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Wireless Backbone Networks (WBNs) equipped with Multi-Radio Multi-Channel (MRMC) configurations do experience
power control problems such as the inter-channel and co-channel interference, high energy consumption at multiple queues
and unscalable network connectivity. Such network problems can be conveniently modelled using the theory of queue per-
turbation in the multiple queue systems and also as a weak coupling in a multiple channel wireless network. Consequently,
this paper proposes a queue perturbation and weakly coupled based power control approach for WBNs. The ultimate objec-
tives are to increase energy efficiency and the overall network capacity. In order to achieve this objective, a Markov chain
model is first presented to describe the behaviour of the steady state probability distribution of the queue energy and buffer
states. The singular perturbation parameter is approximated from the coefficients of the Taylor series expansion of the prob-
ability distribution. The impact of such queue perturbations on the transmission probability, given some transmission power
values, is also analysed. Secondly, the inter-channel interference is modelled as a weakly coupled wireless system. Thirdly,
Nash differential games are applied to derive optimal power control signals for each user subject to power constraints at
each node. Finally, analytical models and numerical examples show the efficacy of the proposed model in solving power
control problems in WBNs.

Keywords: decentralized power control, singular perturbation theory, weak coupling theory, wireless backbone networks,
optimal control theory.

1. Introduction

In wireless networks, backbone networks are typically
composed of stationary nodes that convey a large amount
of traffic generated by wireless clients to a few nodes that
act as gateways to the Internet (Bruno et al., 2005). In
order to achieve this goal, Wireless Backbone Networks
(WBNs) need to be fully distributed in both structure and
function. They should also be reliable in terms of en-
ergy efficiency and robustness against the adverse wire-
less link conditions. Furthermore, in order to meet high
traffic demands, WBNs may be equipped with multiple
radios or Network Interface Cards (NICs) and/or oper-
ate on the multiple orthogonal frequency channels (En-
gim, 2004). In this scenario, a backbone node has a radio
with its own Medium Access Control (MAC) and physical

layers (PHY). Thus, a single wireless Multi-Radio Multi-
Channel (MRMC) node may access the client network
and route the backbone traffic simultaneously. An addi-
tional requirement is that such networks should be self-
managing and can form high capacity Wireless Mesh Net-
working (WMN) with packet stripping capabilities (Zhu et
al., 2008; Adisehu et al., 1996).

The operation of such wireless MRMC backbone
networks generally requires sustainable and reliable en-
ergy supplies. However, such networks are now being de-
ployed in energy-constrained geographical regions where
electric power outlets are scarce and alternative sources
are the main energy amenities (Ishmael et al., 2008).
In addition, power control problems including the inter
(or intra) channel interference, unscalable connectivity
and high energy depletion subsequently become prevalent.
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Therefore, the problem facing each wireless transmit–
receive NIC or node pair (i.e., user) is how to regulate its
transmission power level so that it is high enough to reach
the intended receiver (i.e., for decoding a signal and main-
taining connectivity) and low enough to maintain a mini-
mal interference against neighbouring nodes and minimal
energy consumption.

Numerous works have addressed the power control
problem in distributed wireless networks with single ra-
dio configurations (Ramamurthi et al., 2008; Li and Hou
2004; 2005; Tsheng et al., 2001; Sorooshyari and Gajic,
2008; Arora and Krunz, 2007; Klues et al., 2006; Sheth
and Han, 2005). The main goal is to resolve topology
issues (Li and Hou 2004; 2005; Chen et al., 2007), co-
channel interference (Tsheng et al., 2001; Sorooshyari
and Gajic, 2008; Wang et al., 2006; Arora and Krunz,
2007) and energy-consumption (Klues et al., 2006; Sheth
and Han, 2005). However, such techniques only solve
the client access network power control problems where
there are no multiple radios installed. Multiple radio con-
figurations present additional power control challenges
(Zhu et al., 2008). Recent research attempts have ad-
dressed the power control problems in wireless MRMC
configurations (Chen et al., 2007; Olwal et al., 2009a;
2009b; 2009c). For instance, an energy-efficient Power
selection Multi-radio Multi-channel Unification Protocol
(PMMUP) has been proposed at the link layer to coor-
dinate independent operations of multiple radios operat-
ing in separate wireless channels (Olwal et al., 2009a;
2009b; 2009c). Such approaches simplify the complex-
ity involved with the multiple MAC and PHY layers and
also ensure that the network connectivity stays scalable
(Adisehu et al., 1996).

However, such approaches do not tackle transmis-
sion energy consumption problems due to perturbations
of multiple-queues system (Avrachenkov, 1999). A queue
perturbation arises when wireless channel links cause
packet losses, hence a need for packet retransmissions at
the expense of additional transmission energy. Further-
more, multiple independent and active collocated radios
do interfere significantly with each other due to the or-
thogonality violation of wireless links. This is the problem
of weakly coupled wireless control systems (Gajic and
Shen, 1993). Investigating the effects of singular perturba-
tion phenomena (in which the rate of energy consumption
and queue evolution differ) and weak coupling of multi-
ple channels on power control in wireless network is the
subject of this paper.

The theory of singular perturbation and its appli-
cations is rich (Avrachenkov, 1999; Delebecque and
Quadrat, 1981; Schweitzer, 1986; El-Azouzi and Alt-
man, 2003). In particular, El-Azouzi and Altman (2003)
studied a singular perturbation approach to approximating
steady state solutions of a two-dimensional Markov chain.
Specifically, a queueing analysis of packet dropping over

a wireless link with retransmission was examined. The
Markov chain consists of the channel state and the number
of packets queued at the buffer. The idea is to investigate
the effects of wireless channel conditions on the evolution
of buffer sizes. Chydziński and Chróst (2011) presented
analytical solutions for queue size distributions, loss ra-
tio and throughput for Internet routers. Their analysis as-
sumed a Poisson arrival process and the general type of the
service time distribution (which is a more realistic model
of packet processing time in an Internet router). However,
the study does not consider energy consumption problems
in multi-radio multi-channel network configurations.

On the other hand, the objective of this paper is to
investigate the effects of queue pertubation arising from
the evolution of energy consumption and buffer sizes, and
the interference coupling on power control for multi-radio
multi-channel wireless networks. This is motivated by
the fact that energy availability for transmitting packets in
queues do change generally at much different time-scales
compared with that of buffer size evolution (Olwal, 2010).
In fact, if the speed ratio between the buffer size and the
energy level for transmission dynamics is represented by
a sufficiently small positive parameter εs, then the singu-
lar perturbation approach allows us to obtain steady state
probabilities as a Taylor series of this parameter. On the
other hand, weakly coupled theory and its application to
large scale control systems can be found in the works of
Shen and Gajic (1990), Sagara et al. (2008) or Mukaidani
(2009). In these contributions, the emphasis is on mod-
elling large scale dynamic control systems as differential
Nash games (Gajic and Shen, 1993). In particular, assum-
ing a large scale interconnected system, a strategy of one
subsystem needs to be decoupled from strategies of oth-
ers in the game so that the Nash equilibrium is attained
(Mukaidani, 2009). In the same spirit, we model inter-
channel wireless interference as a weakly coupled control
system and use the principle of Nash games to evaluate
optimal transmission power levels by each user. To the
best of our knowledge, the ideas presented in this paper
have not been widely proposed in the literature for power
control over multi-radio wireless backbone networks. The
main contributions are (a) expression for the transmission
probability and expected delay for the queue correspond-
ing to each radio device, and (b) optimal control policies
obtained as a Nash equilibrium of a game with radios at
the same node as players. Table 1 depicts definitions of the
abbreviations and notation often referred to in this paper.

The rest of this paper is organised as follows. In Sec-
tion 2, we present singular perturbation, model analysis
and the weakly coupled wireless system. In Section 3,
the optimal power control problem is formulated. Sec-
tion 4 summarises the proposed optimal power control al-
gorithm. We provide numerical examples in Section 5 and
conclude the paper in Section 6 with highlights of poten-
tial real applications of the proposed method.
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Table 1. Abbreviation and notation.
Abbr. Description Notation Description

MAC medium
access control

εs singular per-
turbation (suf-
ficiently small
parameter)

MRMC multiradio
multichannel

π(εs) Markov
chain steady
state prob.
distribution

NIC network inter-
face card

ψ(εs) steady state
transmission
probability

PMMUP power selec-
tion MRMC
unification
protocol

εw weakly
coupled suffi-
ciently small
parameter

SPWC singularly
perturbed
weakly cou-
pled

ε̃ singularly
perturbed
weakly
coupled (suf-
ficiently small
parameter)

SWARRE SPWC Ricatti
equation

Pε SWARRE sta-
bilising solu-
tion

UCG unified chan-
nel graph

ui(t) power control
sequence

2. System model and analysis

2.1. Queue system perturbation. In order to simplify
our approach and still accomplish our study objectives, we
describe a decentralized network model. Specifically, we
assume that there are N wireless links, each on a sepa-
rate channel, emanating from one wireless MRMC node.
This means that there are N queues and N times energy
consumption for a multi-radio node. All transmitters of
the same node share a common energy source and all
packet transmissions are constrained by the total energy
levels. For a sender–receiver node pair, the queues are
depicted by Fig. 1. At the sender (respectively the re-
ceiver) packets from the PMMUP layer (respectively mul-
tiple queues) are striped (respectively resequenced) into
multiple queues (respectively a PMMUP queue) (Olwal
et al., 2009a). Moreover, each queue of an NIC utilizes
the energy awareness and information from higher lay-
ers in order to perform an Admission Control Mechanism
(ACM). The ACM selects the input rates to the finite-sized
buffers before transmitting the packets over wireless chan-
nels.

Packets are considered to independently arrive at the
multiple MAC and PHY queues and get transmitted af-
ter a finite duration of time depending on the buffer size,
the available energy and the conditions of the wireless
links. Therefore, during a given time-duration, the appli-
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Fig. 1. Multiple queues of wireless multiple radio multiple
channel systems.

cation generates packets according to a Bernoulli process
(El-Azouzi and Altman, 2004), and such packets arrive at
the queues with probability φ. Each queue is assumed to
have a finite size of B packets. Suppose queues are ini-
tially nonempty, then new arriving packets are dropped
when the queue is full, otherwise packets join the tail
of the queue. Packets are then serviced and transmitted
through the channel using an optimal transmission power
sequence.

Set i ∈ E, where E = {1, 2, . . . , i, . . . , E}, as
the energy level available for transmitting a packet over
a wireless medium by each transmit–receive NIC pair
(user). Set ϕi, where ϕi ∈ [0, 1], as the probability of
transmitting a packet with energy level i. The transition
probability from energy state Xn = i to another energy
state Xn+1 = j during the time transition [n, n + 1] is
given by

λij = Pr(Xn+1|Xn = i),

so that we can define

Λ =

⎡
⎢⎢⎣

λ11 λ12 · · · λ1E

λ21 λ22 · · · λ2E

. . . . . . . . . . . . . . . . . . . . .
λE1 λE2 · · · λEE

⎤
⎥⎥⎦ (1)

as the transition matrix of the energy levels for transmis-
sion, where

∑E
j=1 λij = 1 with the probability distribu-

tion denoted by V = [V1,V2, . . . ,VE].
It should be noted that the power optimization phase

requires the information about the queue and energy level
dynamics in order to yield sequences of energy-efficient
power levels. Such dynamics can be modelled as Markov
chain processes described as follows.

Define X(n) = {Xn(i(n), j(n))} as a two-
dimensional Markov chain sequence, where i(n) and j(n)
are respectively the energy level available for packet trans-
mission and the number of packets in the buffer at the
n-th time step. Let the packet arrival and the energy-
charging process to each interface in step n + 1 be in-
dependent of the chain X(n). Arrivals are also assumed
to occur at the end of each time step so that new ar-
rivals cannot depart in the same time step that they arrive
(Adisehu et al., 1996). Figure 2 shows a two-dimensional
Markov chain evolution diagram with the transition proba-
bility matrix, PT (n), whose elements are λn,n+1(i, j) for
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Fig. 2. Markov chain diagram.

all i = 1, 2, . . . , E and j = 0, 1, 2, . . . , B. The nota-
tion, λn,n+1(i, j) represents the transition probability of
the i-th energy level and the j-th buffer level from state
at n to state at n + 1. We note that a similar Markov
chain representation can be considered for other queues in
a multi-queue system in Fig. 1. This is simply because
all queues share common unified upper layers and energy
source supply, but each transmission faces different wire-
less channel conditions, and hence a different energy con-
sumption.

The transition probability E(B +1)×E(B+1) ma-
trix of the Markov chain X(n) is given by

PT (n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

B0 B1 0 · · · · · · · · ·
A2 A1 A0 0 · · · · · ·
0 A2 A1 A0 0 · · ·
...

...
...

...
...

...
...

...
...

... A1 A0

0 · · · · · · 0 A2 F1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

0
1
.
.
.
B

(2)
where PT (n) consists of B + 1 block rows and B + 1
block columns, each of size E × E. The matrices
B0,B1,A0,A1,A2 and F1 are all E × E non-negative
matrices given by

B0 = φΛ, B1 = φΛ,

A0 = diag(φϕi, i = 1, . . . , E)Λ,

A1 = diag(φϕi + φϕi, i = 1, . . . , E)Λ,

A2 = diag(φϕi, i = 1, . . . , E)Λ,

F1 = diag(φϕi + ϕi, i = 1, . . . , E)Λ.

Here φ = 1−φ and ϕi = 1−ϕi denote respectively,
the probability that no packet arrives in the queue and no
packet is transmitted into the wireless channel when the
available energy level is i. If we assume that the energy
level transition matrix Λ is irreducible and aperiodic and
also that φ > 0, then the Markov chain X(n) is aperiodic
and has a single ergodic class (Schweitzer, 1986). We can
then define a unique row vector of the steady state (or sta-

tionary) probability distribution as

π(i, j) = lim
n→∞ PT (l(n) = i, b(n) = j), (3)

with i = 1, 2, · · · , E; j = 0, 1, . . . , B and π(i, j) ∈
R

1×i(j+1). Let π(i, j, ε), i = 1, . . . , i, . . . , E; j =
1, . . . , j, . . . , B, be the probability distribution of the state
of the available energy and the number of packets in the
system in the steady state. This probability distribution is
uniquely determined by the following system:

π(εs)PT (εs) = π(εs),
π(εs)1 = 1, (4)

π(εs) ≥ 0,

where εs denotes the singular perturbation factor depict-
ing the speed ratio between energy and queue state evolu-
tions. The singular perturbation factor is considered to dif-
fer from one radio to another since wireless channel condi-
tions differ from one frequency channel to the other. The
first order Taylor series approximation of the perturbed
Markov chain transition matrix X(n) defined in (2) can
be represented as

PT (εs) = Q0 + εsQ1, (5)

where Q0 is the probability of the transition matrix of the
unperturbed Markov chain corresponding to the strong in-
teractions of packet arrivals to and departures from the
queues and Q1 is the generator corresponding to the weak
interactions, i.e.,

Q0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φI φI 0 · · · · · · · · ·
A2 A1 A0 0 · · · · · ·
0 A2 A1 A0 0 · · ·
...

...
...

...
...

...
...

...
...

...
... A0

0 · · · · · · 0 A2 F1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B̃0 B̃1 0 · · · · · · · · ·
Ã2 Ã1 Ã0 0 · · · · · ·
0 Ã2 Ã1 Ã0 0 · · ·
...

...
...

...
...

...
...

...
...

...
... Ã0

0 · · · · · · 0 Ã2 F̃1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

where

A2 = diag(φϕi, i = 1, . . . , E),

A1 = diag(φϕi + φϕi, i = 1, . . . , E),

A0 = diagg(φϕi, i = 1, . . . , E),

F1 = diag(φϕi + ϕi, i = 1, . . . , E),

B̃0 = φ(Λ1),
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B̃1 = φ(Λ1),

Ã2 = diag(φϕi, i = 1, . . . , E)Λ1,

Ã1 = diag(φϕiφϕi, i = 1, . . . , E)Λ1,

Ã0 = φdiag(φϕi, i = 1, . . . , E)Λ1,

F̃1 = diag(φϕi + ϕi, i = 1, . . . , E)Λ1,

Here,
Λ(εs) = I + εsΛ1, (7)

where Λ1 is the generator matrix (Avrachenkov, 1999)
representing an aggregated Markov chain X(n).

The model in (2) to (7) gives the perturbation prob-
lem under the assumption that there exists an ergodic class
(i.e., the one which has exactly one closed communicating
set of states), and Q0 contains E sub-chains (E ergodic
class).

The stationary probability π(i, j, εs) of the perturbed
Markov chain from (3) and (4) has a Taylor series expan-
sion,

π(i, j, εs) =
∞∑

n=0

π(n)(i, j)εn
s , (8)

where εs is the n-th order singularly-perturbed parameter.
From (1), the aggregate Markov chain probability distri-
bution was denoted by V = [V1,V2, . . . ,VE ]. The unper-
turbed stationary probability is then given by

π(0)(i, j) = V iνζi(j), (9)

where νζi is the probability distribution of the recurrent
class ζi, i.e.,

∑B
j=0 ζi(j) = 1 (El-Azouzi and Altman,

2004).

2.2. Packet transmission and delay analysis. The
following analysis illustrates the probability of packet
transmission and the expected delay at each queue. Their
impacts on transmission energy consumption at each
multi-radio node are also shown. The motivation is to
have a power control solution which is both energy source
and queue delay aware for the purpose of implementing
an energy efficient network.

Lemma 1. For each i = 1, 2, . . . , E, the stationary dis-
tribution νζi(j) of the recurrent class ζi is given as follows

1. If i /∈ EH ∪ EL, then

νζi(j + 1) =
φj+1(1 − ϕi)j

ϕj+1
i (1 − φ)j+1

νζi(0), j = 1, 2, . . . , B.

Here

νζi(0) =
ϕi − φ

ϕi − φαB

with

α =
φ(1 − ϕi)
ϕi(1 − φ)

.

EH and EL are respectively sets of the energy levels for
the packet transmission higher and lower than the mini-
mum required for the successful packet transmission.

2. If i ∈ EH , then νζi(0) = 1 − φ and νζi(1) = φ.

3. If i ∈ EL , then νζi(B) = 1.

Proof. If the level of the available energy for the packet
transmission is i /∈ EH ∪EL, then we first consider νζi(1)
in terms of νζi(0), i.e.,

νζi(1) =
1

1 − ϕi
ανζi(0).

Consequently by induction one gets

νζi(j) =
1

1 − ϕi
αjνζi(0), j = 1, . . . , B,

α =
φ(1 − ϕi)
ϕi(1 − φ)

.

Thus,

νζi(j + 1) =
1

1 − ϕi
αj+1νζi(0).

Alternatively,

νζi(j + 1) =
φj+1(1 − ϕi)j

ϕj+1
i (1 − φ)j+1

νζi(0), j = 1, · · · , B.

Using the normalization condition

B∑
j=0

ζi(j) = 1,

we can obtain νζi(0) by summing over all j =
0, 1, 2, . . . , B,

νζi(0) =
1

1 + 1
1−ϕi

α1−αB
1−α

=
ϕi − φ

ϕi − φαB
. (10)

Suppose the level of the available energy is i ∈ EH ,
given that there is no packet in the queue. Then the condi-
tion νζi(0) = 1 − φ = φ̄ holds. Consequently, one packet
arrives with the probability φ, implying that νζi(1) = φ.
In a similar treatment, if the energy level is i ∈ EL, given
a full buffer then the stationary distribution of the recur-
rent class ζi is given by νζi(B) = 1. �

Lemma 2. Assuming that there exists a perturbed
Markov chain Xn(i, j, εs), the perturbed steady state
transmission probability is given as follows:

Ψ(εs) =
∑
i,j

φj+1(1 − ϕi)j−1ϕB+1
i (1 − φ)B(ϕi − φ)

ϕB+j
i (1 − φ)B+j − φB+1(1 − ϕi)B−1

+ φ
∑
i,j

∞∑
n=1

π(n)(i, j)εn
s ϕi,
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where

π(n) = V
[
R(Q1Δ0)n

+
n−1∑
k=1

(RQ1Δ0R̃Δ1)k(Q1Δ0)n−k
]

Here, R ∈ R
(E+1)×(E+1)(B+1) denotes a matrix whose

rows form a stationary distribution of the Markov chain
Q0, i.e., R = diag(νζi , i = 0, 1, . . . , E). R̃ ∈
R

(E+1)(B+1)×(E+1) denotes a matrix of eigenvectors cor-
responding to the zero eigenvalue of the unperturbed gen-
erator Q0−I , i.e., R̃ = (θζ0 , θζ1 , . . . , θζE ). Δ0 denotes a
deviation matrix of the unperturbed Markov chain Δ0 =[
I − Q0 + R̃R

]−1

−R̃R. Δ1 = [−Λ1 + Λ∗]−1−Λ∗ de-

notes a deviation of the aggregated Markov chain, where
Λ∗ = μEV , with μE = (1, . . . , 1)T ∈ R

E+1 (El-Azouzi
and Altman, 2003).

Proof. By definition and Lemma 1, the steady state trans-
mission probability Ψ(εs) is given by

Ψ(εs) = φ
∑
(i,j)

∞∑
n=0

π(n)(i, j)εn
s ϕi

(i = 1, 2, . . . , E, j = 0, 1, 2, . . . , B

= φ
∑
(i,j)

π(0)(i, j)ε0sϕi + φ
∑
(i,j)

∞∑
n=1

π(n)(i, j)εn
s ϕi

= φ
∑
(i,j)

Viνζi(j)ϕi + φ
∑
(i,j)

∞∑
n=1

π(n)(i, j)εn
s ϕi

= φ
∑
(i,j)

Vi
αjνζi(0)
1 − ϕi

ϕi + φ
∑
(i,j)

∞∑
n=1

π(n)(i, j)εn
s ϕi

=
∑
(i,j)

Vi
φj+1(1 − ϕi)j−1ϕB+1

i (1 − φ)B(ϕi − φ)
ϕB+j

i (1 − φ)B+j − φB+1(1 − ϕi)B−1

+ φ
∑
(i,j)

∞∑
n=1

π(n)(i, j)εn
s ϕi (11)

with π(n) being recursively evaluated as given in
Lemma 2. �

Lemma 3. Assuming that there exists a perturbed
Markov chain Xn(i, j, εs), the expected delay in a singu-
larly perturbed queue, ED(εs), is given as follows:

ED(εs) =
Nu

De
, (12)

where

Nu =
∑
(i,j)

Vi
φj(1 − ϕi)j−1ϕB

i (1 − φ)B(ϕi − φ)j
ϕB+j

i (1 − φ)B+j − φB+1(1 − ϕi)B−1

+
∑
(i,j)

∞∑
n=1

π(n)(i, j)εn
s j

i = 1, 2, . . . , E, j = 0, 1, 2, . . . , B.

De = φ −
∑

i/∈EH
⋃

EL

Vi
φB+1(1 − ϕi)B

(ϕi(1 − φ))B
+
∑

i∈EL

Vi

+
∑
i=1

∞∑
n=1

π(n)(i, B)εn
s ,

with π(n) given by results of Lemma 2.

Proof. By definition, the average number of packets in
the queue is given by

Nu = E[Xn] =
∑
(i,j)

π(i, j, εs)j

=
∑
(i,j)

∞∑
n=0

π(n)(i, j)εn
s j

=
∑
(i,j)

π(0)(i, j)j +
∑
(i,j)

∞∑
n=1

π(n)(i, j)εn
s j,

i = 1, 2, . . . , E, j = 0, 1, 2, . . . , B.

Using results from Lemma 1, one proceeds to the expres-
sion of Nu given in Lemma 3.

Let φ∗ be the packet acceptance rate into the queue
at steady state. Define φ∗ as

φ∗ = De = φ

(
1 −

E∑
i=1

π(i, B, εs)ϕi

)

= φ

(
1 −

E∑
i=1

∞∑
n=0

π(n)(i, B)εn
s ϕi

)

= φ
(
1 −

E∑
i=1

π(0)(i, B)ϕi

−
E∑

i=1

∞∑
n=1

π(n)(i, B)εn
s ϕi

)
.

Applying results of Lemma 1, we obtain the expres-
sion of De given in Lemma 3.

Using Little’s theorem (Avrachenkov, 1999), the av-
erage delay in a perturbed queue is given by

ED(εs) =
Nu

De
. (13)

It should be noted from results of Lemmas 1 and 2 that
the steady state transmission probability of a packet from
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the queue and the expected packet queue delay are decom-
posable into an unperturbed component (i.e., independent
of εs) and a perturbed component expressed in terms of
a higher-order Taylor series expansion (i.e., dependent on
εs). A higher-order Taylor series expansion with a suffi-
ciently large step size n results in significantly small val-
ues of perturbation hence such terms can be neglected.
The first-order Taylor series expansion in terms of the per-
turbation, factor presents a reliable approximation of the
exact steady state probability distribution of the Markov
chain Xs(i, j, εs). �

2.3. Weakly coupled wireless system. In the-
ory, simultaneously transmitting links on different non-
overlapping channels are expected not to conflict with
each other. However, links emanating from the same
node of a multi-radio wireless system do conflict with
each other due to the close separation vicinity. The co-
located wireless multi-radio multi-channel networks do
have negligible interference conflicts but show significant
coupling effects due to the radiated power generated by
sending nodes. The radiated power coupling across multi-
ple channels results in a loss in signal strength due to inter-
channel interference and hence packet losses over multi-
channel wireless links. Packet losses lead to packet re-
transmissions, and hence packet propagation delays along
a link(s). Retransmissions, in turn, lead to a high energy
consumption. In order to take into account the problems
of retransmissions, one can model the cross-channel wire-
less interference (interaction) as a weakly coupled system
(Gajic and Shen, 1993). Each NIC operating on a particu-
lar channel can then select a transmission power level that
depends on a sufficiently small positive parameter denoted
as εw.

In particular, consider a two-dimensional node place-
ment consisting of two collocated wireless channels la-
belled i and j. The channels allow simultaneous radial
transmissions as depicted by Fig. 3. The figure illustrates
two simultaneously collocated transmitting users i and j
described by the pair TXRi − RXRi of infinitesimally
small radiating points and the pair TXRj − RXRj , re-
spectively. Specifically, transmitters i and j are assumed
to radiate signals omni-directionally with radii di and dj

and cause strong inter-channel connections due to their
close vicinity. Here, di refers to the conflict edge from a
sender on channel i to a receiver on channel i, and dj is
the conflict edge from a sender on channel j to a receiver
on channel i. The region denoted by Aε is the weakly cou-
pling region described by di and dj as well as the coupling
beamwidth angles θi and θj in radians.

It should be noted that, since a power coupling is con-
sidered, the weak coupling factor can be derived as a func-
tion of the region or surface Aε, i.e., O(d2

ij), where dij is
the distance between points i and j.

From the geometrical analysis of Fig. 3, it is easy to

iθ

jθ

jd

jd

id

id εΑ

 

Fig. 3. Two realistic geographically neighbouring channels with
two independent users from the same node.

show that the weak coupling parameter is obtained as

εij =
Aεi

Aε
=

d2
i

[
θi − sin θi√

2

]

d2
i

[
θi − sin θi√

2

]
+ d2

j

[
θj − sin θj√

2

]

and

εji =
Aεj

Aε
=

d2
j

[
θj − sin θj√

2

]

d2
i

[
θi − sin θi√

2

]
+ d2

j

[
θj − sin θj√

2

] (14)

Thus, the weakly coupled scalar is generally a func-
tion of the square of the transmission radius and the
coupling-sector angle. That is, the longer the transmission
radius (i.e., range) and the wider the beamwidth (i.e., cou-
pling angle), the stronger the interference coupling and
the higher the transmission power consumption. Conse-
quently, the weak coupling parameter can then be bounded
by 0 < εij = εw < 1. On the other hand, the sectored an-
gle has a bound, 0 ≤ θ ≤ 2π.

In a wireless MRMC power control system one seeks
to find the impact of weakly coupled systems with slow
and fast variables on the optimal selection of the trans-
mission power levels. The obtained optimal power control
solutions are given in terms of a ratio of two small positive
parameters. That is, the notation 0 < ε = εw/εs < ∞ sig-
nifies that the MRMC system is both weakly coupled and
singularly perturbed. If each transmit–receive NIC pair
seeks to obtain a transmission power control signal u∗

l (t)
that drives multiple states of the system to steady states,
then the dynamic power control law for the l-th channel is
(Olwal et al., 2009b; 2009c)

pl(t + 1)

=
{

pl(t) + fl(x) ∀x and 0 < ε = εw/εs < ∞,
0 otherwise,

(15)

where fl(x) = fl(βl(t), Il(t), Γl(t)) denotes a nonlinear
function representing the l-th channel with multiple link
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states. Here, βl(t), Il(t), Γl(t) denote respectively the ac-
tual SINR, the aggregate co-channel network interference,
the link packet rate and the connectivity range during the
time slot t.

It should be noted from (15) that the dynamic power
control in wireless MRMC systems is constrained by sev-
eral complexities such as the high dimension of these
radio-channel pairs and the high order of the state vari-
ables describing the communication performance mea-
sures. Concerning the problem of dimension, the study
can be simplified by decomposing the system into sepa-
rate but interconnected single channels (i.e., each being
a set of subsystems), also known as the Unified Channel
Graphs (UCGs) (Olwal et al., 2009c). Modelling the net-
works into UCGs provides the advantage of utilising de-
centralization techniques (i.e., computationally simple) in
dealing with large-scale systems (Gajic and Shen, 1993).
Consequently, the higher-order state variables are then re-
flected by a wireless interconnection coupling parameter
model (Shen and Gajic, 1990). This motivates us to ex-
ploit such a procedure so as to re-formulate the classical
transmission power control problem for the disjoint UCGs
in terms of Nash equilibrium differential games.

The decision to use game theoretical approaches
is triggered by the fact that, within each UCG, each
user/player desires to minimize interference it causes to
the network, reduce the energy consumption and improve
the network scalability. Also, achieving similar objec-
tives is necessary among different UCGs experiencing
vast wireless channel conditions. Thus, it is imperative
for users to form a coalition of behaviours that ultimately
result in a Nash equilibrium so that optimal solutions be
attained. Although numerous works exist in the literature
that use game theoretical approaches to optimal control
problems (Olwal, 2010), not much research is known that
combines techniques of Singular Perturbation and Weak
Coupling (SPWC) of multi-channel multi-radio networks.
This research gap is the foundation of this contribution.

3. Problem formulation

Consider the SPWC wireless MRMC mesh node with
sender–receiver pairs (subsystems). The decentralised lin-
ear dynamic control system has the form consistent with
both weakly coupled and singularly perturbed systems.
The large-scale linear dynamic system is then written as
(Shen and Gajic, 1990; Sagara et al., 2008; Mukaidani,
2009)

xi(t + 1)
=Aii(ε)xi(t) + Bii(ε)ui(t) + Wii(ε)wi(t)

+
N∑

j=1,j �=i

εijAijxj(t) +
N∑

j=1,j �=i

εijBijuj(t)

+
N∑

j=1,j �=i

εijWijwj(t),

xi(0) = x0
i , i = 1, . . . , N,

yi(t) =Cii(ε)xi(t)
N∑

j=1,j �=i

εijCijxj(t) + vi(t),

(16)

where xi ∈ R
ni represents the state vector of the i-th

MRMC subsystem, ui ∈ R
mi is the control input (that

represents the transmission power sequence constrained
by the maximum power output of the radio device) of the
i-th MRMC subsystem, wi ∈ R

qi represents the zero
mean disturbance noise vector to the i-th MRMC sub-
system, yi ∈ R

ji represents the observed output and
vi ∈ R

li is the zero mean measurement noise vector. The
white noise processes wi ∈ R

qi and vi ∈ R
li are indepen-

dent and mutually uncorrelated with intensities Θw > 0
and Θv > 0, respectively. The coefficient matrices of
Eqn. (16) are evaluated according to our previous work
(Olwal et al., 2009c).

Suppose the partitioned matrices for a wireless
MRMC communication system with 0 < ε = εw/εs < ∞
be defined according to the structure

Aε =

⎡
⎢⎢⎣

A11(ε) ε12A12 · · · ε1NA1N

ε21A21 A22(ε) · · · ε2NA2N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
εN1AN1 εN2AN2 · · · ANN (ε)

⎤
⎥⎥⎦ ,

Biε =

⎡
⎢⎢⎣

ε1−δ1iB1i

ε1−δ2iB2i

.
ε1−δNiBNi

⎤
⎥⎥⎦ ,

δij =
{

0 if i �= j,
1 if i = j,

Wε =

⎡
⎢⎢⎣

W11(ε) ε12W12 · · · ε1NW1N

ε21W21 W22(ε) · · · ε2NW2N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
εN1WN1 εN2WN2 · · · WNN (ε)

⎤
⎥⎥⎦ ,

Cε =

⎡
⎢⎢⎣

C11(ε) ε12C12 · · · ε1NC1N

ε21C21 C22(ε) · · · ε2NC2N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
εN1CN1 εN2CN2 · · · CNN (ε)

⎤
⎥⎥⎦ . (17)

From the structures, it can be discerned that each
strategic user is faced with the minimization problem
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along the trajectories of a linear dynamic system in (16),

Ji(u1, . . . , uN ,w,x(0))

=
1
2
E{ lim

t→∞
1
t

t−1∑
τ=0

[zT (τ)z(τ) + uT
i (τ)Riiui(τ)

+
N∑

j=1,j �=i

εijuT
j (τ)Rijuj(τ) − wt(t)Θwiεw(t)]},

(18)

where z ∈ R
s is the controlled output of the dimension s,

given by (Gajic and Shen, 1993)

zi(t) = Dii(ε) +
N∑

j=1,j �=i

εijDijxj(t) (19)

with

Dε =

⎡
⎢⎢⎣

D11(ε) ε12D12 · · · ε1ND1N

ε21D21 D22(ε) · · · ε2ND2N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
εN1DN1 εN2DN2 · · · DNN (ε)

⎤
⎥⎥⎦ ,

Rii = RT
ii ∈ R

mi×mi being a symmetric posi-
tive definite matrix, Rij = RT

ij ≥ 0 ∈ R
mj×mj ,

symmetric positive semi-definite matrices, Θwiε =
block diag

(
ε
−(1−δi1)
i1 Θwi1 . . . ε

−(1−δiN )
iN ΘwiN

)
≥ 0 ∈

R
q×q, i, j = 1, · · · , N , representing the logical users of

the multi-radio multi-channel system.

3.1. Nash strategies. The optimal solution to the given
problem (18) with the conflict of interest and simultane-
ous decision making leads to the so-called Nash strategies
(Gajic and Shen, 1993) u∗

1, . . . ,u
∗
i , . . . ,u

∗
N satisfying

Ji(u∗
1, . . . ,u

∗
i , . . . ,u

∗
N ,x(0))

≤∀i Ji(u∗
1, · · · ,ui, · · · ,u∗

Nx(0)),

Assumption 1. Each user has optimal closed-loop Nash
strategies given by

u∗
i = −F∗

iεx(t). (20)

Here, F∗
iε is the regulator feedback gain defined as

F∗
iε =

[
ε1−δ1iF1i ε1−δ2iF2i · · · ε1−δNiFNi

] ∈ R
n̄,
(21)

with n̄ =
∑N

i=1 ni, ni being the size of the vector xi.
Define the N -tuple discrete in time Nash strategies

by

u∗
i (t) = −F∗

iεx(t)

= −(Rii + BT
iεPiεBiε)−1BT

iεPiεAεx(t),
i = 1, . . . , N (22)

where (F∗
1ε, . . . ,F

∗
Nε) ∈ FN and N -tuple u∗

i (t) form a
soft constrained Nash equilibrium represented as

Ji(F∗
1εx, . . . ,F∗

Nεx,x(0)) = x(0)T Piεx(0). (23)

Here, Piε is a positive semi-definite stabilizing so-
lution of the Discrete-time Algebraic Regulator Riccati
equation (DARRE) with the following structure:

Piε = PT
iε

=

⎡
⎢⎢⎣

ε1−δi1
i1 Pi1 εi2Pi12 . . . εiNPi1N

εi2PT
i12 ε1−δi2

i2 Pi2 . . . εiNPi2N

. . . . . . . . . . . .
εiNPT

i1N εiNPT
i2N . . . ε1−δiN PiN

⎤
⎥⎥⎦

(24)

where the DARRE is given by

Pε = DT
ε Dε + AT

ε PεAε

− AT
ε PεBε(Rε + BT

ε PεBε)−1BT
ε PεAε

with

R = diag(R1, . . . ,RN).

It is to be noted from the expression of the
DARRE that the inversion of the partitioned matrices
Rε + BT

ε PεBε will produce a lot of terms and make
the DARRE approach computationally very involved,
even though one is faced with the reduced-order nu-
merical problem. This problem is resolved by using a
bilinear transformation to transform the discrete-time
Riccati equations into a continuous-time algebraic Riccati
equation with an equivalent correlation (Shen and Gajic,
1990). The differential game Riccati matrices satisfy the
Singularly perturbed and Weakly coupled continuous in
time Algebraic Regulator Riccati Equation (SWARRE)
(Gajic and Shen, 1993; Sagara et al., 2008; Mukaidani,
2009):

Ωi(P1ε, . . . ,Piε, . . . ,PNε)

= Piε

⎛
⎜⎜⎝Aε −

N∑
j=1
j �=i

SjεPjε

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝Aε −

N∑
j=1
j �=i

SjεPjε

⎞
⎟⎟⎠

T

Piε − PiεSiεPiε

+
N∑

j=1
j �=i

εijPjεSijεPjε + PiεMiεPiε

+ DT
iεDiε = 0,

(25)
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where

Siε = BiεR−1
ii BT

iε, i = 1, . . . , N

Sij = BiεR−1
jj RijR−1

jj BT
jε, i = 1, . . . , N

Miε = WεΘ−1
wiεW

T
ε , i = 1, . . . , N

3.2. Auxiliary SWARRE. Substituting partitioned
matrices Aε,Siε,Sijε,Miε,Diε and Piε into the
SWARRE (25), and letting εw = 0 and any εs �= 0,
and then partitioning the SWARRE (25), we obtain the
following reduced order (auxiliary) algebraic Riccati
equation:

PiiAii + AT
iiPii − Pii(Sii − Mii)Pii + DT

iiDii = 0,
(26)

where Sii = BiiR−1
ii BT

ii, Mii = WiiΘ−1
ii WT

ii and
Pii, i = 1, . . . , N , is the zeroth-order approximation of
Piε when the weakly coupled parameter εw = 0. It should
be noted from (26) that a unique positive semi-definite op-
timal solution P∗

iε exists if the following assumptions are
taken into account.

Assumption 2. The triples Aii, Bii and Dii,
i = 1, . . . , N , are stabilizable and detectable.

Assumption 3. The auxiliary (26) has a positive semidef-
inite stabilizing solution such that Ã = Aii − SiiPii is
stable.

Lemma 4. Under Assumption 3 there exists a small con-
stant ∂∗ such that, for all ε̃(t) ∈ (0, ∂∗), the SWARRE
admits a positive definite solution P∗

iε represented as

Piε = P∗
iε = Pi + O (ε̃(t))

= block diag(0 · · ·Pii · · · 0) + O (ε̃(t))

with i = 1, . . . , N and ε̃(t) = |√εwεs|.

Proof. This can be achieved by showing that the Jacobian
the SWARRE is non-singular at ε̃(t) = 0 and its neigh-
bourhood ε(t) → 0+.

Differentiating Ωi(ε̃(t),P1ε, . . . ,Piε, . . . ,PNε)
with respect to the matrix Piε, we have

Jii =
∂

∂vecPiε
vec Ωi(ε̃(t),P1ε, . . . ,PNε)T

= ΔT
ii ⊗ Ini + Ini ⊗ ΔT

ii,

Jij =
∂

∂vecPij
vecΩi(ε̃(t),P1ε, . . . ,PNε)T

= −(SjεPiε − ε̃ijSijεPjε)T ⊗ Ini

− Ini ⊗ (SjεPiε − ε̃ijSijεPjε)T ,

where i �= j, j = 1, . . . , N , and

Δ = Aε −
N∑

j=1
j �=i

SjεPjε + MiεPiε.

Based on the fact that SjεPiε = O(ε̃(t)) for i �=
j, the Jacobian of the SWARRE with ε̃(t) → 0+ can be
shown to be

Ĵ = block diag (Δi1, . . . , ΔNN ),

J = block diag (Ĵ, . . . , Ĵ).

Since the determinant of Δii = Aii − SiiPii +
MiiPii with ε̃(t) = 0 is non-zero by following assump-
tion 3 for all i = 1, . . . , N , we get det J �= 0, i.e., J is
non-singular for ε̃(t) = 0. As a consequence of the im-
plicit function theorem coined by Jittorntrum (1978), Pii

is a positive definite matrix at ε̃(t) = 0, and for a suffi-
ciently small parameter ε̃(t) ∈ (0, ∂∗) we conclude that
Piε = Pii + O(ε̃(t)) is also a positive definite solution.

�
The high-order Nash equilibrium strategy for sign-

indefinite linear quadratic games is then obtained from the
iterative solution given by

u(k)∗
i (t) = − R−1

ii BT
iεP

(k)
iε x(t),

i = 1, . . . , N, k = 0, 1, 2, . . . ,

where u∗
i = u(k)∗

i + O(ε̃) and k is an iteration step. The
optimal u∗

i (t) is added to the power law pi(t + 1) equa-
tion (15) such that

∑N
i=1 pi(t + 1) ≤ P tot

probe. Notation
N denotes the number of all users whose operations are
managed by a single MRMC node and P tot

probe denotes the
total channel probe power level which a node uses to up-
per bound greedy strategies.

4. Decentralised power control algorithm

Table 2 summarises the singularly perturbed and weakly
coupled power control algorithm derived from useful re-
sults discussed in Sections 2 and 3 for each transmit-
ting link of a multi-radio multi-channel backbone net-
work. The algorithm considers message exchanges be-
tween transparent (i.e., same frequency channel) and im-
mediate (i.e., in the vicinity) neighbours with low proto-
col overheads since no knowledge of the global topology
is needed for its optimality. Moreover, a Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA)
medium access control scheme is utilised in order to
schedule each transmission session randomly. In this
scheme only actively transmitting links perform the power
control algorithm in a randomly chosen time interval.
Nodes cooperate with each other to forward packets from
one node to another separated by many hops. The ulti-
mate benefit derived from cooperation among the nodes is
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Table 2. Summarised power control algorithm.
Step number Action of each link and mathematical representation

0 At t = t0, ∀ t0 ≤ t ≤ Packet transmission interval

1 Each node computes
εs from Eqns. (4), (5) and (7)
εw from Eqn. (14)
Nash equilibrium strategy for all links emanating from that node:
u∗

i (t0) = u
(k)∗
i + O (ε̃) , ∀k ∈ {0, 1, . . .}

2 Each node checks if the total power constraint is satisfied for all transmitting links originating
from it:∑N

i=1 pi (t0) ≤ ptotal
probe, where

N is the number of transmitting links connected to a node
3 Each link i sets its power to the initial arbitrary value:

pi (t0) = p0, ∀i ∈ {1, . . . , N}
4 Otherwise
5 At t ≥ 0, each link i adjusts the transmission power level according to the policy:

pi (t+ 1) = pi (t) + u∗
i (t)

6 Each link i sends pending DATA packets to its neighbouring destination at optimal power level
denoted as p∗i

7 If transmission, successful then link i waits for the next packet arrival
8 Else link i returns to perform Step 2

that a lower transmission power level can be selected and
a higher spatial reuse can be achieved.

5. Numerical examples

The efficiency of the proposed model was studied us-
ing numerical examples computed in the MATLAB en-
vironment. MATLAB allows matrix manipulations and
implementation of the queue-perturbed and weakly cou-
pled power control algorithm in real Multi-Radio Multi-
Channel Wireless Networks. Furthermore, the MRMC
WMNs considered could conveniently be modelled as a
large-scale control system. In this case, decentralised ar-
chitectures were exploited in order to minimise computa-
tional complexity of the large network while still achiev-
ing the desired study objectives. In particular, 5 to 50
wireless nodes were randomly placed in a 1200 m ×
1200 m region. Such a node placement scenario could
allow possible multi-hop communication through coop-
erative forwarding of packets between randomly chosen
source–destination pairs. Multi-hop communications en-
sured that a signal propagates over shorter wireless links
between neighbouring nodes and, as a result, transmission
power levels can significantly be reduced. Furthermore,
effects of different node densities and interference on the
convergence rate of the proposed power control could be
studied numerically.

For simplicity, we assumed that each node had four
Network Interface Cards (NICs) or radios installed and
each radio was tuned to separate a non-overlapping Uni-
fied Channel Graph (UCG) as shown in Fig. 4. Such
configurations were chosen in order to emulate weak cou-
pling (a measure of a low interference level) among non-

overlapping frequency channels and multiple queue per-
turbation between energy consumption and queue con-
tents at a given transmission time (see Section 2). How-
ever, since radios on the same node happened to be closely
seperated, their full duplex communication could cause
inter-channel interference leading to packet drops and re-
transmissions at the expense of an extra energy consump-
tion. Moreover, we utilised the ISM carrier frequency
band of 2.427–2.472 GHz with the bandwidth of 10 MHz
per frequency channel. Consequently, Fig. 4 illustrates
a typical wireless MRMC network scenario with four
nodes.

Fig. 4. Multi-radio multi-channel wireless communication net-
work.

Each node has four NICs that can operate simulta-
neously in four disjoint channels (or UCGs). Node A
reaches Node B and D via one hop and it reaches C
via two hops (i.e., through Node B) or three hops (i.e.,
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through Nodes D and B). For example, NIC (radio) B1
has transparent neighbours: {A1, C1, D1}, radio B2 has
transparent neighbours: {A2, C2, D2} and radio B3 has
transparent neighbours: {A3, C3, D3}. Radio A1 can
communicate with radio B1 if tuned to UCG#1 during the
current timeslot and radio B1 can relay the traffic of radio
A1 to radio C1 if both are switched to UCG#1 during the
next timeslot. In order to focus our contribution, the dis-
cussion is limited to communication among transparent
and immediate neighbours (decentralised model). Con-
sequently, aware of the queue system perturbation prob-
lem and cross-channel interference coupling influence,
each radio pair (user) optimizes transmission power levels
while the link layer manages fairness in energy resource
allocation (Olwal et al., 2009b).

5.1. Singular perturbation performance. Through a
numerical example, an average transmission probability
and a queue delay plotted against the packet arrival proba-
bility given a known level of the buffer size and transmis-
sion energy availability are obtained in Fig. 5. The reason
for such performance metrics is to assess the effects of
queue perturbation and delay on optimal power control in
an MRMC node. The intuitive explanation is as follows:
As packets arrive at the queues, the probability of trans-
mitting a packet slightly increases but it is inversely pro-
portional to the system perturbation. A highly perturbed
queue system results in packet drops, and hence losses.

The slowly rising exponential delay behaviour versus
packet arrivals under the influence of system perturbation
suggests buffer overflows, and consequently undesirable
queue delays. Figure 6 illustrates energy levels and the
buffer size in order to have a lower bound transmission
probability. The plotted levels are considered with differ-
ent perturbations. For each value of the lower bound and a
singular perturbation factor, the transmission energy level
and the buffer size are determined such that the transmis-
sion probability should be no less than the lower bound
transmission probability.

5.2. Parameter specifications. Given static backbone
wireless nodes and allowing each multi-radio node to send
the queue traffic to its target receivers (neighbours), the
channel state coefficient matrices in (17) can be gener-
ated. In order to address a low computational complexity
problem, the number of active neighbouring nodes was
assumed to be at most five. The assumption is reason-
able considering a typical deployment scenario of a back-
bone wireless mesh network. Moreover, due to space con-
straints regarding large dimensions of matrices, each node
was taken to be having at least two radios: one for access-
ing the network and the other for routing backhaul traffic
or, alternatively, both radios could be used at the back-
haul for increasing the backhaul capacity. It should be
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Fig. 5. Average transmission probability and delay vs. arrival
probability in different singular perturbations. Buffer
size B = 20. Available energy levels for packet trans-
mission E = 2. Service probability ϕ1 = 1, ϕ2 = 0.2
and arrival probability φ = 0.6. Energy transition pro-
cess λ11 = 0.3 and λ22 = 0.5. Probability distribu-
tion of the aggregated Markov chain Λ1, V1 = 2/7 and
V2 = 5/7.
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Fig. 6. Average energy and buffer levels vs. lower transmission
probability in different singular perturbations. The aver-
age energy and the buffer size per network interface card
needed to ensure a transmission probability of no less
than the lower bound prl, φ = 0.6, ϕ1 = 1, ϕ2 = 0.2,
λ11 = 0.3, λ22 = 0.4, λ33 = · · · = λE = 0.1
and E = 1. Probability distribution of the aggregated
Markov chain Λ1, V1 = · · · = VE = 1/7.

noted that such assumptions could still allow us to investi-
gate effects of singular perturbation and weak coupling (in
MRMC nodes) behaviours on the adjustment of the trans-
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mission power levels. Thus, other simulation parameters
were numerically specified as follows:

B11 = [0.1 0.59 0 1]T , B11 = [0 0.001 0 0.002]T ,

B21 = [0 0.059 0 0.095]T , B22 = [0.01 4 0 0.002]T ,

Θii = diag (0.9 0.9 0.9 0.9),

Θ1 = block diag (Θii ε−1
w I4×4),

D1 = block diag (0.5I4×4 O4×4),
D2 = block diag (O4×4 0.5I4×4),
R12 = R21 = 0.1,

εw = 0.01, εs = 0.001.

The above parameters were used to evaluate the per-
formance of the proposed power control method in terms
of stability and the rate of convergence. For a given
node density, each transmitter–receiver pair (user) at a
given transmission time t was assumed to communicate
its pending packets using an initially selected transmis-
sion power level, p0. The stability and convergence of an-
alytical results derived in Section 3.2 (i.e., the auxilliary
SWARRE) and using the power control algorithm in Sec-
tion 4 were then recorded. The simulation time was as-
sumed long enough (i.e., 60 seconds) for the output statis-
tics to stabilize. Each datum point obtained was a result of
the average of all data points observed over all node den-
sities tried. The reason behind this decision was to show
that, regardless of the network size, the decentralised ap-
proach does not degrade the power control performance
of the network.

5.3. System stabilizing solutions. The SWARRE so-
lution P(8)∗

iε and the corresponding feedback matrices are

F(8)∗
iε given as in Tables 3 and 4, respectively. Close ex-

amination of the P(8)∗
iε matrices reveals an 8 × 8 positive

semi-definite stabilizing solution to the system matrices
Aii, Bii and Dii in accordance with Assumption 2 such
that the stability condition of Assumption 3 is satisfied.
That is, the matrix Aii − SiiPii has eigenvalues strictly
negative real parts.

The high-order approximate soft-constrained Nash
strategies (27) are given by u(8)∗

i (t) = −F(8)∗
iε x(t),

i = 1, 2, with F(8)∗
1ε and F(8)∗

2ε also given numerically
from the SWARREs as shown in Table 4.

5.4. Objective function performance. The high-order
soft constrained Nash strategy (approximation) and the
zero-order (optimal) cost functions are respectively com-

puted as follows:

J∗
i, approx = Ji(u

(8)∗
1 , . . . ,u(8)∗

N ,x(0))

= x(0)T P(8)∗
iε x(0),

J∗
i, opt = Ji(u∗

1, . . . ,u
∗
N ,x(0)) = x(0)T P(8)∗

iε x(0),
(27)

where i = 1, 2 for N = 2. The initial state vector x(0) is
chosen to be x(0) = [1 1 1 1 1 1 1 1]T .

The cost function (27) and the degradation for the
subsystem 1 are given in Table 5. The table illustrates that
the cost function deviation at the eighth iteration yields an
accuracy of

‖J∗
1, opt − J∗

1, approx‖ < 7.294787e−11.

This observation confirms that the proposed model
converges practically to the exact solution. Furthermore,
at the systems convergence point it can be shown that the
cost functional to the SPWC ratio is very large, i.e., ζi ≥
7.294787e+247 , for all i = 1, 2, . . . , N , where

ζi =
|J∗

1, opt − J∗
1, approx|

ε̃2k+1

is the cost functional to SPWC ratio.
Figure 7 illustrates how the system cost functions

converges exponentially fast. This fast response implies
that the SWARRE solution can be obtained relatively fast
if both system perturbation and inter channel interference
information can be known. The wireless MRMC system
states can be fast tracked to steady state solutions. The
driving input control signal for power control is given by
Fig. 8. For the dual radio system from Fig. 4, the input
control signal convergences rapidly as shown in Fig. 8,
and therefore the total CPU time can be saved signifi-
cantly.

6. Conclusion

In this paper, SPWC model based power control in back-
bone wireless networks with MRMC configuration was
discussed. First, the power control problem was assumed
to be dependent on the queue perturbations due to the
transmission energy level and buffer sizes. Consequently,
a sufficiently small singular perturbation parameter was
derived from the first-order Taylor series of the probability
distribution of the two dimensional Markov chain. Sec-
ond, interference across disjoint frequency channels was
estimated via the geometry of signal radiation. The over-
lapping region between two separate channels was termed
the estimate of the sufficiently small weak coupling pa-
rameter εw. Third, differential Nash games were used to
determine the optimal power control signal of each wire-
less link. The simulation results for a numerical example
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Table 3. Numerical values for the decomposed SWARRE.
P

(8)∗
1ε 5.6703 0.0408 -0.1739 -0.0155 0.0062 0.0004 0.0038 0.0003

0.0408 0.5431 0.0299 -0.0147 -0.0004 0.0007 -0.0003 0.0004
-0.1739 0.0299 2.4611 0.0301 -0.0141 -0.0008 -0.0007 0.0002
-0.0155 -0.0147 0.0301 0.1302 -0.0002 -0.0003 -0.0001 -0.0001
0.0062 -0.0004 -0.0141 -0.0002 0.2368 0.0054 -0.0027 0.0001
0.0004 0.0007 -0.0008 -0.0003 0.0054 0.0212 -0.0001 -0.0002
0.0038 -0.0003 -0.0007 -0.0001 -0.0027 -0.0001 0.2488 0.0031
0.0003 0.0004 0.0002 -0.0001 0.0001 -0.0002 0.0031 0.0132

P
(8)∗
2ε 2.3676 0.0537 -0.0267 0.0013 0.0062 0.0004 0.0038 0.0003

0.0537 0.2116 -0.0012 -0.0022 -0.0004 0.0007 -0.0003 0.0004
-0.0267 -0.0012 2.4880 0.0314 -0.0141 -0.0008 -0.0007 0.0002
0.0013 -0.0022 0.0314 0.1321 -0.0002 -0.0003 -0.0001 -0.0001
0.0062 -0.0004 -0.0141 -0.0002 0.2368 0.0054 -0.0027 0.0001
0.0004 0.0007 -0.0008 -0.0003 0.0054 0.0212 -0.0001 -0.0002
0.0038 -0.0003 -0.0007 -0.0001 -0.0027 -0.0001 0.2488 0.0031
0.0003 0.0004 0.0002 -0.0001 0.0001 -0.0002 0.0031 0.0132

Table 4. Near optimal (approx) regulator feedback values.
F

(8)∗
1ε -0.5755 -0.3086 0.0303 -0.1200 -0.0002 -0.0003 -0.0001 -0.0003

F
(8)∗
2ε -0.2386 -0.8470 0.0049 0.0088 0.0014 -0.0029 0.0013 -0.0016

Table 5. Cost function and degradation performance.
k J∗

1, opt J
(k)∗
1, approx |J∗

1, opt − J
(k)∗
1, approx| ζ1

1 2.079347e+001 2.082221e+001 2.874104e-002 2.874104e+001
2 2.079347e+001 2.079944e+001 5.971379e-003 5.971379e+002
3 2.079347e+001 2.079371e+001 2.336666e-004 2.336666e+005
4 2.079347e+001 2.079348e+001 2.324894e-006 2.324894e+011
5 2.079347e+001 2.079347e+001 6.377017e-008 6.377017e+025
6 2.079347e+001 2.079347e+001 1.048373e-008 1.048373e+121
7 2.079347e+001 2.079347e+001 1.048373e-008 1.048373e+121
8 2.079347e+001 2.079347e+001 7.294787e-011 7.294787e+246
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Fig. 7. Cost function performance.
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showed performance improvement in terms of the conver-
gence of the proposed power control method and the ef-
ficacy of the analytical model to decentralised backbone
wireless networks.

The benefits achieved in this study include the char-
acterization of the multi-radio multi-channel node net-
work in terms of the singular perturbation and weak cou-
pling behaviours that inherently cause energy consump-
tion and yet have not been considered in the recent re-
search endeavours. In addition, an improved power con-
trol performance was noted regardless of the network
scale and density. However, the constraint of the model is
that, as the dimension of MRMC configuration increases,
the computation complexity consumes the CPU energy. In
an attempt to overcome this constraint, this work demon-
strated exponential convergence rates of power control. It
should also be noted that this approach modelled a weakly
coupled system using omni-directional radiation patterns.
This was to mimic a mesh connectivity (i.e., redundancy)
advantage as well as a worst case spatial reuse situation in
backbone networks.

In practice, directional antennas with high gains and
narrow beamwidths are currently being employed in back-
haul mesh networks. However, switching and beam steer-
ing mechanisms implemented with directional antennas
do come with high cost of latency in the network (Rama-
murthi et al., 2008). Moreover, our approach would still
apply in this set-up to resolve energy consumption prob-
lems stemming from multiple queues and undesired an-
tenna side lobes. The method is also applicable in several
commercially available wireless devices. Possible stan-
dards include IEEE 802.11a,b,g/n, IEEE 802.16 WiMAX,
LTE and their heterogeneous versions in which MIMO
techniques have been exploited in order to improve back-
haul network capacity. Future work will demonstrate the
effects of this new power control approach and routing on
energy efficiency and network capacity.

Acknowledgment

The authors wish to thank the CSIR Meraka Institute
and the Tshwane University of Technology for research
grants. Appreciation goes to anonymous reviewers whose
useful inputs helped to improve the quality of the paper.

References
Adisehu, H. and Parulkar, G. and Varghes, G. (1996). A reliable

and scalable striping protocol, IEEE Signal Communica-
tion (SIGCOMM) 43(1):123–134.

Arora, A. and Krunz, M. (2007). Power controlled MAC for ad
hoc networks with directional antennas, Elsevier Ad Hoc
Networks 5(2): 145–161.

Avrachenkov, K.E. (1999). Analytic Perturbation Theory and Its
Applications, Ph.D. thesis, University of South Australia,
Adelaide.

Bruno, R., Conti, M. and Gregori, E. (2005). Mesh networks:
Commodity multi-hop ad hoc networks, IEEE Communi-
cations Magazine 43(3): 123–134.

Chen, L., Zhang, Q., Li, M. and Jia, W. (2007). Joint topology
control and routing in IEEE 802.11 based multiradio mul-
tichannel mesh networks, IEEE Transactions on Vehicular
Technology 56(5): 3123–3136.
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