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In this paper, we deal with a system of integral algebraic equations of the Hessenberg type. Using a new index definition,
the existence and uniqueness of a solution to this system are studied. The well-known piecewise continuous collocation
methods are used to solve this system numerically, and the convergence properties of the perturbed piecewise continuous
collocation methods are investigated to obtain the order of convergence for the given numerical methods. Finally, some
numerical experiments are provided to support the theoretical results.
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1. Introduction

Integral Algebraic Equations (IAEs) are not as well known
as integral equations or Differential Algebraic Equations
(DAEs). But there are some major reasons that make
their investigation important. One of these is that a DAE
problem can be considered an IAE problem. The second
one is that IAEs are more general than integral equations
of the first and second kinds and so on.

Here we consider an IAE of the form

A(t)y(t) +
∫ t

0

k(t, s)y(s) ds = f(t),

t ∈ I := [0, T ], (1)

where A ∈ C(I, Rr×r), f ∈ C(I, Rr) and k ∈
C(D, Rr×r) with D := {(t, s) : 0 ≤ s ≤ t ≤ T }.
If A(t) is a nonsingular matrix for all t ∈ I, then
multiplying (1) by A−1 changes it to a system of Volterra
integral equations of the second kind, whose theoretical
and numerical analysis has been already investigated (see,
e.g., Atkinson, 2001; Hochstadt, 1973; Bandrowski et al.,
2010; Saeedi et al., 2011). If A(t) is a singular matrix
with constant rank for all t ∈ I, then the system (1) will be
an IAE or a singular system of Volterra integral equations
of the fourth kind, and if A(t) is a singular matrix with
constant rank for some t ∈ I, then the system (1) will be a
singular system of Volterra integral equations of the third
kind or weakly singular Volterra integral equations.

In this paper, we confine ourselves to a study of
integral algebraic equations of the Hessenberg type:

⎡
⎢⎢⎢⎣

A1,1(t) . . . A1,ν−1(t) 0
...

. . .
...

...
Aν−1,1(t) . . . 0 0

0 . . . 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y1(t)
y2(t)

...
yν(t)

⎤
⎥⎥⎥⎦

+
∫ t

0

⎡
⎢⎢⎢⎣

k1,1(t, s) k1,2(t, s) . . . k1,ν(t, s)
...

...
. . .

...
kν−1,1(t, s) kν−1,2(t, s) . . . 0
kν,1(t, s) 0 . . . 0

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

y1(s)
y2(s)

...
yν(s)

⎤
⎥⎥⎥⎦ ds =

⎡
⎢⎢⎢⎣

f1(t)
f2(t)

...
fν(t)

⎤
⎥⎥⎥⎦ , (2)

where
∏ν−1

i=1 Ai,ν−i and
∏ν

i=1 ki,ν+1−i(t, t) are assumed
to be invertible and Ai,j , ki,j(t, t) and fj(t) are matrix
functions of sizes ri × rj , ri × rj and ri × 1, respectively,
with r = r1 + . . . + rν , ri = rν+1−i and ri = rν−i,
i = 1, . . . , ν − 1, which imply r1 = r2 = . . . = rν .
Hence, we use the symbol r for the size of a system and
the symbol r1 instead of ri for i = 1, . . . , ν. For the sake
of simplicity, we consider the following system of Volterra
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integral equations of the first kind for ν = 1:
∫ t

0

k1,1(t, s)y1(s) ds = f1(t),

and we suppose that k1,1 is an invertible r × r
matrix-valued.

There are different notions of index for classification
of IAEs. For example, Gear (1990) introduced a
differential index for IAEs. The left index for (1)
is another notion that was used firstly by Russian
mathematicians (Bulatov, 1994; Chistyakov, 1996). For
the ‘degree’ of ill-posedness, Lamm (2005) as well as
Lamm and Scofield (2000) introduced ‘v-smoothing’ for
Volterra integral equations of the first kind, which is
equivalent with a differential index. The tractable index
1 and 2 problems are defined respectively by Brunner
(2004) and Hadizadeh et al. (2011).

Piecewise polynomial collocation methods are
popular methods for solving various types of operator
equations, such as integral, differential and partial
differential equations. From many existing papers on
this subject, those which are close to our study the ones
by Brunner (2004; 1978; 1977), De Hoog and Weiss
(1973a; 1973b), Kauthen and Brunner (1997), as well
as Weiss (1972). Piecewise (discontinuous) polynomial
collocation methods for IAEs with differential index 1 of
the form

y(t)+K11y(t) + K12z(t)= q1(t), (3)

K21y(t) + K22z(t)= q2(t), (4)

where Ki,jy(t) =
∫ t

0
kij(t, s)y(s) ds for i, j ∈ {1, 2}

with det kij �= 0, were investigated by Kauthen (1997;
2001). He showed that the order of the error for these
methods is m and m − 1 if the stability function

R(∞) = (−1)m
m∏

i=1

1 − ci

ci

respectively satisfies the condition R(∞) ∈ [−1, 1)
and R(∞) = 1, where ci, i = 1, . . . , m, are the
collocation parameters. The paper deals with application
of the piecewise polynomial collocation method to higher
index IAEs of Hessenberg form, since there are fewer
investigations on these equations and their analysis is not
as easy as that of index one IAEs.

The paper is organized as follows. In Section 2,
we introduce a new definition based on the left index.
In Section 3, we recall application of the piecewise
polynomial collocation method for the system (1).
In Section 4, we introduce generalized difference
inequalities for supporting our analysis. In Section 5,
a global convergence theorem is proved which implies
the convergent properties of the given methods for the
research problem given by Brunner (2004, p. 499). In

Section 6, we extend the results to the nonlinear case.
Finally, in Section 7, we illustrate the obtained results by
numerical experiment.

2. Existence and uniqueness of the solution

The existence and uniqueness theorems for the solution of
IAEs depend on the definitions of the index. One of the
definitions for the index of IAE, was introduced by Gear
using index reduction procedure (Gear, 1990).

Definition 1. The differential index of the system (1) is
m (indd = m), if m is the minimum possible number of
differentiatons of (1) required to obtain a system Volterra
integral equations of the second kind.

By accepting this definition, in order to find the index
of a given IAE, we must use a new proof associated
with it. So there may exist different concepts of the
index which are well formulated and working with them
is simple. The left regularization index is one of them that
was introduced by Bulatov and his collaborators (Bulatov,
2002; 1994; Chistyakov, 1996).

This definition and related powerful theorems make
the investigation of existence and uniqueness results for
solutions of IAEs comfortable. It is clear that for each IAE
of the left index m we have indd = m, but its converse
has not been investigated yet.

Definition 2. (Chistyakov, 1987) The matrix pencil
λA(t)+ k(t, t) satisfies the ‘rank-degree’ criterion on the
interval I, if rankA(t) = deg det(λA(t) + k(t, t)) =
const> 0, for all t ∈ I.

The following conditions are necessary and sufficient
for the existence of a semi-inverse matrix A−(t) with
elements in Cp(I, Rr×r) (Chistyakov, 1996):

1. the elements of A(t) belong to Cp(I, Rr×r),

2. rankA(t) = const, ∀t ∈ I.

Definition 3. Suppose that A ∈ Cν(I, Rr×r) and k ∈
Cν(D, Rr×r). Let

A0 ≡ A, k0 ≡ k, ki+1 = Λiki,

Λiy =
d
dt

(
(E − Ai(t)A−

i (t))y
)

+ y,

Ai+1 ≡ Ai + (E − Ai(t)A−
i (t))ki(t, t).

Then we say that the ‘rank degree’ index of A, k is ν if

rankAi(t) = const, ∀t ∈ I for i = 0, . . . , ν,

detAi = 0, for i = 0, . . . , ν − 1, detAν �= 0.

Moreover, we say that the ‘rank degree’ index of the
system (1) is ν (indr = ν) if, in addition to the above
hypotheses, we have f ∈ Cν(I, Rr) and

Fi+1 ≡ ΛiFi, F0 ≡ f,

where E is an identity operator.
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Lemma 1. (Bulatov, 2002) Let rankA(t) = const, ∀t ∈ I
and the elements of A(t) are in Cp(I, Rr×r). Then the
initial value problem

(E − AA−)x(t)(p) + x(t) = 0,

x(0) = x′(0) = . . . = x(p−1)(0) = 0, t ∈ I,

has only a trivial solution.

Now we can state the following uniqueness and
existence theorem for higher index IAEs.

Theorem 1. Suppose the following conditions are satis-
fied for (1):

1. indr = ν ≥ 1,

2. A(t) ∈ Cν(I, Rr×r), f(t) ∈ Cν(I, Rr) and
∂ik(t,s)

∂ti ∈ C(D, Rr×r), for i = 1, . . . , ν,

3. Ai(0)y(0) = Fi(0), for i = 0, . . . , ν − 1 (consis-
tency conditions).

Then the system (1) has a unique solution on I.

Proof. The proof is based on the fact that the systems

Ai(t)y(t) +
∫ t

0

ki(t, s)y(s) ds = Fi(t), (5)

t ∈ I := [0, T ], i = 0, . . . , ν,

are equivalent (i.e., every solution of the system i + 1 is a
solution of the system i and vice versa, if the consistency
conditions were satisfied). To prove this assertion, let y be
a solution of the system i and apply the operator Λi on the
system i. Then the system i + 1 will be obtained. Hence
y is a solution of the system i + 1. Conversely, let y be a
solution of system i + 1, and define

Dix = Ai(t)x(t) +
∫ t

0

ki(t, s)x(s) ds − Fi(t).

Then

d
(
(E − Ai(t)A−

i (t))Diy
)

dt
+ Diy = 0,

Diy(0) = Ai(0)y(0) − F (0) = 0.

Because y is a solution of system i + 1, from Lemma 1,
we conclude that Diy = 0. Since the final system is a
Volterra integral one of the second kind, it has a unique
solution. Therefore, a unique solution satisfies all systems
in (5). �

We need to check whether or not the matrix Aν is
invertible. To this end, we use the following lemma.

Lemma 2. (Bulatov, 1994) Let the matrix pencil λA(t)+
k(t, t) satisfy the ‘rank-degree’ criterion on the interval I.
Then

det (A(t) + V (t)k(t, t)) �= 0, ∀t ∈ I,

and

det (A(t) + V (t)(A′(t) + k(t, t))) �= 0, ∀t ∈ I,

where V (t) = E − A(t)A−(t).
To prove the existence of the solution for the

system (2), it is enough to show that its index is ν, and
the consistency conditions hold. The proof is given in
Appendix.

3. Collocation method for IAEs

The contents of this section is recalled after Brunner
(2004). Let

Ih := {tn : 0 = t0 < t1 < · · · < tN = T }
be a given (not necessarily uniform) partition of I, and set
σn := (tn, tn+1], σn := [tn, tn+1], with hn = tn+1 −
tn (n = 0, 1, . . . , N − 1) and diameter h = max{hn :
0 ≤ n ≤ N}. Each component of the solution of (1)
is approximated by elements of the piecewise polynomial
space

S
(0)
m (Ih) := {v ∈ C(I) :

v|σn
∈ πm(n = 0, 1, . . . , N − 1)}, (6)

where πm denotes the space of all (real valued)
polynomials of degree not exceeding m. A collocation

solution uh ∈
(

S
(0)
m (Ih)

)r

for (1) is defined by the

equation

A(t)uh(t) +
∫ t

0

k(t, s)uh(s) ds = f(t), (7)

for t ∈ Xh = {tn,i := tn + cihn : 0 = c0 < c1 < . . . <
cm ≤ 1, n = 0, · · · , N −1} and the continuity conditions

un−1(tn) = un(tn), n = 1, . . . , N − 1. (8)

The collocation parameters ci completely determine
the set of collocation points Xh. By defining un =
uh|σn ∈ (πm)r, we have

un(tn + shn) =
m∑

j=0

Lj(s)Un,j , s ∈ (0, 1], (9)

Un,i := u(tn,i),

where

Lj(v) :=
m∏

k=0
k �=j

v − ck

cj − ck
, j = 0, . . . , m,
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denote the Lagrange fundamental polynomials with
respect to the distinct collocation parameters ci. By
partitioning the domain of integral in (7) and changing the
variables, we have

f(tn,i) =A(tn,i)Un,i + Fn,i

+ h

∫ ci

0

k(tn,i, tn + shn)un(tn + shn) ds,

(10)

where the lag terms are defined by

Fn,i = h

n−1∑
l=0

∫ 1

0

k(tn,i, tl + shl)ul(tl + shl) ds.

Substituting from (9) in (10), for i = 1, . . . , m and
using the continuity conditions (8), we obtain the rm×rm
system

A(tn,i)Un,i + h

m∑
j=1

ci∫

0

k(tn,i, tn + shn)Lj(s) dsUn,j

= − h

∫ ci

0

k(tn,i, tn + shn)L0(s) ds Un−1(tn)

− Fn,i + f(tn,i),
(11)

with

Fn,i = h

n−1∑
l=0

m∑
j=1

(∫ 1

0

k(tn,i, tl + shl)Lj(s) ds Ul,j

+
∫ 1

0

k(tn,i, tl + shl)L0(s) ds Ul−1(tl)
)

.

(12)

By solving the system (11), the approximate solution
of (1) is determined at the collocation points and tn+1 by

un(tn+1) = L0(1)un−1(tn) +
m∑

j=1

Lj(1)un(tn,j).

Remark 1. To apply this method, it is necessary to
compute the integrals appearing in (11) and (12). To do
this, we apply the following quadrature rule by using the
same collocation parameters ci, i = 0, . . . , m, such that
the order of the quadrature rule is at least the same order
of the method

(O(hm+1)
)
,

∫ ci

0

k(tn,i, tn + shn)Lj(s) ds 	 ai,jk(tn,i, tn + cjhn),

∫ 1

0

k(tn,i, tl + shl)Lj(s) ds 	 bjk(tn,i, tl + cjhl),

with ai,j =
∫ ci

0
Lj(t) dt and bj =

∫ 1

0
Lj(t) dt. Using this

quadrature rule considerably simplifies our computations.
When all the integrals are computed by the quadrature
rule, the method is called fully discretised.

Remark 2. Choosing cm = 1, we have tn+1 = tn,m

and u(tn+1) = u(tn,m). Thus we obtain un+1 =
Un,m without reusing (9). This also makes the analysis
of existence and uniqueness of the approximate solution
simple, which will be discussed in the next section.

Some existence and uniqueness conditions for the
solution of continuous collocation methods can be found
in the work of Brunner (2004).

4. Difference inequalities

Firstly, we recall the following lemmas. Note that we
write v = O(hm) whenever ‖v‖ = O(hm).

Lemma 3. (Gronwall’s inequality (Brunner, 2004)) As-
sume that {kj}, (j ≥ 0) is a given non-negative sequence,
and the sequence {εn} satisfies ε0 ≤ ρ0 and

εn ≤ ρ0 +
n−1∑
j=0

qj +
n−1∑
j=0

kjεj

with ρ0 ≥ 0, qj ≥ 0, (j ≥ 0). Then

εn ≤
⎛
⎝ρ0 +

n−1∑
j=0

qj

⎞
⎠ exp

⎛
⎝n−1∑

j=0

kj

⎞
⎠ .

Lemma 4. Let Bj , j ≥ 0, be a uniformly bounded se-
quence of υ × υ matrices, M = diag(λ1, . . . , λυ) and
λ = maxi |λi|. Let also {En} be a set of vectors with

E0 = O(hu1 )

and

En ≤ MEn−1+h

n−1∑
l=0

BlEl+O(hu2 ), n = 1, . . . , N.

(13)
Then

lim
N→∞

Nh=const

‖EN‖ = ∞

for λ > 1, and

lim
N→∞

Nh=const

‖EN‖ ≤ O(hmin{u1,u2}) (14)

for λi ∈ [−1, 1), i = 1, . . . , υ.

Proof. The proof can be derived easily by using
Gronwall’s inequality. �

5. Convergence analysis

Before stating the convergence properties of continuous
collocation methods, we investigate the convergence
properties of perturbed continuous collocation methods
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for a System of First kind Volterra Integral Equations
(SFVIE). The proof of Theorem 2 in this section is similar
to the standard technique introduced by De Hoog and
Weiss (1973a; 1973b), Brunner (1978; 1977), as well as
Kauthen and Brunner (1997). An excellent book for this
technique is the one by Brunner (2004). However, for
the convenience of the readers and self-dependency of the
paper, we give the proofs of all theorems in detail.

Consider the SFVIE∫ t

0

k(t, s)y(s) ds = f(t), (15)

where k(t, t) is an invertible r × r matrix for all t ∈ I .
We analyze the convergence properties of the perturbed
continuous spline collocation method. For solving the
SFVIE, we perturb the system (11) as

h

m∑
j=1

∫ ci

0

k(tn,i, tn + shn)Lj(s) ds Un,j

= − h

∫ ci

0

k(tn,i, tn + shn)L0(s) ds Un−1(tn)

− Fn,i + f(tn,i) + δ(h, n, i),
(16)

where

Fn,i =h
n−1∑
l=0

m∑
j=1

(∫ 1

0

k(tn,i, tl + shl)Lj(s) ds Ul,j

+
∫ 1

0

k(tn,i, tl + shl)L0(s) ds Ul−1(tl)
)

(17)

with
F0,i = 0.

Here, the perturbed term δ(h, n, i) only depends on h and
tn,i, and it is of order O(hm1).

Theorem 2. Let

f(t) ∈ Cm+2(I, Rr),
∂ik(t, s)

∂ti
∈ C(D, Rr×r)

for i = 1, . . . , m + 1, satisfy the system (15). Then
the approximate solution uh of the perturbed continuous
collocation method with distinct collocation parameters
c1, . . . , cm ∈ (0, 1] and cm ≤ 1 (if exists) converges to
the solution y for any m ≥ 2 if and only if

� = max{|λ1|, |λ2|} ≤ 1,

where λ1 and λ2 are the eigenvalues of the matrix Ã−1B
with

Ã =

⎛
⎜⎜⎜⎝

1 0 . . . 0
a10 a11 . . . a11

...
...

. . .
...

am0 am1 . . . amm

⎞
⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎝

L0(1) L1(1) . . . Lm(1)
am0 − b0 am1 − b1 . . . amm − bm

...
...

. . .
...

am0 − b0 am1 − b1 . . . amm − bm

⎞
⎟⎟⎟⎠ ,

and the collocation error satisfies

‖y − uh‖

≤
{ O(hmin{m1−1,m+1}) if λ1, λ2 ∈ [−1, 1),

O(hmin{m1−2,m}) if λ1 = 1 or λ2 = 1.

Remark 3. The eigenvalues λ1 and λ2 can be computed
by

λ1 =
1
2

(
tr(Ã−1B) +

√
(tr(Ã−1B))2 − 4(L0(1))2

)
,

(18)

λ2 =
1
2

(
tr(Ã−1B) −

√
(tr(Ã−1B))2 − 4(L0(1))2

)
,

(19)
where

tr(Ã−1B) = L0(1)

(
2 +

m∑
i=1

1
ci

+
m∑

i=1

1
1 − ci

)
, (20)

for cm < 1 and
λ1 = 0, (21)

λ2 = (−1)m
m−1∏
i=1

1 − ci

ci
, (22)

for cm = 1 (see Kauthen and Brunner, 1997).

Proof. Solving (16) and (17) is equivalent to finding

uh(s) ∈
(
S

(0)
m (Ih)

)r

such that

∫ tni

0

k(tni, s)uh(s) ds = f(tni) + δ(h, n, i). (23)

Subtracting this equation from (15) with t = tn,i, we
obtain ∫ tni

0

k(tni, s)e(s) ds = δ(h, n, i), (24)

where e(s) = y(s) − u(s). Introducing en = e|σn
∈

Cm+1[tn, tn+1], we have

en(tn+vh) = en−1(tn)L0(v)+
m∑

j=1

Lj(v)en(tn,j)+rn(v),

(25)
v ∈ [0, 1], where the interpolation error is determined by

rn(v)

= hm+1 y(m+1)(ξn(v))
(m + 1)!

v

m∏
i=1

(v−ci) ξn(v) ∈ (tn, tn+1).

(26)
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(Notice that we have f(t) ∈ Cm+2(I, Rr), ∂ik(t,s)
∂ti ∈

C(D, Rr×r), for i = 1, . . . , m + 1, by assumption.)
From (24), we have

∫ ci

0

k(tni, tn + sh)e(tn + sh) ds

= −
n−1∑
l=0

∫ 1

0

k(tni, tl + sh)e(tl + sh) ds

+
δ(h, n, i)

h
.

(27)

Rewriting (27) with n replaced by n − 1 and j = m
and subtracting it from (27), we obtain

∫ ci

0

k(tni, tn + sh)en(tn + sh) ds

=
∫ cm

0

k(tn−1,m, tn−1 + sh)en−1(tn−1 + sh) ds

−
∫ 1

0

k(tni, tn−1 + sh)en−1(tn−1 + sh) ds

+
n−2∑
l=0

∫ 1

0

(k(tn−1,m, tl + sh)

−k(tni, tl + sh)) el(tl + sh) ds

+
δ(h, n, i) − δ(h, n − 1, m)

h
.

(28)

Using

∫ ci

0

k(tni, tn + sh)Lj(s) ds

= k(tn, tn)aij + O(h),∫ cm

0

k(tn−1,m, tn−1 + sh)Lj(s) ds

= k(tn, tn)amj + O(h),∫ 1

0

k(tni, tn−1 + sh)Lj(s) ds

= k(tn, tn)bj + O(h)

and

k(tn−1,m, tl + sh) − k(tni, tl + sh)
= h(1 + ci − cm)kt(ξn, tl) + O(h)

in (28), we obtain

(k(tn, tn) + O(h))

⎛
⎝ m∑

j=0

aijen(tnj) + O(hm+1)

⎞
⎠

= (k(tn, tn) + O(h))

×
⎛
⎝ m∑

j=0

amjen−1(tn−1,j) + O(hm+1)

⎞
⎠

− (k(tn, tn) + O(h))

×
⎛
⎝ m∑

j=0

bjen−1(tn−1,j) + O(hm+1)

⎞
⎠

+ (h(1 + ci − cm)kt(ξn, tl) + O(h))

×
n−2∑
l=0

⎛
⎝ m∑

j=0

bjel(tl,j) + O(hm+1)

⎞
⎠

+
δ(h, n, i) − δ(h, n − 1, m)

h
.

(29)

Since k(t, t) is invertible and continuous with respect
to t, k(tn, tn)+O(h) has a continuous inverse, say W, for
sufficiently small h. Hence, Eqn. (29) can be written as

m∑
j=0

aijen(tnj)

=
m∑

j=0

amjen−1(tn−1,j)

−
m∑

j=0

bjen−1(tn−1,j) + hWU

n−2∑
l=0

m∑
j=0

bjel(tl,j)

+ O(hm1−1) + O(hm+1),
(30)

where hU := h(1+ci−cm)kt(ξn, tl)+O(h) and so U is
bounded with respect to its variables. Using (25) and the
continuity conditions (8), we have

en(tn) = en−1(tn−1 + h)
= en−1(tn−1)L0(1)

+
m∑

j=1

Lj(1)en−1(tn−1,j) + rn−1(1).
(31)

Thus from Eqns. (31) and (30), we can write

⎛
⎜⎜⎜⎝

I O . . . O
a10I a11I . . . a1mI

...
...

. . .
...

am0I am1I . . . ammI

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

en(tn)
en(tn,1)

...
en(tn,m)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

L0(1)I . . . Lm(1)I
(am0 − b0)I . . . (amm − bm)I

...
. . .

...
(am0 − b0)I . . . (amm − bm)I

⎞
⎟⎟⎟⎠
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×

⎛
⎜⎜⎜⎝

en−1(tn−1)
en−1(tn−1,1)

...
en−1(tn−1,m)

⎞
⎟⎟⎟⎠

+ h

n−2∑
l=0

BlEl + O(hm1−1) + O(hm+1),

(32)

where O and I are zero and identity r × r matrices,
respectively, El = [el(tl,0), . . . , el(tl,m)] and Bl are
appropriate matrices. By using the Kronecker product, we
summarize Eqn. (32) in the form

(Ã⊗I)En = (B⊗I)En−1 +h

n−2∑
l=0

BlEl +O(hu), (33)

u = min{m1 − 1, m + 1}. Since Ã and I are invertible
matrices, we have

En = ((Ã−1B)⊗I)En−1+h

n−2∑
l=0

(Ã−1⊗IBl)El+O(hu).

(34)
After Kauthen and Brunner (1997, Lemma 2),

there exists an invertible matrix P such that D :=
P (Ã−1B)P−1 = diag(λ1, λ2, 0, . . . , 0). Thus, we can
use (P ⊗ I)((Ã−1B) ⊗ I)(P ⊗ I)−1(P ⊗ I) = D ⊗ I to
write (34) as

(P ⊗ I)En

= (D ⊗ I)(P ⊗ I)En−1

+ h

n−2∑
l=0

(Ã−1 ⊗ I)Bl(P ⊗ I)−1(P ⊗ I)El

+ O(hu),

(35)

where λ1 and λ2, are obtained by (18)–(20). It is obvious
that E0 = O(hmin{m1,m+1}). Thus we can use Lemma 4
to prove

lim
N→∞

Nh=const

‖(P ⊗ I)EN‖ =≤ O(hmin{m1−1,m+1}),

and by using (25) the proof is completed for the case
λ1, λ2 ∈ [−1, 1).

For the case λ1 = 1 or λ2 = 1, we apply the
given ideas of Kauthen and Brunner (1997) to use the
interpolation formula for e(t) at a smaller number of
collocation points, but this application in the perturbation
case is not as simple as the ideas of Kauthen and Brunner
(1997) and we need the following remarks.

Remark 4. Let aij =
∫ ci

0 Lj(s) ds and bj =
∫ 1

0 Lj(s) ds,

where Lj(v), j = 1, . . . , l, are the Lagrange polynomials
of degree l defined with respect to the points 0 < d1 <
. . . < dl < 1. Then M = A−1B has only the eigenvalue

R(∞) = (−1)l
l∏

i=1

1 − di

di
,

where A = (aij) and B = (Bij) with Bij = amj − bj.
Moreover,

e(tn+vh) =
l∑

j=1

Lj(v)en(tn,j)+hm e
(l)
n (t+n )

l!

l∏
i=1

(τ−ci),

(36)
τ ∈ [0, 1], where tn,j = tn + djh, (see, e.g., Kauthen and
Brunner, 1997).

Remark 5. For the case λ1 = 1 or λ2 = 1, we know
the matrix M from Remark 4 with respect to the points
c1, . . . , cm has the only eigenvalue

R(∞) = (−1)m
m∏

i=1

1 − ci

ci
< 1

(see Kauthen and Brunner, 1997). Hence it can be easily
proved that, for each l ≤ m, we can choose l points
d1, . . . , dl through c1, . . . , cm such that

R(∞) = (−1)l
l∏

i=1

1 − di

di
< 1.

Let l1 = min{m1 − 1, m + 1}. Then we use the
above remarks with l = l1 − 1 and the collocation points
d1, . . . , dl to get

en(tn + vh) =
l∑

j=1

Lj(v)en(tn,j) + O(hl), v ∈ [0, 1].

(37)
By substituting (37) into (28) and following the lines of
the proof after Eqn. (28), we obtain

En = (M ⊗ I)En−1 + h

n−1∑
l=0

BnlEl + O(hl).

Since M is diagonalizable, there exists P such that D =
PMP−1 = diag(R(∞), 0, . . . , 0) with |R(∞)| < 1.
Now applying Lemma 4 to the equation

(P ⊗ I)En = (M ⊗ I)(P ⊗ I)En−1

+ h

n−1∑
l=0

(P ⊗ I)BnlEl + O(hl)

completes the proof. �

Remark 6. The trivial conclusion of Theorem 2 is for
the case δ(h, n, i) = 0, (e.g., m1 = ∞). This case is
equivalent to using the continuous collocation method for
the system of first kind Volterra integral equations, where
one can use this theorem to prove

‖e‖ ≤
{ O(hm+1) if λ1, λ2 ∈ [−1, 1),

O(hm) if λ1 = 1 or λ2 = 1,

which is the same as the result of Kauthen and Brunner
(1997) for the Volterra integral equation of the first kind.
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This perturbed analysis on the numerical solution of
the Volterra integral equations of the first kind makes it
easy for the Hessenberg form (we claim that without this
perturbation analysis, the proof of the next theorem will
be more complicated).

Theorem 3. Let f(t) ∈ Cm+2(I, Rr), ∂ik(t,s)
∂ti ∈

C(D, Rr×r) for i = 1, . . . , m + 1 and A(t) ∈
Cm+1(I, Rr×r) be satisfied for the system (1) and sup-
pose that the system has Hessenberg form of index ν (see
Eqn. (2)). Also suppose that the consistency conditions
of Theorem 1 hold for this system. Then the approximate
solution uh of the continuous collocation method with dis-
tinct collocation parameters c1, . . . , cm ∈ (0, 1] (if it ex-
ists) converges to the solution y if and only if

� = max{|λ1|, |λ2|} ≤ 1,

where λ1 and λ2 are given by (18)–(22), and the colloca-
tion error satisfies

‖y1 − u1‖ ≤
{ O(hm+1) if λ1, λ2 ∈ [−1, 1),

O(hm) if λ1 = 1 or λ2 = 1,

‖y2 − u2‖ ≤
{ O(hm) if λ1, λ2 ∈ [−1, 1),

O(hm−2) if λ1 = 1 or λ2 = 1,

...

‖yν − uν‖ ≤
{ O(hm+2−ν) if λ1, λ2 ∈ [−1, 1),

O(hm+2−2ν) if λ1 = 1 or λ2 = 1

and hence

‖y − uh‖ ≤
{ O(hm+2−ν) if λ1, λ2 ∈ [−1, 1),

O(hm+2−2ν) if λ1 = 1 or λ2 = 1,

where uh = [u1, . . . , uν ]T .

Proof. The proof is derived by induction on ν. For the
case ν = 1, it is trivial (Remark 6). Suppose that it is true
for ν = n. For ν = n + 1, the problem takes the form
⎡
⎢⎢⎢⎣

A1,1(t) . . . A1,n(t) 0
...

. . .
...

...
An,1(t) . . . 0 0

0 . . . 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y1(t)
y2(t)

...
yn+1(t)

⎤
⎥⎥⎥⎦

+
∫ t

0

⎡
⎢⎢⎢⎣

k1,1(t, s) k1,2(t, s) . . . k1,n+1(t, s)
...

...
. . .

...
kn,1(t, s) kk,2(t, s) . . . 0

kn+1,1(t, s) 0 . . . 0

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

y1(t)
y2(t)

...
yn+1(t)

⎤
⎥⎥⎥⎦ ds =

⎡
⎢⎢⎢⎣

f1(t)
f2(t)

...
fn+1(t)

⎤
⎥⎥⎥⎦ .

(38)

The last n equations of this system form an IAE of
index n. By the hypothesis of induction, we have

‖e1‖ ≤
{ O(hm+1) if λ1, λ2 ∈ [−1, 1),

O(hm) if λ1 = 1 or λ2 = 1,

‖e2‖ ≤
{ O(hm) if λ1, λ2 ∈ [−1, 1),

O(hm−2) if λ1 = 1 or λ2 = 1,

...

‖en‖ ≤
{ O(hm+2−n) if λ1, λ2 ∈ [−1, 1),

O(hm+2−2n) if λ1 = 1 or λ2 = 1,

(here ei = yi − ui for i = 1, . . . , n), and hence

|A1,1(t)e1(t) + . . . + A1,n(t)en(t)

+
∫ t

0

k1,1(t, s)e1(s) ds . . . +
∫ t

0

k1,n(t, s)en(s) ds|

≤
{ O(hm+2−n) if λ1, λ2 ∈ [−1, 1),

O(hm+2−2n) if λ1 = 1 or λ2 = 1.

(39)

The first equation of the system (38) is a Volterra
integral equation of the first kind, i.e.,

∫ t

0

k1,n+1(t, s)yn+1(s) ds

= f1(t) − A1,1(t)y1(t) + · · · − A1,n(t)yn(t)

−
∫ t

0

k1,1(t, s)y1(s) ds − . . .

−
∫ t

0

k1,n(t, s)yn(s) ds.

(40)

From (39), the corresponding continuous collocation
method for Eqn. (40) is equivalent to the perturbed
continuous collocation method with the perturbation term

δ(h, n, i) =
{ O(hm+2−n) if λ1, λ2 ∈ [−1, 1),

O(hm+2−2n) if λ1 = 1 or λ2 = 1.

Then Theorem 2 yields

‖yn+1 − un+1‖

≤
{ O(hm+1−n) if λ1, λ2 ∈ [−1, 1),

O(hm−2n) if λ1 = 1 or λ2 = 1,

which completes the proof. �

The fully discretised perturbed continuous
collocation solution ûn(tn + shn) =

∑m
j=0 Lj(s)Ûn,j ,

for the Fully Discretised Continuous Collocation Method
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(FDCCM) is obtained by solving the system

h

m∑
j=1

aijk(tn,i, tn,j)Ûn,j

= −haijk(tn,i, tn,j)Ûn−1(tn) + f(tn,i)

− h

n−1∑
l=0

⎛
⎝ m∑

j=1

bjk(tn,i, tn,j)Ûl,j

+b0k(tn,i, tn,j)Ûl−1(tl)
)

+ δ(h, n, i).

(41)

The FDCCM has also the same order of convergence
which we obtained for the continuous collocation method.
To prove this, we need a new version of Theorem 2.

Theorem 4. Let f(t) ∈ Cm+2(I, Rr), ∂ik(t,s)
∂ti ∈

C(D, Rr×r) for i = 1, . . . , m + 1 be satisfied for the
system (15). Then the approximate solution uh of the fully
discretised perturbed continuous collocation method with
distinct collocation parameters c1, . . . , cm ∈ (0, 1] and
cm ≤ 1 (if it exists) converges to the solution y for all
m ≥ 2 if and only if

� = max{|λ1|, |λ2|} ≤ 1,

where λ1 and λ2 are given by (18)–(22) and the colloca-
tion error satisfies

‖y − uh‖

≤
{ O(hmin{m1−1,m+1}) if λ1, λ2 ∈ [−1, 1),

O(hmin{m1−2,m}) if λ1 = 1 or λ2 = 1.

Proof. We can proceed similarly to the proof of Theorem
2 to show that ‖ûh − uh‖ has the same order of ‖y− uh‖.
Then using

‖y − ûh‖ ≤ ‖ûh − uh‖ + ‖y − uh‖
completes the proof. �

Analysis of index 2 IAEs of the form (2) was
introduced as a research problem by Brunner (2004),
(p. 499), so by using the previous theorems we have
following corollary for this problem.

Corollary 1. Consider the system of IAEs (2) of size r =
r1 + r2 and suppose following conditions are satisfied:

1. the functions fi(t) ∈ Cm+1(I, Rr) and Ai,j(t) ∈
Cm+1(I, Rri×rj ), for i, j = 1, 2.

2. ∂lki,j(t, s)/∂tl ∈ Cm+1(D, Rri×rj ), for l =
1, . . . , m + 1 and i, j = 1, 2.

3. f2(0) = 0 and f1(0) = f ′
2(0)/k21(0, 0) (the consis-

tency conditions).

Then the following statements hold on I:

1. The system (2) has a unique solution.

2. The approximate solution uh of the colloca-
tion method with distinct collocation parameters
c1, . . . , cm ∈ (0, 1] (if exists) satisfies

‖y − uh‖ ≤
{ O(hm) if λ1, λ2 ∈ [−1, 1),

O(hm−2) if λ1 = 1 or λ2 = 1.

6. Nonlinear case

Suppose that the equation

A(t)y(t) +
∫ t

0

κ(t, s, y(s)) ds = f(t),

t ∈ I := [0, T ], (42)

has a unique solution. Then, the collocation solution uh ∈(
S(0)

m (Ih)
)r

to Eqn. (42) is defined by the equation

A(t)uh(t) +
∫ t

0

k(t, s, uh(s)) ds = f(t), (43)

for t ∈ Xh. Proceeding as in Section 3, we obtain the
nonlinear equations

f(tn,i)
= A(tn,i)Un,i + Fn,i

+ h

∫ ci

0

κ(tn,i, tn + shn, L0(s)Un−1(tn)

+
m∑

j=1

Lj(s)Un,j) ds

(44)

for i = 1, . . . , m, where the lag terms are defined by

Fn,i

= h

n−1∑
l=0

∫ 1

0

κ(tn,i, tl + shl, L0(s)Ul−1(tn)

+
m∑

j=1

Lj(s)Ul,j) ds.

A suitable method for solving this system is
Newton’s iterative method, since it can be proved (see
Atkinson (2001)) that this method converges to the
solution Un,i by the initial value Un−1,i for sufficiently
small h. Subtracting (43) from (42), we obtain

A(t)e(t) +
∫ t

0

(κ(t, s, y(s)) − κ(t, s, uh(s))) ds = 0,

for t ∈ Xh. Now supposing k(t, s, y) is continuously
differentiable with respect to y, using the mean value
theorem and letting t = tn,i, we obtain

A(tn,i)e(tn,i) +
∫ tn,i

0

κy(tn,i, s, η(s))e(s) ds = 0,
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where η(s) is between y(s) and u(s). This equation is
linear and its index can be considered an index for the
nonlinear system (42). Hence for the nonlinear equation
of the Hessenberg type
⎡
⎢⎢⎢⎣

A1,1(t) . . . A1,ν−1(t) 0
...

. . .
...

...
Aν−1,1(t) . . . 0 0

0 . . . 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y1(t)
y2(t)

...
yν(t)

⎤
⎥⎥⎥⎦

+
∫ t

0

⎡
⎢⎢⎢⎣

k1(t, s, y1(s), y2(s), . . . , yν(s))
...

kν−1(t, s, y1(s), y2(s))
kν(t, s, y1(s))

⎤
⎥⎥⎥⎦ ds

=

⎡
⎢⎢⎢⎣

f1(t)
f2(t)

...
fν(t)

⎤
⎥⎥⎥⎦ ,

(45)

the index is ν, if
∏ν

i=1 ki,yν+1−i(t, t, y1(t), . . . , yν+1−i(t))
is invertible in a neighborhood of (y1(t), . . . , yν(t)). We
should have the same results for the order of the
collocation methods that we obtained in previous
sections.

Theorem 5. Let

f(t) ∈ Cm+2(I, Rr),

∂i

∂ti
k(t, s, y1(s), . . . , yν+1−j(s)) ∈ C(D, Rr×r)

for i = 1, . . . , m + 1 and j = 1, . . . , ν and A(t) ∈
Cm+1(I, Rr×r) be satisfied the system (45), and suppose
that the system has Hessenberg form of index ν. Also sup-
pose that the consistency conditions of Theorem 1 hold for
this system. Then the approximate solution uh of the (fully
discretised) continuous collocation method with distinct
collocation parameters c1, . . . , cm ∈ (0, 1] (if it exists)
converges to the solution y if and only if

� = max{|λ1|, |λ2|} ≤ 1,

where λ1 and λ2 are given by (18)–(22), and the colloca-
tion error satisfies

‖y1 − u1‖ ≤
{ O(hm+1) if λ1, λ2 ∈ [−1, 1),

O(hm) if λ1 = 1 or λ2 = 1,

‖y2 − u2‖ ≤
{ O(hm) if λ1, λ2 ∈ [−1, 1),

O(hm−2) if λ1 = 1 or λ2 = 1,

...

‖yν −uν‖ ≤
{ O(hm+2−ν) if λ1, λ2 ∈ [−1, 1),

O(hm+2−2ν) if λ1 = 1 or λ2 = 1

and hence

‖y − uh‖ ≤
{ O(hm+2−ν) if λ1, λ2 ∈ [−1, 1)

O(hm+2−2ν) if λ1 = 1 or λ2 = 1,

where uh = [u1, . . . , uν]T .

7. Numerical experiments

In this section, we illustrate the efficiency of the
introduced methods by applying them to some linear
and nonlinear problems, in comparison with the existing
methods (e.g., Kauthen, 2001; Hadizadeh et al., 2011).
In the designed package for these methods, we have
provided techniques for solving linear and nonlinear
systems. It is also worth mentioning that the capability
of these methods for solving nonlinear and higher index
problems distinguishes them from the methods mentioned
above. We do the comparison after presenting some
examples for confirming the theoretical results. We note
that the order of the error is the slop of the function
log(‖(e(h))‖) with respect to log(h) with h = 1/N. The
numerical computations have been done using MATLAB
and MAPLE.

Example 1. Let

A(t) =

⎛
⎝ cos(t) t + 1 0

5 0 0
0 0 0

⎞
⎠ ,

k(t, s) =

⎛
⎝ −6 ts − 1 3

sin(t) s + 1 0
sin(ts) + 1 0 0

⎞
⎠ ,

and determine the function f in such a way that the exact
solution of (1) is

y =

⎛
⎝ sin(t)

cos(t)
et

⎞
⎠ .

For solving the system (1) on [0, 1], we use the
FDCCM with c = [0, .35, .8, .95]. With this
vector, c, we have λ1 = −7.2578e− 004 and λ2 =
−0.8227. Figure 1 shows logarithmic plots of three
components of the error function with respect to log(h) =
− log(N), N = 2, . . . , 40, where the slopes of lines are
4, 3, 2, respectively. These plots confirm the results of
Theorem 3. �

In the proof of convergence properties of the
perturbed continuous collocation methods for the SFVIE,
we use interpolation of the error function with a smaller
number of collocation parameters in the case λ1 = 1
or λ2 = 1. Hence, the order of the method may be
greater than m. However, the existence of an example with
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Fig. 1. Fully discretised continuous collocation methods with
c = [0, .35, .8, .95] in Example 1. The plotted func-
tion is log(‖e(h)‖) with respect to log(h). The symbols
(plus, pentagon and star) are used to show the first, the
second and the third components of the error function.
The lines have respectively the slops 4, 3 and 2.

approximate solution of order m shows that the obtained
order is optimal. For the SFV IE, we refer the reader to
the examples given by Kauthen and Brunner (1997). For
IAEs, we give the following example.

Example 2. Let

A(t) =
(

2 + t 0
0 0

)
,

k(t, s) =
(

t exp(s)
exp(−ts) 0

)
,

f =
(

−t + t × exp(t) + sin(t) + (2 + t) exp(t)
(1 − exp(−t2 + t))/(t − 1)

)
.

Then the exact solution of the index 2 IAE in (1) is given
by

y =
(

exp(t)
cos(t) exp(−t)

)
.

For solving this IAE on [0, 1], we use FDCCMs with

c = [0, 0.3, .4, c5, .95]

and

c3

= 0.8850192409343446350142328261033222536980988641879.

With this vector, c, we have λ1 = 1 and λ2 =
0.0005727614821446677. To obtain this collocation
parameters, we use (18)–(20) to change the value of c3

continuously until obtaining λ = 1. We set “Digits:=50”
in the MAPLE software to obtain more accurate results.

Tables 1 and 2 show the error of each component at
the collocation points tN,i, i = 1, . . . , m, for different
values of N .

Table 1. Error of the continuous collocation method for Exam-
ple 2 at the collocation points tN,1, . . . , tN,4.

N 16 32 64 128

‖e1(tN,1)‖ 9.580e−12 5.898e−13 3.659e−14 2.278e−15
‖e1(tN,2)‖ 8.458e−12 5.312e−13 3.326e−14 2.081e−15
‖e1(tN,3)‖ 1.321e−11 8.074e−13 4.990e−14 3.102e−15
‖e1(tN,4)‖ 1.741e−11 1.077e−12 6.697e−14 4.175e−15
‖e2(tN,1)‖ 1.322e−7 3.372e−8 8.514e−9 2.139e−9
‖e2(tN,2)‖ 1.324e−7 3.232e−8 7.985e−9 1.984e−9
‖e2(tN,3)‖ 1.765e−7 4.549e−8 1.152e−8 2.970e−9
‖e2(tN,4)‖ 2.747e−7 6.587e−8 1.612e−8 3.986e−9

Table 2. Order of the continuous collocation method for Exam-
ple 2, where p denotes the order.

N 8 16 32 64 128

p(‖e1(tN,1)‖) 4.0890 4.0437 4.0217 4.0108 4.0054
p(‖e1(tN,2)‖) 3.9649 3.9857 3.9935 3.9969 3.9985
p(‖e1(tN,3)‖) 4.1452 4.0679 4.0328 4.0161 4.0080
p(‖e1(tN,4)‖) 4.0544 4.0285 4.0145 4.0073 4.0037
p(‖e2(tN,1)‖) 1.8685 1.9395 1.9710 1.9858 1.9929
p(‖e2(tN,2)‖) 2.1237 2.0656 2.0338 2.0172 2.0087
p(‖e2(tN,3)‖) 1.7907 1.9097 1.9577 1.9795 1.9899
p(‖e2(tN,4)‖) 2.2144 2.1155 2.0603 2.0308 2.0156

Remark 7. Tables 1 and 2 show that the order of the
errors cannot be exceeded from what we proved in the
case λ1 = 1. These tables confirm the fact that the order
of continuous collocation methods decreases by two when
the index of the method increases by one for the special
case λ1 = 1.

�

Example 3. Let

A(t) =
(

1 0
0 0

)
,

k1(t, s, y1, y2) = (y2
1 + 2)y2 + ey

2,

k2(t, s, y1) = (1 + s)y1

and

f

=

⎛
⎝ et + sin(t) − t sin(2t)

4
+

sin(t)2

4
+

5t2

4
− 1

sin(t) − cos(t) − t cos(t) + 1

⎞
⎠ .

Then the system (45) has the exact solution

y =
(

sin(t)
t

)
.

For this system,

∂k1

∂y2

∂k2

∂y1
= ((y2

1 + 2) + ey2)(1 + s)
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which is positive for all y1 and y2 and s > −1. Hence
the index of this nonlinear system on I := [0, 1] is 2. For
solving this IAE on I, we use FDCCMs with

c = [0, .7, .9].

With this vector, c, we have λ1 = 0.8484 and λ2 =
0.0027.

Table 3 shows the maximum error of each component
at the collocation points and their convergence orders for
different values of N. This table confirms the theoretical
results for the nonlinear case (see Theorem 5).

�

7.1. Comparison. We chose the following examples
by Hadizadeh et al. (2011) to make a comparison between
the presented methods and Jacobi spectral methods of
Hadizadeh et al. (2011).

Example 4. (Hadizadeh et al., 2011) Let

A(t) =

⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠ ,

k(t, s) =

⎛
⎝ − 3−2s

2−s − 3−s
2−s −2(2 − s)

− −1
s−2 +1 −1

−(s + 2) −(s2 − 4) 0

⎞
⎠ ,

where f is determined so that the exact solution of the
index 2 IAE in (1), is

y =
(

et, et,− et

2 − t

)T

on I = [0, 1]. Let {di}N
i=1 be the roots of the Chebyshev

polynomial of degree N. Then the collocation parameters
proposed for FDCCMs are

c = [0,
1 + d1

2
,
1 + d2

2
, . . . ,

1 + dN

2
, 1],

with λ2 = (−1)N+1, for N = 1, . . . , 12. First, by setting
h = 1, we compare these methods with the Jacobi spectral
method of degree m + 1 (if the criteria of the comparison
are the size of linear system it may be m). In Table 4,
we compare these results with the corresponding results
of Hadizadeh et al. (2011), which shows the efficiency of
the introduced methods.

Now, since the convergence results were only
guaranteed for sufficiently small h, let us fix m = 7
and compare those with the results of h = 1/2N , N =
1, . . . , 4. Table 5 shows that these results are a little less
efficient than the previous ones. Therefore, one may
question, why we use the piecewise polynomials instead
of one large degree polynomial as done by Hadizadeh
et al. (2011). The answer is that, although the methods

which use large degree polynomial in the whole interval
of the solution are efficient for simple linear cases,
they cannot be packaged for the nonlinear cases or stiff
equations. �
Example 5. (Hadizadeh et al., 2011) Let

A(t) =
(

1 0
0 0

)
,

k(t, s) =
( −et+s −(s + 1)2

−(s + t + 2) 0

)
,

where f is determined so that the exact solution of the
index 2 Hessenberg form in (1), is

y = (sin(t), cos(2t))T
,

on I = [0, 1]. For this example we use the FDCCM
with c = [0, 0.13, 0.36, 0.77, 0.84, 0.93, 1], λ1 = 0 and
λ2 = 0.05095. Table 6 shows the results of this method
for N = 1, 2, 3, 4. This table shows that these methods
are as efficient as those of Hadizadeh et al. (2011).

Table 6. Maximum absolute error of applying the FDCCM with
c = [0, 0.13, 0.36, 0.77, 0.84, 0.93, 1], m = 7 and dif-
ferent values of h for Example 5.

N h ct ‖e1‖ ‖e2‖
1 1 0.003 s 1.2255e−07 4.4608e−05
2 1/2 0.007 s 1.0320e−09 4.4916e−07
3 1/4 0.015 s 8.0568e−12 3.4297e−09
4 1/8 0.036 s 7.8271e−14 3.4259e−11

�

8. Conclusion

In this paper, we investigated integral algebraic equations
of the Hessenberg type. We also stated a useful
existence and uniqueness theorem for IAEs and analyzed
the convergence properties of collocation methods and
perturbed collocation methods for IAEs and SVIEs,
respectively. The analysis showed that the order of
collocation methods decreases by one when the index of
methods increases by one for the case λ1 < 1 or λ2 < 1
and by two when one of the stability parameters λ1 or λ2

is equal to one. In the future it can be investigated if each
IAE of index ν has the same convergence properties that
we obtained for the Hessenberg type.
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‖ẽ3‖ 1.30 e−04 4.61 e−06 1.59 e−07 5.38 e−09 1.74 e−10

Table 5. Maximum absolute error of applying the FDCCM for Example 4, with m = 7 and different values of h.
N h ct ‖e1‖ ‖e2‖ ‖e3‖
1 1 0.017 s 1.1329e−07 6.0452e−08 8.1137e−06
2 1/2 0.022 s 4.5165e−10 5.8178e−10 1.1734e−07
3 1/4 0.033 s 1.0734e−12 1.6924e−12 1.5294e−09
4 1/8 0.066 s 4.0457e−13 3.1708e−13 9.5574e−10

Brunner, H. (1977). Discretization of Volterra integral
equations of the first kind, Mathematics of Computation
31(139): 708–716.

Brunner, H. (1978). Discretization of Volterra integral
equations of the first kind (II), Numerische Mathematik
30(2): 117–136.

Brunner, H. (2004). Collocation Methods for Volterra Integral
and Related Functional Equations, Cambridge University
Press, New York, NY.

Bulatov, M.V. (1994). Transformations of differential-algebraic
systems of equations, Zhurnal Vychislitel’noi Matematiki i
Matematicheskoi Fiziki 34(3): 360–372.

Bulatov, M.V. (2002). Regularization of degenerate
integro-differential equations, Computational Mathe-
matics and Mathematical Physics 42(11): 1602–1608.

Chistyakov, V.F. (1987). On Singular Systems of Ordinary Dif-
ferential Equations. Lyapunov Functions and Their Appli-
cations, Siberian Publishing House NAUKA, Novosibirsk,
pp. 231–239.

Chistyakov, V.F. (1996). Algebro-Differential Operators
With Finite-Dimensional Core, Siberian Publishing House
NAUKA, Novosibirsk.

De Hoog, F.R. and Weiss, R. (1973a). High order methods for
Volterra integral equations of the first kind, SIAM Journal
on Numerical Analysis 10(4): 647–664.

De Hoog, F.R. and Weiss, R. (1973b). On the solution of Volterra
integral equations of the first kind, Numerische Mathe-
matik 21(1): 22–32.

Gear, C.W. (1990). Differential algebraic equations indices and
integral algebraic equations, SIAM Journal on Numerical
Analysis 27(6): 1527–1534.

Hadizadeh, M., Ghoreishi, F. and Pishbin, S. (2011). Jacobi
spectral solution for integral algebraic equations of
index-2, Applied Numerical Mathematics 61(1): 131–148.

Hochstadt, H. (1973). Integral Equations, John Wiley, New
York, NY.

Kauthen, J.P. (1997). The numerical solution of Volterra
integral-algebraic equations by collocation methods, Pro-
ceedings of the 15th IMACS World Congress on Scientific
Computation, Modelling and Applied Mathematics, Berlin,
Germany, Vol. 2, pp. 451–456.

Kauthen, J.P. (2001). The numerical solution of
integral-algebraic equations of index 1 by polynomial
spline collocation methods, Mathematics of Computation
70(236): 1503–1514.



354 B. Shiri et al.

Kauthen, J.-P. and Brunner, H. (1997). Continuous
collocation approximations to solutions of first kind
Volterra equations, Mathematics of Computation
66(220): 1441–1459.

Lamm, P.K. (2005). Full convergence of sequential local
regularization methods for Volterra inverse problems, In-
verse Problems 21(3): 785–803.

Lamm, P.K. and Scofield, T.L. (2000). Sequential
predictorcorrector methods for the variable regularization
of Volterra inverse problems, Inverse Problems
16(2): 373–399.

Saeedi, H., Mollahasani, N., Mohseni Moghadam, M. and
Chuev, G.N. (2011). An operational Haar wavelet method
for solving fractional Volterra integral equations, Interna-
tional Journal of Applied Mathematics and Computer Sci-
ence 21(3): 535–547, DOI: 10.2478/v10006-011-0042-x.

Weiss, R. (1972). Numerical Procedures for Volterra Integral
Equations, Ph.D. thesis, Australian National University,
Canberra.

Babak Shiri is a Ph.D. student at the Faculty
of Mathematical Sciences, University of Tabriz,
Iran. He obtained his M.Sc. (2006) in numerical
analysis from the same university. His research
interests include integral-algebraic equations and
differential-algebraic equations.

Sedaghat Shahmorad is an associate professor
at the Faculty of Mathematical Sciences, Univer-
sity of Tabriz, Iran. He received his M.Sc. degree
(1995) from the University of Tabriz and a Ph.D.
degree (2002) from Tarbiat Modares University,
Tehran, Iran, in mathematics and applied math-
ematics. His research interests include integral
equations and integro-differential equations.

Gholamreza Hojjati is an associate professor
at the Faculty of Mathematical Sciences, Univer-
sity of Tabriz, Iran. He received his Ph.D. in ap-
plied mathematics from the University of Tabriz
(2005). His research interests include numerical
solution of differential and Volterra integral equa-
tions, especially stiff systems.

Appendix

Lemma A1. Suppose that in the system (2), A ∈
Cν(I, Rr×r), f ∈ Cν(I, Rr), k ∈ Cν(D, Rr×r),∏ν−1

i=1 Ai,ν−i and
∏ν

i=1 ki,ν+1−i(t, t) are invertible, then
the index of this system is ν.

Proof. We prove the following statement by induction
on ν. There exist Ai for i = 0, . . . , ν, where the last

r1 columns of Ai for i = 0, . . . , ν − 1 are zero column
vectors and the ‘rank degree’ index of A, k, is ν.

For ν = 1 this statement is true. We assume that the
statement is true for ν = n, and we show it is true for
ν = n + 1. Set

A0 := A =
(

a 0
Π 0

)
,

k =
(

κ k1,n+1

H 0

)

with a = [A1,1, . . . , A1,n], κ = [k1,1, . . . , k1,n],

Π =

⎡
⎢⎢⎢⎣

A2,1(t) . . . A2,n−1(t) 0
...

. . .
...

...
An,1(t) . . . 0 0

0 . . . 0 0

⎤
⎥⎥⎥⎦

and

H =

⎡
⎢⎢⎢⎣

k2,1(t, s) k2,2(t, s) . . . k2,n(t, s)
...

...
. . .

...
kn,1(t, s) kn,2(t, s) . . . 0

kn+1,1(t, s) 0 . . . 0

⎤
⎥⎥⎥⎦ .

By the induction hypothesis, there exist Πi for i =
0, . . . , n, where the last r1 columns of Πi for i =
0, . . . , n− 1 are zero column vectors and the matrix Πn is
invertible. Now we set

B0 =
(

α B0

0 0

)

with α = [0, . . . , 0, (A−1
1,n)T ]T , and we prove there exists

a matrix B0 of size (r − r1) × (r − r1) such that

A0B0 =
(

I 0
0 Π0Π−

0

)
,

which implies B0 is a semi-inverse matrix of the matrix
A0. Therefore, the equations

Π0α = 0, ΠB0 = Π0Π−
0 , aB0 = 0

should hold. Since the last r1 columns of Π0 are zero
by hypothesis, the first equation holds. The equation
ΠB0 = Π0Π−

0 makes (r−r1)(r−r1) consistent equations
(because Π−

0 is one of the solutions of this equations) and
(r1)×(r−r1) unknowns of B are absence in this equation,
and these unknowns can be found from aB0 = 0.

Now, one can check that A−
0 = B0 and hence

I − A0A
−
0 =

(
0 0
0 I − Π0Π−

0

)
,

A1 =
(

a 0
Π1 0

)
, k1 =

(
κ k1,n+1

H1 0

)
.
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Using the hypothesis of induction, we proceed similarly
to obtain

Ai =
(

a 0
Πi 0

)
, ki =

(
κ k1,n+1

Hi 0

)

for i = 1, . . . , ν.
Since the ‘rank degree’ index of Π and H, is ν, we

use Lemma 2 to show that there exists invertible Aν+1,
which completes the proof. To this end, we show that
λAν + kν satisfy the ‘rank degree’ criterion

rankAν = r − r1

and

deg det(λAν + kν)

= deg(−1)n+2 det(k1,n+1(λ(Πi) + Hi))

= deg(−1)n+2λr−r1 det(k1,n+1Πi) = r − r1.

�
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