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In this paper the problem of accurate edge detection in images of heat-emitting specimens of metals is discussed. The
images are provided by the computerized system for high temperature measurements of surface properties of metals and
alloys. Subpixel edge detection is applied in the system considered in order to improve the accuracy of surface tension
determination. A reconstructive method for subpixel edge detection is introduced. The method uses a Gaussian function
in order to reconstruct the gradient function in the neighborhood of a coarse edge and to determine its subpixel position.
Results of applying the proposed method in the measurement system considered are presented and compared with those
obtained using different methods for subpixel edge detection.
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1. Introduction

Nowadays computer vision systems are commonly used
in a wide range of applications to model the real world
(Ranky, 2003; Obinata and Dutta, 2007). They use dig-
ital images to recognize and describe various phenom-
ena of interest. The images are provided by video,
digital cameras, radars or specialized sensors and are
processed using advanced image processing and analy-
sis algorithms (Batchelor and Whelan, 2002; Steger et
al., 2008; Gocławski et al., 2009). However, visual rep-
resentation of information contained in an image is highly
redundant. Therefore, after converting an image into its
digital representation, a detailed image analysis is carried
out. The analysis aims at separating information signifi-
cant to the user or the process from the entire image in-
formation. Edge detection plays an important role in this
step. In many applications the accuracy of edge detection
is the most important criterion considered while designing
the vision system. This is also true in the case of the com-
puterized system for high temperature measurements of
surface properties of metals and alloys which is discussed
in this paper. Because in this system the geometrical pa-
rameters of a specimen are related to the surface tension,
the precision of edge detection is crucial for the accuracy
of the measurements (Sankowski et al., 2000; Fabijańska
and Sankowski, 2009).

Various methods for edge detection have already
been proposed. Most commonly, they are image deriva-
tive based approaches which are sensitive to noise and
blur (Gonzalez and Woods, 2007; Senthilkumaran and
Rajesh, 2009; Oskoei and Hu, 2010). As a result, they
produce approximate, inaccurate and ambiguous results.
Moreover, traditional edge detectors all belong to the pixel
level and their accuracy is limited by a discrete structure
of a pixel grid. Hence, their precision does not exceed one
pixel. This accuracy does not meet the requirements of
modern vision systems.

Modern vision systems more and more often require
the precision of tenths or hundredths of a pixel. Therefore,
the development of subpixel techniques for edge detection
has become one of the hotspots of the current research
in image processing. Subpixel methods should overcome
limitations brought by a discrete structure of a pixel grid
and determine edge position inside a pixel. Some work
on developing methods for subpixel edge detection has al-
ready been done. However, the major methods are still to
be developed.

In this paper the problem of edge detection at sub-
pixel level in images of heat-emitting objects is discussed.
A reconstructive method for subpixel edge detection is in-
troduced. The method uses a Gaussian function in order
to reconstruct the gradient profile in the neighborhood of
a coarse edge and to determine subpixel edge location.
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The proposed method can be especially useful in the case
of industrial applications of vision systems where sources
emitting intense radiation have to be monitored (e.g., met-
allurgy, welding, glass making).

The paper is organized as follows. Firstly, in Sec-
tion 2 a brief introduction into subpixel edge detection
is given. Next, in Section 3 the method for surface ten-
sion measurement considered in this paper is introduced.
This is followed in Section 4 by the description of factors
making the traditional edge detectors insufficient for the
measurement system considered. Section 5 introduces the
proposed approach to subpixel edge detection. Results of
applying the proposed method to the class of images con-
sidered are presented and compared with other approaches
in Section 6. Finally, Section 7 concludes the paper.

2. Background on subpixel edge detection

The discrete structure of the digital raster limits the ac-
curacy of image registration and processing. Firstly, due
to the mixed pixel problem, the image shape may be
changed or unambiguously registered during image acqui-
sition (Scott, 2010). This the case of pixels which overlap
two or more regions. In the output image these pixels ob-
tain one intensity resulting from the intensities of neigh-
boring regions. The problem can be addressed by increas-
ing the image resolution, although it will never be elimi-
nated. This is explained in Fig. 1. Specifically, Fig. 1(a)
presents the original scene covered by a pixel grid and in
Fig. 1(b) the output image of the scene is shown. Fig-
ure 1(c) shows the results of increasing the image resolu-
tion.

(a) (b) (c)

Fig. 1. Mixed pixel problem: original scene covered by a pixel
grid (a), output image of the scene (b), results of increas-
ing image resolution: 1—pixel intensity for original res-
olution, 2—pixel intensities for quintuple the image res-
olution (c).

Because the traditional image processing algorithms
regard pixel as a basic, indivisible image component, they
are not able to divide a heterogeneous pixel into different
classes but qualify it into one region. This decreases the
accuracy of image processing and analysis.

The main idea behind subpixel edge detection is to
overcome the above-mentioned limitations brought by a
digital raster by performing soft classification in order
to determine edge location inside a pixel and divide it
into classes. However, it should be remembered that the

discrete structure of a pixel grid significantly (and irre-
versibly) reduces edge information. Therefore, the sub-
pixel edge position can only be approximated with some
probability as its determination always requires guessing.

The need of subpixel accuracy in image process-
ing and analysis was firstly pointed out in the late 1970s
(Nevtia and Babu, 1978). Since then, the issue of edge
detection at the subpixel level has gained attention of
many scientists and researchers. Presently subpixel ap-
proaches to edge detection are still under development.
However, the existing methods can be qualified into three
main groups: curve-fitting methods, moment-based meth-
ods and reconstructive methods. They are briefly charac-
terized in the following subsections.

2.1. Curve-fitting methods. Curve-fitting methods at-
tempt to build a continuous border by fitting curves into
edge points determined with pixel accuracy, using tradi-
tional edge detectors. The fitting is performed in an image
plane (as sketched in Fig. 2).

(a) (b) (c)

Fig. 2. Subpixel edge detection using curve fitting: input im-
age (a), curve fitted into a properly detected edge (b),
curve fitted into an edge with a badly defined edge
pixel (c).

This methodology was used by Yao and Ju (2009),
who fit cubic splines into spatial data points provided by
the Canny operator, or by Breder et al.(2009), who used
B-spline interpolation. A similar approach was also pro-
posed by Kisworo et al. (1991) who applied deformable
models for subpixel edge detection.

However, it should be underlined that the accuracy
of curve-fitting methods strongly depends on the accu-
racy of border determination at the pixel level. This group
of methods is also sensitive to badly defined edge points
which can disturb the shape of the object (see Fig. 2(c)).
Therefore, curve fitting methods can be successfully used
only in applications where edges are well defined and the
shape of the object is known a priori.

2.2. Moment-based methods. Moment-based meth-
ods use image moments to determine the location of
edges. Intensity moments (based only on pixel intensi-
ties) and spatial moments (which use spatial information
about the pixel neighborhood) can be differentiated.
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The first moment-based approach to subpixel edge
detection was proposed by Machuca and Gilbert (1981).
Their method integrates the region which contains the
edge. Edge location is determined using moments found
within the integrated region. The moments are defined
based on properties of the vector from the given pixel to
the center of gravity of the pixel square neighborhood.

Tabatabai and Mitchell (1984) proposed a method for
subpixel edge detection which fits three intensity moments
into the ideal step edge. The edge is defined as a sequence
of intensity h1 followed by a sequence of intensity h2.
The moments are defined as a sum of pixel intensity pow-
ers and do not consider any spatial information. The main
drawback of this method is that it determines edges only
in non-decreasing or non-increasing sequences of intensi-
ties.

The method developed by Lyvers et al. (1989) fits
spatial (geometric) moments into a new 2D model of an
ideal edge (see Fig. 3). In the model the edge is described
by four parameters which determine its position with sub-
pixel accuracy. These are the background intensity h, the
intensity change at the edge k, the edge transition l and
the angle θ the edge makes with respect to y-axis.

h

k

l

0

Fig. 3. Lyvers’ edge model.

An ideal edge is then a step transition from intensity
h to intensity h+k and is defined to lie within the unit cir-
cle at the distance of l from the center of the edge model.
In order to determine the subpixel edge position, pixels
are mapped into this unit circle and a relationship between
image moments and parameters of the edge is established.

The determination of edge parameters using Lyvers’
approach requires evaluation of six moments using circu-
lar masks. This makes the method computationally com-
plex. Moreover, moments used by the method are not or-
thogonal, which makes the method lack optimality in in-
formation redundancy. However, the edge model put into
subpixel edge detection by Lavers was used by the suc-
ceeding approaches to the problem considered. Specif-
ically, Ghosal and Mehrotra (1993) proposed a method
which fits orthogonal Zernike moments into Lyvers’ edge
model. This decreased complexity of the method as only
three masks were then required. However, Zernike mo-
ments have difficulties in describing small objects.

Recently, Bin et al. (2008) put forward Orthogonal
Fourier–Mellin Moments (OFMMs) proposed by Sheng
and Shen (1994) into subpixel edge detection. OFMMs
are also fit into Lyvers’ edge model. However, the
method requires calculation of seven moments using cir-
cular masks, which makes it computationally complex.

The main drawback to moment-based approaches is
the lack of clear criteria for classifying pixels as an edge or
a non-edge. Moreover, they produce a response (i.e., pa-
rameters of subpixel edge) for every set of pixels contain-
ing a change in image intensity and work properly only in
a close neighborhood of the edge pixel. If the edge posi-
tion is more distant than the dimensions of the region of
integration, moment based approaches fail. Therefore, in
the current form they can only be used to refine the loca-
tion of properly defined coarse edges.

2.3. Reconstructive methods. Methods reconstruct-
ing the image intensity function determine subpixel edge
location based on properties of the function which models
the image intensity function at the edge. As an example,
the approach by Xu (2009a) can be given. The method ap-
proximates image intensity at the edge using second order
polynomial. Subpixel location of the edge is indicated by
a point at the resulting curve where image intensity equals
to the average of the intensities of the background and the
object. However, methods reconstructing the image inten-
sity function are in a minority.

Methods reconstructing the image first derivative at-
tempt to build a continuous gradient function based on
gradient sample values provided by operators like Sobel
(Fabijańska and Sankowski, 2010), Prewitt (Bailey, 2005)
or Canny (Rocket, 1999). The coordinates of the ex-
tremum of the reconstructed gradient function indicate the
edge position with subpixel accuracy (see Fig. 4(e)). Most
commonly, a second order polynomial is fit to gradient
sample values in a small (3–5 pixels) neighborhood of a
coarse edge (Bailey, 2005; Rocket, 1999; Fabijańska and
Sankowski, 2010). Several approaches using the wavelet
transform instead of the image first derivative have also
been proposed (Liu et al., 2004; Xu, 2009b).

Methods reconstructing the image second derivative
function retrieve a continuous function based on sam-
ple values provided by the LoG a operator. The zero-
crossings of the reconstructed second derivative func-
tion determine edge locations with subpixel accuracy (see
Fig. 4(f)). Most commonly, the image derivative func-
tion is linearly interpolated in the neighborhood where
the second image derivative function changes its sign
(Mac Vicar-Whelan and Binford, 1991; 1981). However,
higher-order polynomials are also applied (Jin, 1990).

In order to reduce the computational complexity of
edge detection methods, the image function is often recon-
structed in some neighborhood of a coarse border. There-
fore, a standard feature selection is first applied in order
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Subpixel

edge position

a)

b)

c)

d)

e)

Subpixel

edge position

f)

Fig. 4. Determination of the subpixel edge position using recon-
structive approaches: real scene (a), image of the scene
(b), intensity profile at the edge (c), coarse position of
the edge (d), determination of the subpixel edge position
using the first derivative (e), determination of subpixel
edge position using the second derivative (f).

to determine a coarse location of the edge. Then this lo-
cation is refined to the subpixel level adapting the local
feature pattern in the closest neighborhood.

Among the discussed methods of subpixel edge de-
tection, reconstructive approaches are most resistant to
badly defined edge points. However, proper determination
of the edge position is ensured only when the reconstruc-
tive function closely fits the image intensity profile at the
edge.

2.4. Other methods. Several approaches to subpixel
edge detection which do not meet the classification pre-
sented above have also been proposed. Stanke et al.
(1998) proposed a method which determines the edge lo-
cation at the subpixel level using the center of gravity of
the gradient peak. A similar approach was also used by
Ji et al. (2009). Kisworo et al. (1991), for determination
of the subpixel edge position, used the image energy com-
puted based on the image intensity and its Hilbert trans-
form. An interesting approach was also introduced by
Bie and Liu (2009). Their method decomposes pixels into
subpixels using quad-tree decomposition.

Having in mind the classification presented above,
the method introduced in this paper is a combination of

reconstructive and curve fitting approaches. A more de-
tailed description of the method is given in the following
sections.

3. Experimental set up

The aim of the described research was to apply supbixel
image processing in order to improve the accuracy of sur-
face tension determination in the computerized system for
high temperature measurements of surface properties of
metals and alloys. In this section only a brief descrip-
tion of the measurement process is given. For more de-
tails regarding the system architecture and image pro-
cessing algorithms applied during the measurements, the
reader is referred to the works of Sankowski et al. (2000),
Fabijańska and Sankowski (2009), Strzecha et al. (2010),
as well as Koszmider et al. (2011).

The system considered determines surface tension of
metals in a temperature up to 1800°C. The measurements
are based on images of heat-emitting, molten specimens
of the investigated material. The images are registered
with 256 levels of quantization and a spatial resolution of
240×320 pixels. Sample images obtained by the system
are shown in Fig. 5. The left image (Fig. 5(a)) presents a
specimen of copper at the temperature of 1180°C. In the
right image (Fig. 5(b)), a specimen of silver at temperature
of 1042°C can be seen.

(a) (b)

Fig. 5. Sample images of molten heat-emitting specimens: cop-
per, 1180°C (a), silver, 1042°C (b).

In the measurement system considered the surface
tension is determined using the sessile drop method (Huh
and Reed, 1983; Hansen, 1993; Bachevsky et al., 1994;
Adamson and Gast, 1997). The method relates character-
istic dimensions of a drop of molten material and surface
tension through (Extrand and Moon, 2010)

h =

[
2
( γ

ρg

)(
1− cos θ

)] 1
2
[
1 +

( γ

ρg

) 1
2
(2

a

)]− 1
2

, (1)

where γ is the surface tension, h is the drop height, a is
the base diameter, θ is the contact angle, ρ is the density
of liquid metal, g is the acceleration gravity.

Drop characteristic dimensions are depicted in Fig. 6.



A survey of subpixel edge detection methods for images of heat-emitting metal specimens 699
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θ

Fig. 6. Sessile drop and its geometrical parameters.

It can be easily seen that the more precisely the spec-
imen geometrical parameters are determined, the more ac-
curate the values of surface tension are obtained through
Eqn. (1).

4. Problem definition

In the images considered, edges are surrounded by an aura
i.e. glow which forms itself around the drop due to con-
ditions of the measurements (high temperature, specimen
intense thermal radiation, flow of protective gases, etc.).
As a result, the border between the drop and the back-
ground becomes blurred and unsharp (see Fig. 7). This
effect significantly hinders the proper determination of the
drop edges and decreases the accuracy of drop shape de-
scription.

Fig. 7. Aura surrounding the specimen.

The boundary between the drop and the background
is supposed to be located somewhere inside an aura.
However, the classical approaches to edge detection fail
to locate the border. Mostly, they either cut off the aura
and decrease drop dimensions or join the aura with the
object, which makes it increase. Additionally, traditional
approaches to edge detection often falter when describ-
ing the specimen shape in contact of three phases (i.e., the
solid phase of base, the liquid phase of metal and the gas
phase of the environment). In all these cases, the accuracy
of surface tension measurements is diminished. Moreover,
different approaches to edge detection produce different
results for one image. This problem is illustrated in Fig. 8
and Table 1. Figure 8 presents results of edge detection in
the image of silver at 1042°C obtained using Sobel gradi-
ent masks (Fig. 8(a)), the Canny edge detector (Fig. 8(b))
and the LoG operator (Fig. 8(c)). Table 1 presents the cor-

Table 1. Influence of the edge position on the determined values
of surface tension.
Parameter [unit] Sobel Canny LoG

h [pixels] 158 162 159
a [pixels] 196 190 188

θ [°] 126.5 125.7 127.6
γ [mN/m] 1014 934 921

responding drop characteristic dimensions and values of
surface tension.

The ambiguity of surface tension determination is
unacceptable. Therefore, the main challenge of the pro-
posed method was to modify the traditional edge detector
in order to increase its aura resistance and the accuracy
of surface tension determination. The proposed method
on the one hand analyzes some neighborhood of the edge
in order to reduce the influence of local intensity distur-
bances, and on the other brings the edge position to the
subpixel level. A detailed description of the proposed
method is given in the following section.

5. Proposed approach

5.1. Main idea. The proposed method attempts to re-
construct continuous edge information from the discrete
image data. Specifically, the gradient profile at the coarse
edge is reconstructed by fitting the Gaussian function into
gradient sample values along the normal direction of the
edge as shown in Fig. 9.

(a) (b)

Fig. 9. Gradient profile reconstruction at the edge: top view on a
gradient image (a), 3D surface plot of the gradient image
with a Gaussian function (b).

Firstly, approximate discrete gradient sample values
are obtained by convolving the input image L with the
horizontal hx and the vertical hy Sobel mask in accor-
dance with

∇L ≈
√

(hx ⊗ L)2 + (hy ⊗ L)2. (2)

Next, the Gaussian function given by

f(x) = Ae
−(x−μ)2

2σ2
G (3)
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(a) (b) (c)

Fig. 8. Different results of edge detection obtained for one image: Sobel (a), Canny (b), LoG (c).

is fit to the gradient sample values along the normal direc-
tion of the coarse edge. Here f(x) denotes the gradient
value at the location x. Fitting aims at determining three
parameters of the Gaussian function:

• σG, which describes the blur level of the edge;

• A, which corresponds to the maximum gradient
value;

• μ, which is the most important parameter as it indi-
cates the subpixel location of the edge pixel.

The main idea of refining pixel location to the sub-
pixel level using the Gaussian function is presented in
Fig. 10. Discrete data points (empty circles) correspond to
gradient sample values (shown under the graph) obtained
for a pixel at location x. The parameter μ indicates the
subpixel position of the pixel considered.

Fig. 10. Refining the pixel location to the subpixel level using a
Gaussian function.

The fitting is performed in the nonlinear least squares
sense. Specifically, the sum S (see Eqn. (4)) of the squared
differences between the observed gradient sample values
fi (provided by Sobel masks) and the fit gradient values

f ′
i is minimized,

S =
n∑

i=1

(fi − f ′
i)

2, (4)

where n is the number of gradient sample values included
in the fit. For optimization, the Gauss–Newton algorithm
is used (Dennis and Schnabel, 1983). This method re-
quires initialization. In order to ensure convergence, the
initial values of the sought parameters should be close to
the real ones. Therefore, in the given application, the fol-
lowing initialization is used:

{ A = max(fi),
μ = x,
σG = n,

(5)

where x is the location of the coarse edge pixel being re-
fined and max(fi) is the maximum gradient sample value
in the regarded neighborhood of n pixels.

5.2. Drop shape description at the subpixel level.
The proposed method was applied in a system for mea-
surements of surface properties of metals and alloys in
order to obtain the drop shape description at the subpixel
level. Drop characteristic dimensions were obtained in the
following steps:

• determination of the coarse edge;

• separation of the base line and the drop profile;

• determination of the subpixel position bs of the base
line;

• determination of the drop profile at the subpixel
level;

• determination of drop characteristic parameters.

They are described below.
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(a) (b) (c)

Fig. 11. Successive steps of coarse edge determination in sample image of silver from Fig 5(b): gradient image (a), gradient after
thresholding (b), coarse edge—result of skeletonization (c).

Determination of the coarse edge. The coarse edge is
determined using Sobel gradient masks. The input im-
age L is convolved with the horizontal hx and the vertical
hy masks in accordance with Eqn. (2). The gradient im-
age ∇L is then thresholded with a global threshold F de-
termined using the ISODATA algorithm (Ridler and Cal-
vard, 1978). Thresholding performed in accordance with

∇L′(x) =

{
1 for ∇L(x) ≥ F,
0 for ∇L(x) < F

(6)

produces a binary image corresponding with the high-
est gradient. Various thresholding procedures were tested
(Otsu, C-means, Max-Entrophy, etc.). However, in the
case of the regarded class of images, due to properties of
the gradient image, the results of thresholding were simi-
lar. Therefore, finally the ISODATA method was used as
a well established and fast approach which (in the case of
the application considered) converges in several iterations.

In the next step the coarse edge δL is obtained after
skeletonisation performed on the binary image |∇L′| in
accordance with (Sidiropoulos et al., 1992)

δL =
N⋃

n=0

[(∇L′ � nH ′) − (∇L′ � nH ′) ◦ H ], (7)

where H denotes a convex structuring element, � and ⊕
denote erosion and dilation, respectively, ◦ denotes mor-
phological opening, and

N = max{n|∇L′ � nH ′ 	= ∅}, (8)

H ′ = {−h|h ∈ H}, (9)

nH =

{ n︷ ︸︸ ︷
{0} ⊕ H ⊕ · · · ⊕ H for n = 1, 2, . . . ,

{0} for n = 0.
(10)

In the case of the application considered, the skele-
tonization of a binarized gradient image always provides
a continuous border between the background and speci-
men. No parameter setting is required. This automates

the process of coarse edge extraction and eliminates addi-
tional processing like, for example, edge linking, which is
required when hysteresis thresholding is used.

Successive steps of coarse edge determination in a
sample image of silver (see Fig. 5(b)) are shown in Fig. 11.
It can be seen (Fig. 5(c)), that the coarse edge is deformed
in contact of three phases (i.e., the solid phase of base,
the liquid phase of drop and the gas phase of atmosphere).
The characteristic “roundoffs” of the specimen profile are
caused by a strengthened aura phenomenon in this region.

When a skeleton is obtained, consecutive, connected
pixels are linked together (from the bottom-left pixel to
the top-right pixel) into a list e of points ei = (xei, yei)
located along the coarse edge.

Separation of the base line and the drop profile. The
list e of edge points obtained in the previous step is then
divided into two sublists:

• list b of points bi = (xbi, ybi) belonging to the upper
edge of the base plate;

• list p of points pi = (xpi, ypi) belonging to the drop
profile.

The base plate is horizontal and the ordinate associ-
ated with the upper edge of the base plate in the image
coordinate system is the most frequent one in the list e.
Therefore, the list b of points belonging to the upper edge
of the base plate is defined by the following equation:

b = {ei : yei ∈ [yb − 3, yb + 3] & xei /∈ [xmin, xmax]},
(11)

where
yb = mode(yei) (12)

and xmin, xmax denote abscissa of the leftmost and the
rightmost point of the drop profile, respectively. The in-
terval of three pixels is given in order to include all pixels
in a close neighborhood of the base into calculations of
the base level. Pixels located between xmin and xmax are
excluded from calculations as their locations are distorted
by an aura effect in contact of three phases.
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All points located above the level of a base plate are
qualified to a specimen profile in accordance with

p = {ei : yei > yb + 3}. (13)

Again, an interval of three pixels is given to eliminate
badly determined parts of the specimen profile in contact
of three phases.

Points belonging to the coarse edge, the upper edge
of a base plate and the drop profile obtained for exemplary
image of silver from Fig. 5(b) are shown in Figure 12.

(a) (b)

Fig. 12. Separation of the base line and drop profile from the
coarse edge: coarse edge (a), base line and the drop
profile after separation (b).

Determination of the subpixel position of the base line.
Points qualified to the upper edge of the base plate are
then used to determine the base subpixel location. Two
steps need to be performed. First, the position of each
point from list b = {bi} is brought to the subpixel level
by fitting a Gaussian function into a linear neighborhood
of each point bi as described in Section 5.1. The fitting
is performed in the vertical direction (see Fig. 13). Next,
subpixel positions of points bi are approximated by a lin-
ear function y = bs determined by the least-squares fit-
ting.

Determination of the drop profile at the subpixel level.
Points qualified to the coarse profile are used to determine
the profile subpixel location. Again, firstly the location
of each point from list p = {pi} is brought to the sub-
pixel level by fitting a Gaussian function. The fitting is
performed in the gradient direction. Specifically, in the
case of points located in the upper part of the specimen
profile, a vertical neighborhood is used. In the case of
points located in the left and right parts of the specimen,
the horizontal neighborhood is regarded (see Fig. 13).

In the next step, subpixel positions p′i = (xp′i, yp′i),
i ∈ [0, k] of points pi are linked by a cubic spline to create
a continuous curve. Specifically, spline interpolation is
performed in accordance with

P (x) =
∑

Pi(x), (14)

Fig. 13. Direction of gradient profile reconstruction in different
parts of the specimen profile.

where x ∈ [xi, xi+1], xp′0 = x0 ≤ x1 ≤ · · · ≤ xn−1 ≤
xn = xp′k and

Pi(x) = ai(x − xi)3 + bi(x − xi)2

+ ci(x − xi) + di, (15)

Pi(xi) = yi, Pi(xi+1) = yi+1, (16)

P ′
i−1(xi) = P ′

i (xi), P ′′
i−1(xi) = P ′′

i (xi), (17)

P ′′
0 (x0) = 0, P ′′

n−1(xn) = 0. (18)

Intervals of five successive points are taken into ac-
count while determining consecutive splines.

Results of drop shape determination in a sample im-
age from Fig. 5(b) are presented in Fig. 14. Specifically,
Fig. 14(a) shows edges obtained at the pixel level com-
pared with the original image. In Fig. 14(b), results of
refining edges to the subpixel level are shown. Finally,
Fig. 14(c) compares specimen edges obtained at the pixel
(gray line) and subpixel (black line) level.

A qualitative assessment of the results presented in
Fig. 14 shows clearly that the proposed method signifi-
cantly improves the accuracy of specimen shape determi-
nation. The advantage of the proposed method is visible
especially in contact of the specimen, the base plate and
the background. While the coarse edge rounds the speci-
men profile in this region, the subpixel edge fits the speci-
men profile accurately. This is important for contact angle
determination performed in the following step.

Determination of drop characteristic parameters. Fi-
nally, specimen characteristic dimensions were deter-
mined based on the subpixel shape description obtained
in the previous steps. The specimen height h is defined
as the difference between the specimen maximum height
and the subpixel base level bs as described by

h = max(yp′i) − bs (19)

and shown in Fig. 15. The base diameter a is the distance
between the points A0 and Ak of the intersection of the
linear function y = bs (approximating the upper edge of
the base plate) with splines P0(x) and Pk(x) (extrapolat-
ing the lowest parts of the left and right specimen profiles,
respectively).
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(a) (b)

(c)

Fig. 14. Results of specimen shape determination at the sub-
pixel level.

Finally, the contact angle θ is determined as the mean
of angles θ1 and θ2 between the upper edge of the base
plate and the tangents to the specimen profile in points A0

and Ak . These are points of contact of three phases (i.e.
the solid phase of base, the liquid phase of molten metal
and the gas phase of atmosphere).

6. Results and discussion

6.1. Method performance analysis. In this sec-
tion, results of edge detection in sample images of heat-
emitting objects provided by the proposed method are pre-
sented and compared with those provided by other ap-

y

x

y=bs
bs

max(y ’i)p

P (x)k
h

A0 Aka

P (x)0

0

0201

Fig. 15. Determination of specimen geometrical parameters.

proaches. Specifically, the following methods (described
in Section 2) are considered:

• geometrical moments approach;

• Zernike moments approach;

• orthogonal Fourier–Mellin moments approach;

• gravity center approach;

• gradient reconstruction using a parabola.

In all cases the procedure described in Section 5.2
was used to obtain the coarse edge. The above-mentioned
methods were then used to refine the edge position to the
subpixel level. Due to the limitations of the discrete struc-
ture of a pixel grid, the resulting subpixel edges are pre-
sented as plots in the Cartesian coordinate system. The
bottom left corner of the image is located at the origin
(point (0, 0)) of the coordinate system while the top right
corner corresponds to the point (320, 240).

First, moment based approaches were considered.
Results of edge points detection at the subpixel level in
a sample image from Fig. 5(b) are shown in Fig. 16.

(a)

(b)

Fig. 16. Results of subpixel edge detection in the image from
Fig. 5(b) using moment-based approaches: profile
and base (a), magnified profile in contact of three
phases (b).

Specifically, Fig. 16(a) presents the specimen profile
and base while Fig. 16(b) shows magnified specimen pro-
file in contact of three phases. The geometrical moment
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approach (series gm), the Zernike moment approach (se-
ries zm) and the orthogonal Fourier–Mellin moment ap-
proach (series ofmm) are analysed. Coarse locations of
edge points corresponds to the series ns = 0.

An analysis of the obtained results revealed that the
moment based approaches fail when applied to the dis-
cussed class of images. All tested methods, i.e., geomet-
rical moments, Zernike moments and orthogonal Fourier-
Mellin moments based approaches, produce very similar
results and all subpixel positions are almost equally dis-
tant from the coarse edge. Additionally, this distance is
close to zero so the edge location is almost unchanged.
The position of badly determined edge points is not cor-
rected. Due to these facts, moment based approaches were
excluded from further analysis.

Results of edge detection at the subpixel level us-
ing the gravity center approach, the parabola fitting ap-
proach and the Gaussian function fitting approach (pro-
posed in this paper) are presented in Figs. 17–19, respec-
tively. The consecutive subfigures show the profile, the
magnified profile in contact of three phases and the base,
respectively. Again, the image of silver from Fig. 5(b)
is used as an example. The obtained subpixel locations
of the edge points are given as a function of neighbor-
hood size considered during gradient profile reconstruc-
tion. Consecutive series ns correspond to the number of
gradient sample values used for determination of the sub-
pixel position of an edge point. Specifically, ns = w
means that w gradient sample values on each side of the
coarse edge were used (the total number of sample values
was 2w+1). The series ns = 0 corresponds to coarse edge
points. The corresponding base positions bs are given in
Table 2.

Table 2. Influence of the number of gradient sample values on
the determined subpixel position of the base.

Method
ns GC PAR GAUSS

0 22
1 21.9499 −3.1e+011 23.8159
3 21.9839 22.2231 22.2093
5 21.7877 21.7133 21.5778
7 21.6409 21.6281 21.4647
9 21.6508 21.7188 21.4647
11 21.7088 21.7849 21.4647

The results presented in Figs. 17–19 and Table 2
show that the determined subpixel edge position depends
on the size of the neighborhood of the coarse edge used
while refining the edge position. For small neighborhoods
(ns = 1, 3) reconstructive methods (i.e., parabola fit-
ting and Gaussian function fitting) become unstable and
in some cases produce a subpixel edge position signifi-
cantly distant from the coarse edge. The instability ap-
pears in the cases when the local gradient peak is not at

the location indicated by the coarse edge. The stability
of both methods increases with an increase in the neigh-
borhood size. However, while the subpixel edge posi-
tion determined using the parabola fitting approach still
changes with the neighborhood size, results provided by
the Gaussian fitting approach become constant for appro-
priately big neighborhoods. In the case of the example
presented in Fig. 19, the position of the edge converged
for ns = 5. Additionally, with an increase in the neigh-
borhood size, the error of fitting the parabola into gradient
sample values also increases. This is illustrated in Fig. 20.
The parabola fits gradient sample values accurately only
for small neighborhoods. This makes the parabola fitting
approach inaccurate, unreliable and appropriate only for
refining precisely determined coarse edges. The precision
of Gaussian function fitting is high regardless of the neigh-
borhood size, and hence the method is much more univer-
sal.

In the case of reconstructive approaches (i.e.,
parabola fitting and Gaussian function fitting) the usage
of the smallest neighborhood (ns = 1) results in the high-
est method instability. The gravity center approach is most
stable within the regarded methods as it always provides
an edge located in the central part of the neighborhood
considered. However, as in the case of the parabola fitting
approach, the determined subpixel edge location changes
for different neighborhoods, which makes the method less
reliable than the Gaussian function fitting approach.

Despite the general properties discussed above, in the
case of images of heat-emitting objects the proposed ap-
proach based on Gaussian fitting to a gradient function at
the edge is much more robust in edge detection than the
gravity center approach and the parabola fitting approach.
The advantage of the Gaussian fitting approach is particu-
larly evident in contact of three phases (which is particu-
larly important in the discussed application).

In Fig. 21, results of a complete edge detection pro-
cedure in the images from Fig. 5 are shown. Edges ob-
tained using the gravity center approach (for ns = 11), the
parabola fitting approach (for ns = 3) and the proposed
method (for ns = 11) are presented and compared with
the original images. In the case of reconstructive methods
(i.e., parabola fitting and Gaussian function fitting), the
size of the neighborhood was chosen in a way providing
the closest and the most reliable fitting of a function into
the gradient profile.

The bottom panel corresponds to the image of copper
from Fig. 5(a). The top panel corresponds to the image
of silver from Fig. 5(b). In the first column (Fig. 21(a))
results obtained using the gravity center approach are
shown. The second column (Fig. 21(b)) corresponds to re-
sults provided by the Gaussian function fitting approach.
Finally, in the third column (Fig. 21(c)), results of the
parabola fitting approach are presented. Due to the lim-
itations of a pixel grid, in all cases the edge position was
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(a) (b) (c)

Fig. 17. Results of subpixel edge detection in the image from Fig. 5(b) using the gravity center approach: profile (a), contact of three
phases (b), base (c).

(a) (b) (c)

Fig. 18. Results of subpixel edge detection in the image from Fig. 5(b) using the parabola fitting approach: profile (a), contact of three
phases (b), base (c).

(a) (b) (c)

Fig. 19. Results of subpixel edge detection in the image from Fig. 5(b) using the Gaussian function fitting approach: profile (a), contact
of three phases (b), base (c).
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Fig. 20. Influence of the neighborhood size on the shape of the reconstructing function.

rounded to the closest pixel.
The comparison of the resulting edges with the origi-

nal images again proves superiority of the Gaussian func-
tion fitting method over the gravity center and parabola
fitting approaches. Based on a visual assessment, it can be
concluded that the Gaussian function fitting approach pro-
duces an edge which describes the specimen profile most
accurately. This can be observed especially in the contact
of three phases where the aura phenomenon is strength-
ened by an overlap effect in the horizontal and vertical
directions. In this region, the parabola fitting approach is
unstable and produces an irregular edge. The profile pro-
vided by the gravity center approach visibly moves away
from the border of a specimen. Only the Gaussian fitting
approach yields reasonable results as it matches specimen
shape and is most resistant to an aura.

6.2. Determination of surface tension. Results of sur-
face tension determination from images of copper and
silver using pixel and subpixel processing are shown in
Figs. 22 and 23, and Table 3. Specifically, the deter-
mined values of surface tension of copper in the function
of temperature (1400 K–1600 K) are shown in Fig. 22(a)
while the determined values of surface tension of silver in
function of temperature (1260 K–1440 K) are shown in
Fig. 23(a). The corresponding trade lines are presented
in Figs. 22(b) and 23(b), respectively. The parameters
of trend equations in the form γ = p + qT [K] (where
T denotes temperature) are indicated in Table 3. Results
provided by the gravity center approach (series gc, light-
gray line) and the proposed Gaussian fitting approach (se-
ries gauss , mid-gray line) are compared with those ob-
tained from the coarse edge (series coarse , dark-gray line)

Table 3. Trend lines equations for changes of surface tension in
the function of temperature.

Method Copper Silver
p q p q

reference −0.2280 1207.1 −0.2300 1609.3
coarse −0.3661 1418.0 −0.1644 1536.7

gc 0.0255 940.5 −0.1415 1596.6
gauss −0.2295 1217.8 −0.1808 1542.7

and the referential values of surface tension (Mills and
Su, 2006) (series reference, black line). Due to high insta-
bility and low accuracy of gradient profile reconstruction,
the parabola fitting approach was excluded from the com-
parison.

Numerical results presented in Figs. 22 and 23 as
well as Table 3 confirm the conclusions from the visual
assessment (see Fig. 21) that the Gaussian fitting approach
outperforms the other methods for edge detection. Specif-
ically, the specimen shape description at the subpixel level
using the proposed method increased the accuracy of sur-
face tension measurements.

The gravity center approach failed in both cases con-
sidered. In the case of copper, it produced results of a
character compliant with the laws of physics (i.e., sur-
face tension decreases with temperature (Adamson and
Gast, 1997)). However, the determined values of surface
tension are significantly higher than the referential ones.
In the case of silver, the trend of results is improper as
surface tension increases with temperature.

The determined values of surface tension obtained
using the proposed method in both cases visibly decrease
with temperature, which is consistent with the general



A survey of subpixel edge detection methods for images of heat-emitting metal specimens 707

(a) (b) (c)

Fig. 21. Results of edge detection in the images from Fig. 5: top panel—silver (Fig. 5(b)), bottom panel—copper (Fig. 5(a)). Gravity
center approach (a), Gaussian function fitting approach (b), parabola fitting approach (c).

(a) (b)

Fig. 22. Results of surface tension determination from images of copper: determined values of surface tension (a), trend lines (b).

(a) (b)

Fig. 23. Results of surface tension determination from images of silver: determined values of surface tension (a), trend lines (b).
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trend known from surface tension theory. Additionally,
trend lines obtained using the Gaussian function fitting
approach are remarkably closer to the referential trend
line than the series obtained using image processing at the
pixel level. This qualitative assessment is confirmed by
equations of trend lines (see Table 3).

At the end it should be underlined that there is no
“gold standard” for surface tension of metals. The high-
temperature measurements of surface tension are related
to different problems arising from the activity of liquid
metals and sensitivity of surface phenomena to impuri-
ties and the measurement conditions (temperature, pres-
sure, atmosphere, etc.). Therefore, recent results vary
slightly depending on the measurement method (Mills and
Su, 2006). However, despite this uncertainty, the pre-
sented comparison proves the superiority of the proposed
subpixel processing in case of the measurement system
considered.

7. Conclusions

In this paper the problem of edge detection with subpixel
accuracy in images of heat-emitting specimens of metals
was considered. The algorithm for refining edges to the
subpixel level was proposed. The method uses a Gaus-
sian function to reconstruct image information in a neigh-
borhood of the coarse edge and to determine the subpixel
position of edge points. Next, subpixel edge points are
linked by cubic splines in order to obtain a continuous
border.

The proposed method was successfully verified on
a target measurement system. Specifically, applying the
proposed method in a computer vision system for high
temperature measurements of surface properties of metals
and alloys increased the accuracy of surface tension deter-
mination. Additionally, the results provided by the Gaus-
sian fitting approach were remarkably better than those
provided by previously proposed approaches to subpixel
edge detection.

Although the proposed method of edge detection
with subpixel accuracy was developed for a certain in-
dustrial measurement system, it can be easily adapted to
a wide range of computer vision systems where accurate
edge detection is at premium. Additionally, it can be par-
ticularly useful in applications where the exact position of
a blurred and unsharp edge must be precisely determined.
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Anna Fabijańska is an assistant professor at
the Institute of Applied Computer Science, Łódź
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