
5 (t)}

= E

{ −dm+1∑

j=−dM+2

xi(t)TRixi(t)

−
−dm+1∑

j=−dM+2

xi(t + j − 1)TRixi(t + j − 1)
}

= E

{
(dM − dm)xi(t)TRixi(t)

−
t−dm∑

l=t−dM+1

xi(l)TRixi(l)
}
, (29)

E{ΔV i
6 (t)}

= E

{ −1∑

i=−dM

t∑

l=t+i+1

ηi(l)TSiηi(l)

−
−1∑

i=−dM

t−1∑

l=t+i

ηi(l)TSiηi(l)
}

= E

{ −1∑

i=−dM

ηi(t)TSiηi(t)

−
−1∑

i=−dM

ηi(t + i)TSiηi(t + i)
}
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≤ E

{
dMηi(t)TSiηi(t)

−
t−1∑

l=t−d(t)

ηi(l)TSiηi(l)
}

. (30)

Based on ηi(t), for any matrices X i
j and Y i

j , we have

Λi
1 = 2

[
xT

i (t)
∞∑

d=1

μdx
T
i (t − d) 0 0

]
X i

j

[
μ̄xi(t)

−
∞∑

d=1

μdxi(t − d) −
∞∑

d=1

μd

t−1∑

l=t−d

ηi(l)
]
=0, (31)

Λi
2 = 2

[
xT

i (t) 0 xT
i (t − d(t)) 0

]
Y i

j

[
xi(t)

− xi(t − d(t)) −
t−1∑

l=t−d(t)

ηi(l)
]
=0. (32)

Therefore, by considering (25)–(30) and adding the left
hand side of (31)–(32) to E{ΔV (t)}, we eventually obtain

E{ΔV (t)}

≤ E

{ J∑

i=1

6∑

j=1

ΔV i
j (t) + Λi

1 + Λi
2

}

≤ E

{ J∑

i=1

6∑

j=1

(ξT
i (t)[(1 + (εi

1)
−1)(Hi

jlk)TP i
mHi

jlk

+ (W i
jl)

TP i
mW i

jl]ξi(t)

+ xi(t)
[
2

J∑

n=1,n�=i

(1 + εn
1 )(Ci

n)TPn
0 Ci

n

− P i
j

]
xi(t) + μ̄xi(t)TQixi(t)

− 1
μ̄

(
∞∑

d=1

μdxi(t − d))TQi
∞∑

d=1

μdxi(t − d)

+
∞∑

d=1

dμdηi(t)TZiηi(t)

− xi(t − d(t))TRixi(t − d(t))τxi(t)TRixi(t)

+ dMηi(t)TSiηi(t) −
∞∑

d=1

μd

t−1∑

l=t−d

ηi(l)TZiηi(l)

−
t−1∑

l=t−d(t)

ηi(l)TSiηi(l) + Λi
1 + Λi

2)
}

= E

{
ξT
i (t)

[ Mi
j∑

l=1

(hi
jlθi(t))2Υi

jmll

+
Mi

j∑

l<k

hi
jlθi(t)hi

jkθi(t)(Υi
jmlk + Υi

jmkl)
]
ξi(t)

+ αiv
T
i (t)vi(t)

}
, (33)

where Ξi
1j , Ξ

i
2j , Ψ

i
1j , Ψ

i
5j are defined in (23) and

Υi
jmlk = Γi

jmlk + P̄ i
j + symΞi

1j + symΞi
2j

+ Ψi
1j(Ψ

i
5j)

−1Ψi
1j ,

Γi
jmlk = (1 + (εi

1)
−1)(Hi

jlk)TP i
mHi

jlk

+ (W i
jl)

TP i
mW i

jl + (1 + (εi
2)

−1)(H̄i
jlk)T

×
( ∞∑

d=1

dμdZ
i + dMSi

)
H̄i

jlk

+ (W i
jl)

T
( ∞∑

d=1

dμdZ
i + dMSi

)
W i

jl + 2C
i,

C
i =

[ J∑

n=1,n�=i

(1 + εn
1 )(Ci

n)TPn
0 Ci

n

+ (1 + εn
2 )(Ci

n)T
( ∞∑

d=1

dμdZ
i + dMSi

)
Ci

n

0 0 0
]
,

H̄i
jlk =

[ Mi
j∑

l=1

Mi
j∑

k=1

hi
jl(θi(t))hi

jk(θi(t))(Ai
jlk − I)

Mi
j∑

l=1

hi
jl(θi(t))Ai

1djl

Mi
j∑

l=1

hi
jl(θi(t))Ai

2djl

Mi
j∑

l=1

hi
jl(θi(t))Di

jl

]
. (34)

On the other hand, noticing that 0 < dm ≤ d(t) ≤
dM , by the Schur complement, from the LMIs (21) and
(22), it is not difficult to get

Υi
jmll < 0, (35)

Υi
jmlk + Υi

jmkl < 0, (36)

for

j, m ∈ Li, l, k ∈ M i(j), l �= k, (j, m) ∈ Θi.

We have

E

{ J∑

i=1

6∑

j=1

ΔV i
j (t)

}

< E

{ J∑

i=1

αiv
T
i (t)vi(t)

}
≤ E

{ J∑

i=1

vT
i (t)vi(t)

}
,

xi(t) �= 0, vi(t) �= 0. (37)
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It is noted that if vi(t) = 0, from (37) we have

E{ΔV (t)} < 0. (38)

By Definition 1, this means that the closed-loop fuzzy
large-scale system composed of J fuzzy subsystems as
(14) is mean-square asymptotical stable.

The aforementioned conditions (20)–(22) are LMIs
in the variables P i

j , P i
0 , Qi, Ri, Si, Zi and matrices

X i
1j , X i

2j , Y i
1j , Y i

2j . A solution to those inequalities
ensures V (t) defined in (24) to be a DDPLKF for fuzzy
large-scale stochastic systems. When l = k, the LMIs in
(21) guarantee that the function decreased along all sub-
systems’ trajectories within each region. When l �= k, the
LMIs in (22) guarantee that the function decreases when
the states of the subsystem transit from one region to an-
other region.

Now, to establish the generalized H2 performance for
the closed-loop system (14), summing from t = 0 to t =
T with a zero-initial condition xi(0) = 0 and vi(t) �= 0,
(37) leads to

E{ V (T + 1)} < E

{ J∑

i=1

T∑

t=0

vT
i (t)vi(t)

}
. (39)

From (20), we have

E{ zT(t)z(t)}

=
J∑

i=1

E

{ Mi
j∑

l=1

Mi
j∑

k=1

hi
jl(θi(t))hi

jk(θi(t))

× xT
i (Ci

jl)
TCi

jkxi(t)
}

≤
J∑

i=1

E

{ Mi
j∑

l=1

(hi
jl)

2(θi(t))xT
i (Ci

jl)
TCi

jlxi(t)
}

=
J∑

i=1

E

{ Mi
j∑

l=1

(hi
jl)

2(θi(t))λi(t)

×

⎡

⎢⎢⎢⎢⎢⎢⎣

(Ci
jl)

TCi
jl 0 0 0 0 0

∗ 0 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥⎥⎥⎥⎥⎥⎦
λi(t)

}

< γ2
J∑

i=1

E

{
λT

i (t)

⎡

⎢⎢⎢⎢⎢⎢⎣

P i
j 0 0 0 0 0
∗ Qi 0 0 0 0
∗ ∗ Zi 0 0 0
∗ ∗ ∗ Ri 0 0
∗ ∗ ∗ ∗ Ri 0
∗ ∗ ∗ ∗ ∗ Si

⎤

⎥⎥⎥⎥⎥⎥⎦
λi(t)

}

= γ2
E{V (t)}, (40)

with

λi(t) =
[
xT

i (t)
∞∑

d=1

μdx
T
i (t − d)

∞∑

d=1

μd

−1∑

i=−d

t−1∑

l=t−d

ηT
i (l)

t−1∑

l=t−d(t)

xT
i (l)

−dm+1∑

j=−dM+2

t−1∑

l=t+j−1

xT
i (l)

−1∑

i=−dM

t−1∑

l=t+i

ηT
i (l)

]
.

From (39) and (40), we have

‖z‖2
E∞ < γ2‖v‖2

E2
. (41)

Therefore, it can be concluded that the closed-loop
fuzzy stochastic large-scale system composed of J fuzzy
subsystems is mean-square stable with generalized H2

performance γ and thus the proof is completed. �
According to Theorem 1, the following theorem

presents an LMI-based delay-dependent condition for the
existence of the decentralized piecewise fuzzy controller
(13) for the system (11).

Theorem 2. Given a constant γ > 0, consider the
discrete-time fuzzy stochastic large-scale system com-
posed of J fuzzy subsystems as (11) with both the time-
varying delay d(t) satisfying 0 < dm ≤ d(k) ≤ dM and
infinite-distributed delays. A stabilizing controller in the
form of (13) exists, such that the closed-loop fuzzy system
in (14) is mean-square stable with generalized H2 perfor-
mance γ, if there exist a set of symmetric positive definite
matrices P̃ i

j , P̃ i
0 ≥ P̃ i

j , Q̃i, R̃i, S̃i, Z̃i, matrices
X i

1j , X i
2j, Y i

1j , Y i
2j , Gi, F̄ i

jl, and positive constants
αi ≤ 1, εi

1, εi
2, for all i = 1, 2, . . . , J and j ∈ Li, such

that the following LMIs hold:

(Ci
jl)

TCi
jl − γ2P i

j < 0, (42)

Φi
jmll < 0, (43)

Φi
jmlk + Φi

jmkl < 0, (44)

for

j, m ∈ Li, l, k ∈ M i(j), l �= k, (j, m) ∈ Θi,

where

Φi
jmlk=

⎡

⎢⎢⎢⎢⎢⎣

Ψ̃i
0jεΨ̃

i
1j εΨ̃i

2j εΨ̃i
3jmlΨ̃

i
4jmlk

∗ Ψ̃i
5j 0 0 0

∗ ∗ 1
2 Ψ̃i

6j 0 0
∗ ∗ ∗ Ψ̃i

7j 0
∗ ∗ ∗ ∗ Ψ̃i

8j

⎤

⎥⎥⎥⎥⎥⎦
,
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with

Ψ̃i
0j = P̂ i

j + symΞ̃i
1j + symΞ̃i

2j ,

P̂ i
j =

⎡

⎢⎢⎣

−P̃
i
j 0 0 0

∗ − 1
μQ̃i 0 0

∗ ∗ −R̃i 0
∗ ∗ ∗ −Ĩi

⎤

⎥⎥⎦ ,

−P̃
i
j = −P̃ i

j + ε−2
( ∞∑

d=1

dμdZ̃
i + dM S̃i + τR̃i

+ μ̄Q̃i
)
,

Ξ̃i
1j = [X̃ i

j − εX̃ i
j 0 0], Ξ̃i

2j = [Ỹ i
j 0 − εỸ i

j 0],

X̃ i
j = [X̃ i

1j X̃ i
2j 0 0]T, Ỹ i

j = [Ỹ i
1j 0 Ỹ i

2j 0]T,

Ψ̃i
1j =

[√√√√
∞∑

d=1

dμdX̃
i
j

√
dM Ỹ i

j

]
,

Ψ̃i
5j = diag{−Z̃i − S̃i}, τ = dM + dm − 1,

Ψ̃i
2j =

⎡

⎢⎢⎣

(Gi)T(C̃i
p)

T(Gi)T(C̃i
pεi

1
)T(Gi)T(C̃i

z)
T

0 0 0
0 0 0
0 0 0

(Gi)T(C̃i
zεi

1
))T(Gi)T(C̃i

s)T(Gi)T(C̃i
sεi

1
))T

0 0 0
0 0 0
0 0 0

⎤

⎥⎥⎦ ,

Ψ̃i
6j = diag{P̌ i

0 − sym(Gi) P̌ i
εi
1
− sym(εGi)

Ži − sym(εGi) Ži
εi
2
− sym(εGi)

Ši − sym(εGi) Ši
εi
2
− sym(εGi)},

Ψ̃i
7j = diag

{
P̃ i

m − sym(Gi) Z̃i − sym(εGi)

S̃i − sym(εGi)
}

,

Ψ̃i
3jml =

⎡

⎢⎢⎣

(Gi)T(Āi
jl)

T (Gi)T(Āi
jl)

T

(Ki)T(Āi
1djl)

T(Ki)T(Āi
1djl)

T

(Ki)T(Āi
2djl)

T(Ki)T(Āi
2djl)

T

(Ki)T(D̄i
jl)

T (Ki)T(D̄i
jl)

T

(Gi)T(Āi
jl)

T

(Ki)T(Āi
1djl)

T

(Ki)T(Āi
2djl)

T

(Ki)T(D̄i
jl)

T

⎤

⎥⎥⎦ ,

Ψ̃i
4jmlk

=

⎡

⎢⎢⎣

Γi
jlk Γi

jlk

(Ki)T(Ai
1djl)

T (Ki)T(Ai
1djl)

T

(Ki)T(Ai
2djl)

T (Ki)T(Ai
2djl)

T

(Ki)T(Di
jl)

T (Ki)T(Di
jl)

T

ρΣi
jlk ρΣi

jlk

ρ(Ki)T(Ai
1djl)

T ρ(Ki)T(Ai
1djl)

T

ρ(Ki)T(Ai
2djl)

T ρ(Ki)T(Ai
2djl)

T

ρ(Ki)T(Di
jl)

T ρ(Ki)T(Di
jl)

T

√
dMΣi

jlk

√
dMΣi

jlk√
dM (Ki)T(Ai

1djl)
T

√
dM (Ki)T(Ai

1djl)
T√

dM (Ki)T(Ai
2djl)

T
√

dM (Ki)T(Ai
2djl)

T√
dM (Ki)T(Di

jl)
T

√
dM (Ki)T(Di

jl)
T

⎤

⎥⎥⎦ ,

Σi
jlk = (Gi)T(Ai

jl − I)T + (F̄ i
jk)T(Bi

jl)
T,

Γi
jlk = (Gi)T(Ai

jl)
T + (F̄ i

jk)T(Bi
jl)

T,

P̌ i
0 = diag{P̃ 1

0 , . . . , P̃ 1
0,n�=i, . . . , P̃

J
0 },

P̌ i
εi
1

= diag{ε1
1P̃

1
0 , . . . , εn

1 P̃ 1
0,n�=i, . . . , ε

J
1 P̃ J

0 },
Ži = diag{ρZ̃i, . . . , ρZ̃i, n �= i, . . . , ρZ̃i},

Ži
εi
2

= diag{ε1
2ρZ̃i, . . . , εn

2,n�=iρZ̃i, . . . , εJ
2 ρZ̃i},

Ši = diag{
√

dM S̃i, . . . ,
√

dM S̃i, n �= i,

. . . ,
√

dM S̃i},
Ši

εi
2

= diag{ε1
2

√
dM S̃i, . . . , εn

2,n�=i

√
dM S̃i,

. . . , εJ
2

√
dM S̃i},

C̃i
p = [(Ci

1)
T, . . . , (Ci

n,n �=i)
T, . . . , (Ci

J )T]T,

C̃i
pεi

1
= [ε1

1(C
i
1)

T, . . . , εn
1 (Ci

n,n �=i)
T, . . . , εJ

1 (Ci
J )T]T,

C̃i
z = [ρ(Ci

1)
T, . . . , ρ(Ci

n,n �=i)
T, . . . , ρ(Ci

J )T]T,

C̃i
zεi

2
= [ε1

2ρ(Ci
1)

T, . . . , εn
2ρ(Ci

n,n �=i)
T, . . . , εJ

2 ρ(Ci
J )T]T,

C̃i
s = [

√
dM (Ci

1)
T, . . . ,

√
dM (Ci

n,n �=i)
T,

. . . ,
√

dM (Ci
J )T]T,

C̃i
sεi

2
= [ε1

2

√
dM (Ci

1)
T, . . . , εn

2

√
dM (Ci

n,n �=i)
T,

. . . , εJ
2

√
dM (Ci

J )T]T,

Ψ̃i
8j = diag{P̃ i

m − sym(Gi) εi
1P̃

i
m − sym(εGi)

Z̃i − sym(εGi) εi
2Z̃

i − sym(εGi)

S̃i − sym(εGi) εi
2S̃

i − sym(εGi)}. (45)

Furthermore, if the aforementioned conditions are satis-
fied, the matrix gains F i

jl of the controller are given by

F i
jl = F̄ i

jlG
i. (46)

Proof. Suppose that there exist positive definite matrices
P̃ i

j , Q̃i, Z̃i, R̃i, S̃i, and matrices X̃ i
j , Ỹ i

j , Gi satis-

fying (43) and (44). Since P̃ i
j > 0, Z̃i > 0, S̃i > 0, we

have

[P̃ i
j − Gi](P̃ i

j )
−1[P̃ i

j − Gi]T ≥ 0,

[Z̃i − εGi](Z̃i)−1[Z̃i − εGi]T ≥ 0,

[S̃i − εGi](S̃i)−1[S̃i − εGi]T ≥ 0, (47)

which imply that

−Gi(P̃ i
j )

−1(Gi)T ≤ P̃ i
j − Gi − (Gi)T,

−ε2Gi(Z̃i)−1(Gi)T ≤ Z̃i − εGi − ε(Gi)T,
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−ε2Gi(S̃i)−1(Gi)T ≤ S̃i − εGi − ε(Gi)T. (48)

Define

Ki = εGi. (49)

From (43) and (44) we have that

P̃ i
j − Gi − (Gi)T < 0.

Since P̃ i
j > 0, we have

Gi + (Gi)T > 0,

which ensures that (Gi)−1 exist. Define matrix

Δi
11 = diag{(Gi)−1 (Ki)−1 (Ki)−1 (Ki)−1},

and

Δi
1 = diag{Δi

11 I I I I I}.

By pre- and postmultiplying (43) and (44) by (Δi
1)T

and Δi
1, respectively, and by considering (48) and (49) as

well as defining

P i
j = (Gi)−TP̃ i

j (Gi)−1, Qi = (Ki)−TQ̃i(Ki)−1,

Zi = (Ki)−TZ̃i(Ki)−1, Si = (Ki)−TS̃i(Ki)−1,

X i
j1 = (Ki)−TX̃ i

j1(K
i)−1, X i

j2 = (Gi)−TX̃ i
j2(K

i)−1,

Y i
j1 = (Ki)−TỸ i

j1(K
i)−1, Y i

j2 = (Gi)−TỸ i
j2(K

i)−1,

αiI = (Ki)−TĨi(Ki)−1, P i
0 = (Gi)−TP̃ i

0(G
i)−1,

Ri = (Ki)−TR̃i(Ki)−1, i = 1, 2, . . . , J,

we have

(Δi
1)

TΦi
jmllΔ

i
1 < 0, (50)

(Δi
1)

TΦi
jmlkΔi

1 + (Δi
1)

TΦi
jmklΔ

i
1 < 0, (51)

(Δi
1)

TΦi
jmlkΔi

1

=

⎡

⎢⎢⎢⎢⎣

Ψi
j0Ψ

i
1j Ψ̌i

2j Ψ̌i
3jmlΨ̌

i
4jmlk

∗ Ψi
5j 0 0 0

∗ ∗ 1
2 Ψ̌i

6j 0 0
∗ ∗ ∗ Ψ̌i

7j 0
∗ ∗ ∗ ∗ Ψ̌i

8j

⎤

⎥⎥⎥⎥⎦
,

where

Ψ̌i
2j =

⎡

⎢⎢⎣

(C̃i
p)

T(C̃i
pεi

1
)T(C̃i

z)
T(C̃i

zεi
1
)T

0 0 0 0
0 0 0 0
0 0 0 0

(C̃i
s)

T(C̃i
sεi

1
)T

0 0
0 0
0 0

⎤

⎥⎥⎦ ,

Ψ̌i
3jml =

⎡

⎢⎢⎣

(Āi
jl)

T (Āi
jl)

T (Āi
jl)

T

(Āi
1djl)

T (Āi
1djl)

T (Āi
1djl)

T

(Āi
2djl)

T (Āi
2djl)

T (Āi
2djl)

T

(D̄i
jl)

T (D̄i
jl)

T (D̄i
jl)

T

⎤

⎥⎥⎦ ,

Ψ̌i
4jmlk =

⎡

⎢⎢⎣

Γi
jlk Γi

jlk ρΣ̄i
jlk

(Ai
1djl)

T (Ai
1djl)

T ρ(Ai
1djl)

T

(Ai
2djl)

T (Ai
2djl)

T ρ(Ai
2djl)

T

(Di
jl)

T (Di
jl)

T ρ(Di
jl)

T

ρΣ̄i
jlk

√
dM Σ̄i

jlk

√
dM Σ̄i

jlk

ρ(Ai
1djl)

T
√

dM (Ai
1djl)

T
√

dM (Ai
1djl)

T

ρ(Ai
2djl)

T
√

dM (Ai
2djl)

T
√

dM (Ai
2djl)

T

ρ(Di
jl)

T
√

dM (Di
jl)

T
√

dM (Di
jl)

T

⎤

⎥⎥⎦ ,

Ψ̌i
6j = diag{−(P̂ i

0)
−1 − (P̂ i

εi
1
)−1 − (Ẑi)−1

− (Ẑi
εi
2
)−1 − (Ŝi)−1 − (Ŝi

εi
2
)−1},

Ψ̌i
7j = diag{−(P i

m)−1 − (Zi)−1 − (Si)−1},
Σ̄i

jlk = (Ai
jl − I)T + (F i

jk)T(Bi
jl)

T,

Ψ̌i
8j = diag{−(P i

m)−1 − εi
1(P

i
m)−1 − (Zi)−1

− εi
2(Z

i)−1 − (Si)−1 − εi
2(S

i)−1},
and Ξi

1j , Ξi
2j , Ψi

1j, Ψi
5j are defined in (23). Define ma-

trices

Δi
13 = diag{P̂ i

0 P̂ i
εi
1

Ẑi Ẑi
εi
2

Ŝi Ŝi
εi
2
},

Δi
14 = diag{P i

m Zi Si},
Δi

15 = diag{P i
m P i

m Zi Zi Si Si,

Δi
2 = diag{I I Δi

13 Δi
14 Δi

15},
by pre- and postmultiplying (50) and (51) by (Δi

2)T and
Δi

2. We have

(Δi
1Δ

i
2)

TΦi
jmllΔ

i
1Δ

i
2<0, (52)

(Δi
1Δ

i
2)

TΦi
jmlkΔi

1Δ
i
2 + (Δi

1Δ
i
2)

TΦi
jmklΔ

i
1Δ

i
2<0,

(53)

where

(Δi
1Δ

i
2)

TΦi
jmlkΔi

1Δ
i
2

=

⎡

⎢⎢⎢⎢⎣

Ψi
0jΨ

i
1j Ψi

2j Ψi
3jmlΨ

i
4jmlk

∗ Ψi
5j 0 0 0

∗ ∗ 1
2Ψi

6j 0 0
∗ ∗ ∗ Ψi

7j 0
∗ ∗ ∗ ∗ Ψi

8j

⎤

⎥⎥⎥⎥⎦
.

We can obtain that (52) and (53) yield (43) and (44),
which means that there exist matrices P i

m > 0, Qi >



Delay-dependent generalized H2 control for discrete T–S fuzzy large-scale stochastic systems. . . 597

0, Zi > 0, Ri > 0, Si > 0, and X i
1j , X i

2j , Y i
1j , Y i

2j

satisfying (43) and (44), and the controller gains defined
in (46) render the closed-loop system in (14) mean-square
asymptotically stable. �

Remark 3. If the global state space replaces the tran-
sitions Θi and all P i

j s in Theorem 2 become a common
P i, Theorem 2 is regressed to Corollary 1, shown in the
following. However, in Theorem 2, the state transition is
considered and there are different P i

j s instead of a com-
mon P i to satisfy the inequalities. Therefore, Theorem 2
can be less conservative than Corollary 1, but the number
of inequalities of Theorem 2 is generally larger than that
of Corollary 1.

Corollary 1. Given a constant γ > 0, con-
sider the discrete-time fuzzy stochastic large-scale sys-
tem composed of J fuzzy subsystems as given by (11)
with both the time-varying delay d(t) satisfying 0 <
dm ≤ d(k) ≤ dM and infinite-distributed de-
lays. A stabilizing controller in the form of (13) ex-
ists, such that the closed-loop fuzzy system in (14) is
mean-square stable with generalized H2 performance γ,
if there exist a set of symmetric positive definite matri-
ces P̃ i, P̃ i

0 ≥ P̃ i, Q̃i, R̃i, S̃i, Z̃i, matrices
X i

1j , X i
2j , Y i

1j , Y i
2j , Gi, F̄ i

jl, and positive constants
αi ≤ 1, εi

1, εi
2, for all i = 1, 2, . . . , J and j ∈ Li, such

that the following LMIs hold:

(Ci
jl)

TCi
jl − γ2P i < 0, (54)

Φ̄i
jll < 0, (55)

Φ̄i
jlk + Φ̄i

jkl < 0, (56)

for

j ∈ Li, l, k ∈ M i(j), l �= k,

where

Φ̃i
jlk =

⎡

⎢⎢⎢⎢⎢⎣

Ψ̂i
0jεΨ̃

i
1j εΨ̃i

2j εΨ̃i
3jlΨ̃

i
4jlk

∗ Ψ̃i
5j 0 0 0

∗ ∗ 1
2 Ψ̃i

6j 0 0
∗ ∗ ∗ Ψ̃i

7j 0
∗ ∗ ∗ ∗ Ψ̃i

8j

⎤

⎥⎥⎥⎥⎥⎦
,

Ψ̂i
0j = P̂ i + symΞ̃i

1j + symΞ̃i
2j ,

P̂ i =

⎡

⎢⎢⎣

−P̃
i 0 0 0

∗ − 1
μ Q̃i 0 0

∗ ∗ −R̃i 0
∗ ∗ ∗ −Ĩi

⎤

⎥⎥⎦ ,

−P̃
i = −P̃ i + ε−2

( ∞∑

d=1

dμdZ̃
i + dM S̃i + τR̃i + μ̄Q̃i

)
,

with

Ψ̃i
7j = diag{P̃ i − sym(Gi) Z̃i − sym(εGi)

S̃i − sym(εGi)},
Ψ̃i

8j = diag{P̃ i − sym(Gi) εi
1P̃

i − sym(εGi)

Z̃i − sym(εGi) εi
2Z̃

i − sym(εGi)

S̃i − sym(εGi) εi
2S̃

i − sym(εGi)},
Ψ̃i

3jl = Ψ̃i
3jml, Ψ̃i

4jlk = Ψ̃i
4jmlk, (57)

and Ψ̃i
1j, Ψ̃

i
2j , Ψ̃

i
5j , Ψ̃

i
6j defined in (45).

For further reduction of the conservatism of the sta-
bilization criterion, we apply some new slack matrices
Qi

jmlk . A more relaxed stabilization criterion, in which
the interactions among the fuzzy subsystems are consid-
ered, is stated in Theorem 3.

Theorem 3. Given a constant γ > 0, consider
the discrete-time fuzzy stochastic large-scale system com-
posed of J fuzzy subsystems as given by (11) with both
the time-varying delay d(t) satisfying 0 < dm ≤ d(k) ≤
dM and infinite-distributed delays. A decentralized piece-
wise fuzzy controller in the form of (13) exists, such that
the closed-loop fuzzy system in (14) is mean-square stable
with generalized H2 performance γ, if there exist symmet-
ric matrices Qi

jmlk , and a set of symmetric positive defi-

nite matrices P̃ i
j , P̃ i

0 ≥ P̃ i
j , Q̃i, R̃i, S̃i, Z̃i, matrices

X i
1j , X i

2j , Y i
1j , Y i

2j , Gi, F̄ i
jl, and positive constants

αi ≤ 1, εi
1, εi

2, for all i = 1, 2, . . . , J and j ∈ Li, such
that the following LMIs hold:

(Ci
jl)

TCi
jl − γ2P i

j < 0, (58)

Φi
jmll + Qi

jmll < 0, (59)

Φi
jmlk + Φi

jmkl + Qi
jmlk + Qi

jmkl < 0, (60)

N i
j =

⎡

⎢⎢⎢⎢⎣

N i
jm11 N i

jm12 · · · N i
jm1Mi

j

N i
jm12 N i

jm22 · · · N i
jm2Mi

j

...
...

. . .
...

N i
jm1Mi

j
N i

jm2Mi
j
· · ·N i

jmMi
j Mi

j

⎤

⎥⎥⎥⎥⎦
> 0,

U i
j =

⎡

⎢⎢⎢⎢⎣

U i
jm11 U i

jm12 · · · U i
jm1Mi

j

U i
jm12 U i

jm22 · · · U i
jm2Mi

j

...
...

. . .
...

U i
jm1Mi

j
U i

jm2Mi
j
· · ·U i

jmMi
j Mi

j

⎤

⎥⎥⎥⎥⎦
> 0,

V i
j =

⎡

⎢⎢⎢⎢⎣

V i
jm11 V i

jm12 · · · V i
jm1Mi

j

V i
jm12 V i

jm22 · · · V i
jm2Mi

j

...
...

. . .
...

V i
jm1Mi

j
V i

jm2Mi
j
· · ·V i

jmMi
j Mi

j

⎤

⎥⎥⎥⎥⎦
> 0,
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W i
j =

⎡

⎢⎢⎢⎢⎣

W i
jm11 W i

jm12 · · · W i
jm1Mi

j

W i
jm12 W i

jm22 · · · W i
jm2Mi

j

...
...

. . .
...

W i
jm1Mi

j
W i

jm2Mi
j
· · ·W i

jmMi
j Mi

j

⎤

⎥⎥⎥⎥⎦
> 0, (61)

for

j, m ∈ Li, l, k ∈ M i(j), l �= k, (l, m) ∈ Θi,

where

Qi
jmlk=

⎡

⎢⎢⎣

N i
jmlk 0 0 0
∗ U i

jmlk 0 0
∗ ∗ V i

jmlk 0
∗ ∗ ∗ W i

jmlk

⎤

⎥⎥⎦ .

Hence, the controller gains are obtained from F i
jl =

F̄ i
jlG

i.

Proof. According to Theorem 2, the following inequali-
ties are satisfied:

Φi
jmlk =

Mi
j∑

l

(hi
jl)

2Φi
jmll

+
Mi

j∑

l

Mi
j∑

l<k

hi
jlh

i
jkΦi

jmlk < 0. (62)

From (59) and (60), we have

Mi
j∑

l

(hi
jl)

2Φi
jmll +

Mi
j∑

l

Mi
j∑

l<k

hi
jlh

i
jkΦi

jmlk

< −(
Mi

j∑

l

(hi
jl)

2Qi
jmll +

Mi
j∑

l

Mi
j∑

l<k

hi
jlh

i
jkQi

jmlk). (63)

Equation (61) guarantees

− (
Mi

j∑

l

(hi
jl)

2Qi
jmll +

Mi
j∑

l

Mi
j∑

l<k

hi
jlh

i
jkQi

jmlk) < 0.(64)

Thus, E{ΔV (t)} < 0 and the closed-loop fuzzy system
(14) is mean-square stable with generalized H2 perfor-
mance if (61) hold. The proof is completed. �

Remark 4. Since there are matrices Qi
jmlk to represent

the interactions among the fuzzy subsystems in the region
Ωi

j , Theorem 3 is more relaxed than Theorem 2 and Corol-
lary 1. However, the number of inequalities of Theorem 3
is generally larger than that of Theorem 2 and Corollary 1.

4. Simulation

In this section, a numerical example is presented to show
the effectiveness and advantages of the proposed decen-
tralized control scheme.

Example 1. Consider fuzzy large-scale stochastic sys-
tems S composed of two fuzzy subsystems Si, i = 1, 2
as (1). The membership functions hi

j are

hi
1(θi(t)) =

{
1 if θi(t) ∈ [−3,−1],
−0.5θi(t) + 0.5 if θi(t) ∈ [−1, 1],

hi
2(θi(t)) =

{
0.5θi(t) + 0.5 if θi(t) ∈ [−1, 1],
1 if θi(t) ∈ [1, 3].

(65)

The system matrices are

A1
1 =

[−0.098 0.078
0.076 0.087

]
,

A1
2 =

[
0.075 −0.060
0.060 0.050

]
,

A2
1 =

[−0.095 0.080
0.077 0.086

]
,

A2
2 =

[
0.080 −0.060
0.060 0.050

]
,

A1
1d1 =

[
0.012 0.09
0.011 0.07

]
,

A1
1d2 =

[−0.01 −0.05
0 0

]
,

A2
1d1 =

[
0.010 0.08
0.012 0.06

]
, A2

1d2 =
[−0.01 −0.05

0 0

]
,

A1
2d1 = A2

2d1

[
0.012 0.0014

0 0.0015

]
,

A1
2d2 = A2

2d2 =
[
0.001 0
0.001 0.0015

]
,

D1
1 = D1

2 = D2
1 = D2

2 =
[
0.01
0

]
,

B1
1 = B2

1 =
[
0.0050
0.0045

]
, B1

2 =
[
0.0080
0.0082

]
,

B2
2 =

[
0.0090
0.0085

]
, C1

1 = C2
1 =

[−0.2 0
0 −0.1

]
,

C1
2 = C2

2 =
[−0.1 0

0 −0.3

]
,

C12 = C21 =
[
0 0
0 0.001

]
,

Ā1
1 = Ā2

1 =
[
0.001 0

0 0.001

]
,
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Ā1
2 = Ā2

2 =
[
0.0015 0

0 0.0015

]
,

Ā1
1d2 = Ā2

1d2 =
[
0 0
00.001

]
,

Ā1
2d1 = Ā2

2d1 =
[
0.001 0.002

0 0.003

]
,

Ā1
1d1 = Ā2

1d1 =
[
0.005 0

0 0.001

]
,

Ā1
2d2 = Ā2

2d2 =
[
0.0015 0

0 0.0025

]
,

D̄1
1 = D̄1

2 = D̄2
1 = D̄2

2 =
[
0.0015

0

]
.

In this example, choosing the constant μd = 2−3−d,
we can easily find that

μ̄ =
∞∑

d=1

μd = 2−3 ≤
∞∑

d=1

dμd = 2 < ∞,

which satisfies the convergence condition (2). The nor-
malized membership functions and cell partitions are
shown in Figs. 1 and 2, respectively.

−3 −2 −1 0 1 2 3
0  

0.5

1  
i=1,2

h
i1 h

i2

Fig. 1. Normalized membership functions.

Remark 5. As illustrated by Wang et al. (2007), accord-
ing to the membership functions hi

j shown in Fig. 1, we
can divide the state space into three subregions shown in
Fig. 2. In the operating regions Ωi1, Ωi3, there is only one
rule in these regions (i.e, M i(1) = M i(3) = 1). In the
interpolation region Ωi2, there are two rules in this region
(i.e., M i(2) = 2). The possible region transitions Θi con-
tain nine subregion transitions: (1,1), (1,2), (1,3), (2,1),
(2,2), (2,3), (3,1), (3,2) and (3,3).

0

0

0.5

1

−3

3

3

−3

x
i2

x
i1

Ω
i3

Ω
i1

Ω
i2

i=1,2

h
i1

h
i2

Fig. 2. Cell partitions of the state space.

0 10 20 30 40 50
0

1

2

3

4

5

6

7

t

d(t)

Fig. 3. Time-varying delays.

The system matrices are

Ai
11 = Ai

21 = Ai
1,

Ai
22 = Ai

31 = Ai
2,

Ai
1d11 = Ai

1d21 = Ai
1d1,

Ai
1d22 = Ai

1d31 = Ai
1d2,

Ai
2d11 = Ai

2d21 = Ai
2d1,

Ai
2d22 = Ai

2d31 = Ai
2d2,

Bi
11 = Bi

21 = Bi
1,

Bi
22 = Bi

31 = Bi
2,

Di
11 = Di

21 = Di
1,

Di
22 = Di

31 = Di
2,

Āi
11 = Āi

21 = Āi
1,

Āi
22 = Āi

31 = Āi
2,

Āi
1d11 = Āi

1d21 = Āi
1d1,

Āi
1d22 = Āi

1d31 = Āi
1d2,

Āi
2d11 = Āi

2d21 = Āi
2d1,

Āi
2d22 = Āi

2d31 = Āi
2d2,
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D̄i
11 = D̄i

21 = D̄i
1,

D̄i
22 = D̄i

31 = D̄i
2,

Ci
11 = Ci

21 = Ci
1,

Ci
22 = Ci

31 = Ci
2.

The membership functions are hi
11∪hi

21 = hi
1, hi

22∪
hi

31 = hi
2. With the choice of γ = 0.0015, ε = 10, εi1 =

εi1 = 20 and vi(t) = 0.1cos(t)e−0.05t, it is found that
the system is generalized H2 stable for all dM = 7. When
dM = 7, d(t) presenting a time-varying state delay, let the
delay d(t) change randomly between dm = 1 and dM = 7
(see Fig. 3).

Table 1. Comparison of the values of dM by different methods.
Methods Corollary 1 Theorem 2 Theorem 3

dM 3 4 7

Remark 6. Here, d(k) represents a time-varying state
delay. Now assume that the lower delay bound of dk

is dm = 1, and we are interested in the upper delay
bound dM below which Example 1 is mean-square sta-
ble with generalized H2 performance γ = 0.0015 for all
dm ≤ d(k) ≤ dM . By using Corollary 1, it is found that
the upper delay bound dM = 3. By applying Theorem
2, we obtain the upper delay bound dM = 4. However,
applying Theorem 3 yields dM = 7. It is clearly shown in
Table 1 that the upper delay bound obtained by Theorem 2
based on the PLKF is larger than that obtained by Corol-
lary 1 based on the CLKF. The result clearly demonstrates
much better performance of PLKF-based approaches over
CLKF-based approaches. It can also be easily seen that
the upper delay bound obtained by Theorem 3 is much
larger than those obtained by Corollary 1 and Theorem 2,
which indicates that Theorem 3 is much less conservative
than Corollary 1 and Theorem 2.

By implementing Theorem 3 and using the MAT-
LAB LMI toolbox, we can find

P 1
1 =

[
0.1184 0.0243
0.0243 0.0361

]
,

P 1
2 =

[
0.1329 0.0258
0.0258 0.0383

]
,

P 1
3 =

[
0.1282 0.0218
0.0218 0.0347

]
,

Q1 =
[
0.1547 0.0338
0.0338 0.1701

]
,

R1 =
[
0.0585 0.0352
0.0352 0.0311

]
,

Z1 =
[
0.0296 0.0224
0.0224 0.0202

]
,

S1 =
[
0.0145 0.0118
0.0118 0.0108

]
,

P 2
1 =

[
0.1421 0.0354
0.0354 0.0347

]
,

P 2
2 =

[
0.1594 0.0384
0.0384 0.0374

]
,

P 2
3 =

[
0.1535 0.0335
0.0335 0.0333

]
,

Q2 =
[
0.1735 0.0588
0.0588 0.1692

]
,

R2 =
[
0.0659 0.0376
0.0376 0.0296

]
,

Z2 =
[
0.0309 0.0234
0.0234 0.0198

]
,

S2 =
[
0.0150 0.0120
0.0120 0.0103

]
,

and the fuzzy controller gains

F 1
11 =

[−1.2986 −0.4902
]
,

F 1
21 =

[−1.0960 −0.4160
]
,

F 1
22 =

[−0.5120 −0.1977
]
,

F 1
31 =

[−0.6021 −0.2342
]
,

F 2
11 =

[−1.8846 −0.6779
]
,

F 2
21 =

[−1.6270 −0.5841
]
,

F 2
22 =

[−0.6041 −0.2241
]
,

F 2
31 =

[−0.7598 −0.2840
]
,

such that (58)–(61) hold. By Theorem 3, the closed-loop
T–S fuzzy large-scale stochastic system is mean-square
stable with generalized H2 performance. Simulation re-
sults about states, inputs and outputs of the system (11)
and the PDF controller (13) with dm = 1 and dM = 7
are shown in Figs. 4–6. From the simulation results,
the proposed piecewise decentralized H2 state-feedback
fuzzy control scheme can solve the state-feedback control
problem for T–S fuzzy large-scale stochastic systems ef-
fectively and systematically with the LMI-based method.
This example clearly demonstrates the effectiveness of the
results proposed in this paper.

Table 2. Number of inequalities by different methods.
Methods Corollary 1 Theorem 2 Theorem 3

Number 36 62 70

Remark 7. In Example 1, the numbers of inequalities
by different methods are shown in Table 2. From Tables 1
and 2 it is clear that, although the number of inequalities
of Theorem 3 is largest, it has the most relaxed results.
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Fig. 4. Simulation of states.
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Fig. 5. Simulation of outputs.
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Fig. 6. Simulation of inputs.

5. Conclusion

In this paper, the problem of stochastic stability anal-
ysis and stabilization was investigated for discrete-time
fuzzy large-scale stochastic systems with time-varying

and infinite-distributed delays. By defining a novel
delay-dependent piecewise Lyapunov–Krasovskii func-
tional and by making use of novel techniques, two im-
proved delay-dependent stability conditions were estab-
lished in terms of linear matrix inequalities in which both
the upper and lower bounds to delays are considered. The
merit of the proposed conditions lies in their reduced con-
servatism, which is achieved by circumventing the uti-
lization of some bounding inequalities for cross products
between two vectors and by considering the interactions
among the fuzzy subsystems in each subregion Ωi

j . A
decentralized generalized H2 piecewise fuzzy controller
was developed based on this DDPLKF for each subsys-
tem. It is shown that the stability in the mean square for
discrete-time fuzzy large-scale stochastic systems can be
established if a DDPLKF can be constructed and a de-
centralized controller can be obtained by solving a set of
LMIs. The effectiveness of the proposed approach is il-
lustrated by a simulation example and some comparisons.
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