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We propose an edge adaptive digital image denoising and restoration scheme based on space dependent regularization.
Traditional gradient based schemes use an edge map computed from gradients alone to drive the regularization. This may
lead to the oversmoothing of the input image, and noise along edges can be amplified. To avoid these drawbacks, we make
use of a multiscale descriptor given by a contextual edge detector obtained from local variances. Using a smooth transition
from the computed edges, the proposed scheme removes noise in flat regions and preserves edges without oscillations.
By incorporating a space dependent adaptive regularization parameter, image smoothing is driven along probable edges
and not across them. The well-posedness of the corresponding minimization problem is proved in the space of functions
of bounded variation. The corresponding gradient descent scheme is implemented and further numerical results illustrate
the advantages of using the adaptive parameter in the regularization scheme. Compared with similar edge preserving
regularization schemes, the proposed adaptive weight based scheme provides a better multiscale edge map, which in turn
produces better restoration.
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1. Introduction

Digital image restoration is an important task in image
processing. It involves denoising and smoothing the in-
put image which is often noisy and blurred. Due to the
ill-posed nature of this inverse problem, regularization
schemes are used to find an approximate solution effec-
tively. To avoid the excessive smoothness of the classical
quadratic penalty terms, edge preserving regularization
methods (Aubert and Kornprobst, 2006) have been used in
the past. For example, Total Variation (TV) based regular-
ization (Rudin et al., 1992) in the space of bounded vari-
ation (Giusti, 1984) gained popularity thanks to its good
edge preservation qualities. Among other regularization
based approaches for image denoising we should men-
tion global models (You and Kaveh, 1999), and recently
nonlocal models (Gilboa and Osher, 2007) are proven
to be very effective in edge preserving noise removal.
Half quadratic minimization schemes (Charbonnier et al.,
1997), which alternatively minimize for the estimated
image and an edge variable, were initiated by Geman
and Geman (1984) and further studied by many others
(see the work of Aubert and Kornprobst (2006) for a re-

view). Due to the application of controlled regularization
along edges, noise can still remain in these discontinu-
ities (Santitissadeekorn and Bollt, 1996). Moreover, cap-
turing the multiscale nature of images remains an open
issue in these schemes.

To alleviate these drawbacks, in this paper we use
an adaptive weight which is tuned by a contextual dis-
continuity detector based on variances computed over a
window. Incorporating this adaptive regularization param-
eter into edge preserving regularization yields a scheme
which is capable of removing noise and preserving multi-
scale boundaries. The well-posedness of the correspond-
ing minimization problem is proved in the space of func-
tions of bounded variation. The scheme proposed here
is similar to the adaptive TV scheme studied by Chen and
Wunderli (2002) (see also Prasath and Singh, 2010b) and a
scheme proposed by Douiri et al. (2007) for diffusive opti-
cal tomography. The main differences are as follows. We
prove the well-posedness of the scheme under the linear
growth condition for the regularization function involved
here. Hence, the adaptive TV scheme of Chen and Wun-
derli (2002) can be considered a special case. Moreover,
in the work of Chen and Wunderli (2002), the adaptive
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regularization parameter is defined via smoothed gradi-
ents, which inherits the drawbacks of the TV scheme near
edges, namely noisy oscillations. The scheme proposed
by Douiri et al. (2007) uses an incomplete edge prior as
an adaptive weight. Motivated by the success of Douiri
et al. (2007) in combining a well designed regularization
function with an edge prior based weight, in this paper
we propose a multiscale regularization for denoising dig-
ital images. In noisy images, we do not know a priori the
edge map of the original image. Thus, to get an estimate
for the edge map, we utilize a variance based local ap-
proach. Moreover, the scheme we propose here has flexi-
bility in terms of tuning the contextual discontinuities and
choosing the regularization function, which can be tuned
according to the imaging modality.

The rest of the paper is organized as follows. In Sec-
tion 2 we introduce the proposed regularization scheme
and prove its well-posedness. Section 3 presents a com-
parison of numerical results with previous schemes. Fi-
nally, Section 4 concludes the paper.

2. Edge adaptive weighted regularization

The image restoration issue can be posed as an inverse
problem in the following way. Find u given a noisy input
image f which may be blurred, i.e.,

f = B(u) + n,

where n is additive Gaussian noise with variance σn and
B is a linear map representing the blur, usually a convo-
lution operator. To solve this ill-posed problem, the edge
preserving regularization method can be used (Aubert and
Kornprobst, 2006). A general formulation can be written
in the form of a minimization problem:

inf
u∈BV (Ω)

F(u) :=
∫

Ω

|f(x) −B(u(x))|2 dx

+ α

∫
Ω

φ(|∇u|) dx

where Ω ⊂ R
2 is the image domain (rectangle), φ is

the regularization function defined on the gradient image
|∇u|, and α > 0. Note that, for φ(s) = s2, we get the
classical Tikhonov regularization, which is known to give
excessively smooth solutions. Half Quadratic (HQ) mini-
mization introduced by Geman and Geman (1984) uses an
auxiliary variable b which corresponds to edge strength,

b =
φ′(|∇u|)
2 |∇u| , (1)

and alternatively minimizes the following func-
tional (Charbonnier et al., 1997) with respect to u

and b:

F(u, b) :=
∫

Ω

|f(x) −B(u(x))|2 dx

+ α

∫
Ω

(b(|∇u|) dx+ ψ(b)) dx,

see the works of Charbonnier et al. (1997) as well as
Aubert and Kornprobst (2006) for more details regarding
its well-posedness and derivation details. The implemen-
tation of the HQ algorithm is done via the Euler–Lagrange
equation for F and can be written as follows:

1. Solve for u:

(ut+1 − f) − α div
(
bt∇ut+1

)
= 0.

2. Solve for b:

bt+1 =
φ′(

∣∣∇ut+1
∣∣)

2 |∇ut+1| .

Starting with the initial image, i.e., at time t = 0, u0 = f ,
the above alternating minimization scheme is carried out
for both the image u and the edge variable b.

It has been noted (Santitissadeekorn and Bollt, 1996),
in the HQ scheme noise along edges can remain, since
the variable b is computed from gradients which are prone
to noise. One of the main reasons for this is the use of
gradients alone to capture edge pixels, which may lead to
false classifying noisy pixels as edge pixels. Computing
gradients from noisy measurements is an ill-posed opera-
tion and, moreover, the gradient image is too localized to
give a skeletal edge map, see Fig. 1(c). The auxiliary vari-
able b (Eqn. (1)) in the HQ scheme is based on this gradi-
ent edge map |∇u| alone and hence gives spurious edges,
see Fig. 1(d). To avoid this, recently Santitissadeekorn
and Bollt (1996) modified the HQ scheme by including
an edge respecting term in the image minimization step.
This approach yielded better results than the HQ scheme
in terms of noise suppression along edges. Nevertheless,
capturing the multiscale nature of images using gradients
alone is not a feasible approach, as we have seen in this
example. Thus, we note that, instead of trying to remedy
the HQ scheme which is based solely on gradients, a bet-
ter way is to use an explicit edge map computed from a
multiscale descriptor.

2.1. Proposed scheme. To avoid the drawbacks of gra-
dient based schemes and to keep the regularization prop-
erty of the φ function formulation, we propose to make
the parameter α adaptive. The parameter α balances the
influence of the fidelity term and the a priori term in the
regularization, and is an important factor to obtain good
numerical results. Instead of using gradient based edge
indicator functions as in the work of Strong and Chan
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(a) (b)

(c) (d)

Fig. 1. Original image (a), noisy image with noise level σn =
20 (b), |∇u| (c), variable b in (1) of the HQ algorithm
(d).

(1996), we make use of the local information around each
pixel (Szeliski et al., 2008).

For a pixel x ∈ Ω, consider the local variance com-
puted in a neighborhood Nr(x) with radius r as follows:

Vr(x) =
1

|Nr(x)|
∑

y∈Nr(x)

(f(y) −mr(x))2,

where f(y) denotes the intensity (gray-scale) value at
pixel y ∈ Ω andmr(x) is the mean value of the pixels sit-
uated in the neighborhood Nr(x). For the Gaussian noise
case, r = 1 or r = 2 is well suited to capture the local
variance around the pixel under consideration.

Let the minimum and maximum values of Vr(x)
found in Nr(x) be Vmin

r (x), Vmax
r (x), respectively, and

consider the normalized local variance of the pixel x ∈ Ω:

Vr(x) =
Vr(x) − Vmin

r (x)2

Vmax
r (x)2 − Vmin

r (x)2
.

Then use a simple threshold function to avoid too small
values interfering with the contextual edges

Θ(V2

r(x), θ) =

{
0 if V2

r(x) < θ,

V2

r(x) if V2

r(x) ≥ θ.

Now, set the inhomogeneity term α using the vari-
ance controlled discontinuity measure Θ by the nonlinear
function:

α(x) = exp
(
−1
δ
Θ(V2

r(x), θ)
)
. (2)

(a) canny edges (b) θ = 0.05

(c) θ = 0.50 (d) θ = 0.95

Fig. 2. Edge-map comparison showing the influence of the
thresholding parameter θ in (2): edge map computed
from the Canny edge detector applied to the original im-
age (drawn on top of the image for better visualization)
(a), adaptive parameter α given in Eqn. (2) for different
values of θ (b)–(d).

The parameters θ and δ control the extent to which
the variance induced discontinuities should be preserved.
Typically they are in the range of θ from 0.05 to 0.95,
and δ = 10 can be fixed for a low to medium level of
noise (σn ≤ 20). Figure 2 shows an example of the
effect of θ in a close-up shot of the noisy Lena image
from Fig. 1(b). As the value of θ increases, we lose
more small scale edge features, and it can be safely set
at a medium level θ = 0.50 for most of the noisy im-
ages (compare with edges from the original image given
in Fig. 2(a). This image is computed using the MATLAB
command edge(f,’canny’, 0.2)). We utilize the
Canny edge detector for comparison as it is proven to be
efficient among others (Basu, 2002).

Thus, the scheme we propose is of the following en-
ergy minimization form:

inf
u∈BV (Ω)

E(u) :=
∫

Ω

|f(x) −B(u(x))|2 dx

+
∫

Ω

α(x)φ(|∇u|) dx. (3)

Other choices for α are also possible (Stronh and Chan,
1996; 2010a; Prasath and Singh, 2010b), and here we
chose the normalized local variance for its efficiency and
success rate with respect to edge detection compared
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with gradient based edge indicator functions as proposed
by Strong and Chan (1996). Note that α ∈ C∞(Ω) and
0 < α ≤ 1.

2.2. Well-posedness. We now provide the well-
posedness of the proposed scheme (3) in BV (Ω) using
direct methods of the calculus of variations. We recall
definitions and preliminaries about the space of functions
of bounded variation BV (Ω). These results can be found
e.g., in the work of Giusti (1984). We assume the follow-
ing:

H1: B : L2(Ω) → L2(Ω) is a linear continuous operator
such that B · 1 �= 0.

H2: φ : [0,∞) → [0,∞) is a convex, even and nonde-
creasing function with φ(0) = 0.

H3: φ satisfies the linear growth condition, i.e., there exist
a ≥ 0 and b > 0 such that as − b ≤ φ(s) ≤ as + b
for all s ∈ R.

Condition H1 implies that the blur operator does not an-
nihilate constant functions, which also guarantees that the
functional E(u) is coercive inBV (Ω). A canonical choice
of φ satisfying H2–H3 is the well-known TV function
φ(|∇u|) = |∇u| studied by Rudin et al. (1992). We use it
in our numerical experiments due to its edge preservation
properties.

Lemma 1. Let B be a linear operator satisfying H1, and
the regularization function φ satisfy Assumptions H2–H3.
Then the functional (3) is lower semicontinuous, i.e., if
{un} → u in L1(Ω), then

E(u) ≤ lim inf
n→∞ E(un).

Proof. Consider w ∈ C1
0 (Ω) to be such that |w(x)| ≤

α(x) for all x ∈ Ω. Then∫
Ω

u divw dx = lim
n→∞

∫
Ω

un divw dx

≤ lim inf
n→∞

∫
Ω

α |∇un| dx,

where the inequality follows from the definition of the to-
tal variation of u. Now, taking the supremum overw gives∫

Ω

αφ(∇u) dx ≤ lim inf
n→∞

∫
Ω

αφ(∇un) dx.

Since the L2 norm is lower semicontinuous, we also
have, for the fidelity term,∫

Ω

|f(x) −B(u(x))|2 dx

≤ lim inf
n→∞

∫
Ω

|f(x) −B(un(x))|2 dx.

Thus the proposed functional E(u) is lower semicontinu-
ous in BV (Ω). �

Theorem 1. LetB and φ satisfy Assumptions H1–H3 and
f ∈ BV (Ω) ∩ L2(Ω). Then the proposed minimization
problem

inf
u∈BV (Ω)

E(u)

has a solution in BV (Ω)∩L2(Ω). Moreover, the solution
is unique if φ is strictly convex or B is injective.

Proof. The functional E(u) is coercive and convex, and
by Lemma 1 the functional is lower semicontinuous in
BV (Ω) ∩ L2(Ω). Thus, by Theorem 3.2.2 of Aubert and
Kornprobst (2006), the corresponding minimization prob-
lem (3) has a solution in BV (Ω) and it is unique if the
regularization function φ is strictly convex or B is injec-
tive. �

We note that the Euler–Lagrange equation of our
functional (3) is given by a Partial Differential Equation
(PDE) of the form

BB∗u− div
(
α(x)

φ′(|∇u|)
|∇u| ∇u

)
= B∗f, (4)

whereB∗ is the adjoint ofB. Notice that this is a symbolic
notation. There is a slight abuse of notation in writing (4)
as an equality. Since the sub-differential of the functional
given in (3) is multi-valued, the equality in (4) would be
better written as B∗f ∈ BB∗u − div (α∂φ(|∇u|)). In
spite of this, we use the equation as (4), understanding that
the equality holds for an element of the sub-differential ∂
function. As a consequence of the convexity of the energy
functional E(u), we also have the following theorem about
the well-posedness of the evolution problem in Eqn. (4).

Theorem 2. Let

A(u) = (BB∗u−B∗f) − div
(
α(x)

φ′(|∇u|)
|∇u| ∇u

)
.

Then the following time dependent evolution problem
of (4) has a unique solution u(t) : [0,∞) → L2(Ω):⎧⎨

⎩
0 ∈ ∂u

∂t
+ A(u) in (0,∞) × Ω,

u(0, x) = f(x) for x ∈ Ω.

Proof. Since A is the derivative of a convex functional,
it is a maximal monotone operator. The assertion follows
from nonlinear semigroup theory, see, e.g., Theorem 3.1
of Brezis (1973). �

2.3. Related schemes. Using the HQ algorithm given
in Section 2.1, Santitissadeekorn and Bollt (1996) add an
extra term in the image estimation step to remove noise
along edges. This is carried out by the addition of a diver-
gence based term in the corresponding gradient descent
form in solving for u,

(ut+1 − f) − λdiv
(
bt∇ut+1

)
− α div

(
(1 − bt)∇f)

= 0.
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Note that the last term uses the noisy input image f , un-
like the updated version employed in our adaptive param-
eter α induced PDE (4) above. Moreover, our edge adap-
tive scheme can be written in the HQ formulation with the
edge variable b given by

b = α(x)
φ′(|∇u|)
|∇u| . (5)

Thus, we see that it uses a gradient weighted edge map via
α and gives a better edge structure, see Fig. 4(a).

Strong and Chan (1996) as well as Chen and Wun-
derli (2002) studied the adaptive TV case for the denoising
case B = I , i.e.,

inf
u∈BV (Ω)

F(u)

=
∫

Ω

|f(x) − u(x)|2 dx+
∫

Ω

α(x) |∇u| dx,

with α(x) = (1 + K |Gσ 
∇f |2)−1, where K > 0 is a
parameter. This particular choice of α includes the same
problems associated with other schemes which make use
of |∇u|. Although pre-smoothing with the Gaussian Gσ

makes the gradient image of f less oscillatory, the cor-
responding results suffer from the same artefacts associ-
ated with gradient based regularization schemes, such as
the lack of multiscale edges capturing and localization of
weak edges.

3. Numerical results

The parameter θ of the adaptive function (2) is set to
θ = 0.50 and the neighborhood size r = 2 in the fol-
lowing experiments. Increasing the value of θ results in
the reduction of high frequency edges and hence the con-
trast, see Fig. 2(b)–(d). The scale parameter δ is fixed at
δ = 10 in what follows and it works well for images cor-
rupted noise with variance of up to σn ≤ 20. If the noise
level is high (σn > 20), the parameter δ needs to be set
higher to avoid noisy oscillations around edges. All the
images are normalized to be in the range [0, 1]. We imple-
ment the gradient descent version of the Euler–Lagrange
equation (4) of the proposed convex functional (3). We
employ a standard finite difference scheme as follows.

Let h be the grid size and U t
ij the intensity value

u(i, j) at iteration t. Instead of the classical explicit
scheme, which severely restricts the step size, we make
use of an unconditionally stable semi-implicit scheme. In
1D with matrix-vector notation, it reads as

U t+1 =
[
1 − τA(U t)

]−1
U t,

where τ is the time step, A(U t) = [aij(U t)], and

aij(U t) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

bti + btj
2h2

if j ∈ Ni,

−
∑

k∈Ni

bti + btk
2h2

if j = i,

0 otherwise,

with bi = αigi, where gi is the discrete version of the
diffusion function g = φ′(|∇u|)/ |∇u|, see Eqn. (4). For
n D images, the semi-implicit scheme is written as

U t+1 =

[
1 − τ

n∑
l=1

Al(U t)

]−1

U t. (6)

The matrixAl = (aijl)ij corresponds to derivatives along
the l-th coordinate axis.

We consider the denoising case first, i.e., B =
I in (3). The first example, given in Fig. 3, shows
the restoration of the noisy Lena image from Fig. 1(b).
The following schemes are compared: Perona and Ma-
lik’s (PM) scheme (Perona and Malik, 1990), Total Vari-
ation (TV) regularization (Rudin et al., 1992), Adap-
tive TV (ATV) (Chen and Wunderli, 2002), the HQ
method (Charbonnier et al., 1997), and its modification
proposed by Santitissadeekorn and Bollt (1996) (SB). To
compare the image quantitatively and to gauge the param-
eters associated with each of the schemes compared here,
we used the following error metric (Santitissadeekorn and
Bollt, 1996):

E(u) =
‖u− f0‖
‖f0‖ +

∥∥∥∥ |∇u|
‖|∇u|‖ − |∇f0|

‖|∇f0|‖
∥∥∥∥ ,

where f0 is the true noiseless image and ‖·‖ denotes the
l2-norm. This error metric evaluates the error in data fi-
delity as well as the steepness error of edges.

Further, the usual image error metrics such as the
Peak Signal to Noise Ratio (PSNR) and the Mean Abso-
lute Error (MAE) were calculated, and comparison results
for the USC-SIPI database and other standard test images
corrupted by a higher noise level σn = 35 are given in
Table 1. The PSNR and MAE are given by the following
formula:

PSNR := 20 log 10
(
umax√
MSE

)
[dB],

where MSE = (mn)−1
∑∑

(u − f0), m × n denotes
the image size, umax denotes the maximum value, e.g., in
8-bit images umax = 255, and

MAE := Mean |f0 − u| .

The PM scheme (Fig. 3(a)) removes small scale
edges, which leads to diffusion leakage and reduction in
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(a) PM (b) TV (c) ATV

(d) HQ (e) SB (f) Our method

Fig. 3. Denoised images of various schemes: PM scheme with K = 30, t = 50 error E = 0.78 (a), TV scheme with ε = 10−4,
t = 100, error E = 0.85 (b), adaptive TV scheme with σ = 2, K = 10, error E = 0.80 (c), half-quadratic method with
φ(s) = (1 + (s/K)2)−1/2, K = 10, t = 120, error E = 0.45 (d), SB method with λ = 10, α = 50, error E = 0.22 (e),
proposed scheme (3) with δ = 10, θ = 0.5, error E = 0.25 (f).

(a) (b)

0

0.25

0.5

0.75

1

0

5

10

15

0.2

0.4

0.6

0.8

1

1.2

θδ

E

(c)

Fig. 4. Adaptive variance based edge indicator function α(x)φ′(|∇u|)/ |∇u| produces a weighted edge map (a), method noise
(|u − f |) for our result given in Fig. 3(f), multiplied by a factor of 2 for visualization (b), error metric E(u) as a function
of parameters θ and δ (c).
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Table 1. Comparison of different error metrics for USC-SIPI standard test images with a high noise level σn = 35. PSNR [dB]/MAE
are given for each scheme. A higher value for the PSNR and a lower value for the MAE indicate better results. The best result
in the PSNR is indicated in boldface for each image.

Image/method PM TV ATV HQ SB Our scheme

Lena 19.85/16.22 19.02/20.92 20.31/16.99 22.67/13.87 24.55/11.47 26.20/8.66
Cameraman 21.97/10.93 24.29/11.52 25.60/08.19 25.40/07.82 25.06/07.87 26.67/07.87

House 21.99/11.39 28.53/06.59 28.56/05.92 27.77/06.28 28.70/06.71 28.34/10.17
Peppers 20.52/16.06 24.92/11.11 27.17/07.94 27.75/08.32 27.45/08.10 27.46/07.78

Tree 19.55/17.69 24.04/12.25 25.12/09.80 24.29/10.30 25.67/10.87 27.07/10.45
Barbara 19.85/18.25 22.62/13.78 22.74/12.20 22.38/12.53 21.91/12.21 23.25/13.58
Couple 21.69/14.19 24.89/10.98 26.59/08.20 25.50/10.69 25.97/08.53 27.10/08.42

Man 21.13/15.14 24.92/11.08 26.67/08.44 25.45/10.87 26.22/08.58 26.75/08.17
Boat 21.23/14.34 24.93/11.04 26.67/08.24 25.67/08.54 25.97/110.87 26.80/08.59
Tank 23.86/10.25 25.73/10.24 28.75/07.08 28.46/07.17 28.21/07.00 27.88/07.54
F-16 21.63/12.24 25.25/10.60 27.10/07.09 27.07/07.05 27.24/07.83 27.69/08.28
Car 20.67/15.46 24.66/11.42 25.09/08.87 25.33/09.26 25.79/09.35 26.42/08.80

Bridge 19.85/18.99 23.75/12.78 24.24/11.62 23.46/12.66 23.54/12.40 24.62/11.20
Baboon 19.14/20.53 22.30/14.75 21.96/14.47 21.11/15.87 21.77/15.10 21.67/14.85

Hilll 22.04/13.67 25.30/10.70 27.56/07.84 27.04/08.14 27.49/08.25 27.80/08.18

the overall contrast. The TV scheme (Fig. 3(b)) yields
edge preservation but contains staircasing artefacts in flat
regions. Adaptive TV produces a better result (Fig. 3(c))
than the TV scheme but contains noise along edges. Simi-
lar artefacts appear in the HQ and SB methods (Figs. 3(d)
and (e), respectively), removes noise along edges and im-
proves the result of HQ. As can be seen from compar-
ing our scheme’s output (Fig. 3(f)), we obtain a cleaner
image with strong edges and without many of the afore-
mentioned artefacts. Figure 4(a) shows the weighted edge
map computed from the normalized local variance based
parameter (2) used in our scheme (3). Note that the de-
tails from different scales are included, and a better edge
map of the input image is obtained. Figure 4(b) shows the
method noise (|u− f |) for the result shown in Fig. 3(f).
Figure 4(c) shows the effect of the parameters θ and δ
against the error metric E. The multiscale edge control-
ling is taken care by the parameter θ and the parameter δ
is similar to the contrast parameter in traditional Perona–
Malik type diffusion PDEs.

We next show the result of using our scheme for a
Gaussian blurred image (Fig. 5(a)) with additional noise
level σn = 10,

B(u(x)) = (Gσb

 u)(x)

=
∫

Ω

exp
(
− |x− y|2

2σb

)
u(y) dy.

We took the blurring kernel of size σb = 2, and Fig. 5(b)
shows the result of our scheme with a TV regularization
function. The scheme can be used to remove small scale
features along with noise, which can be useful in denois-
ing scanned documents. Figure 5(c) shows a denoising
example where we increased the variance threshold pa-
rameter to θ = 0.80 to avoid the small vertical ink streaks.

Finally, Fig. 6 shows a small line (in the 50-th row)
taken across the Lena image from the original image given
in Fig. 1(a) and its restoration by our scheme given in
Fig. 3(f). As can be seen, our scheme results in strong
smoothing in flat regions with edge preservation. Note the
removal of wiggliness, which corresponds to small scale
textures when compared with the original signal. Hence,
our scheme based on normalized local variance removes
textures and other small scale features along with noise.
To preserve such textures, we have to include a texture
detector (e.g., Gabor filters) based measure into the value
of α which defines a further improvement of the proposed
scheme.

The scheme we proposed here is general in the
sense that many of the existing edge preserving regular-
ization and PDE schemes can be used along with (2).
Computations are done on a desktop computer with a Pen-
tium IV 2.14 GHz processor and MATLAB 7.4 used for
visualization. For a 512 × 512 image it takes about 1 min
to denoise (100 iterations) and this can be further reduced
if we make use of advanced numerical techniques such as
operator splitting. The main computational bottleneck is
the evaluation of the adaptive parameter α(x) which uses
a window based approach for each pixel. The computa-
tional time is significantly higher than in the traditional
HQ schemes (Charbonnier et al., 1997; Santitissadeekorn
and Bollt, 1996).

4. Conclusion

In this paper we considered edge preserving regularization
methods in the context of image restoration and denois-
ing. Half quadratic schemes separate the edge detection
part using an auxiliary variable and can leave noise along
edges. By using an explicit edge map adaptively com-
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(a) (b)

(i)

(ii)

(c)

Fig. 5. Blurred and noisy image (a), proposed scheme applied to
the blurred and noise image (b), denoising document im-
ages: (i) input image contains noise as well as some ver-
tical streaks of ink, (ii) denoising result using our scheme
(c).

Fig. 6. 1D slice taken across Fig. 3(f) and from the noisy image.

puted from a multiscale edge detector, the regularization
scheme proposed here restores the images better and re-
moves spurious oscillations. The well-posedness of the
minimization scheme is proved in the space of functions
of bounded variation. Related schemes are compared in

terms of detail preservation, and numerical results indicate
that addition of a pixel-wise adaptive parameter improves
denoising and restoration. Future works in this direction
include extending the scheme to color images, using other
contextual edge detectors in the edge variable process,
and using a median based adaptive parameter (Lukac and
Smolka, 2003) to handle multiplicative noise.
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