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This paper deals with two important practical problems in motion control of robot manipulators: the measurement of joint
velocities, which often results in noisy signals, and the uncertainty of parameters of the dynamic model. Adaptive output
feedback controllers have been proposed in the literature in order to deal with these problems. In this paper, we prove for
the first time that Uniform Global Asymptotic Stability (UGAS) can be obtained from an adaptive output feedback tracking
controller, if the reference trajectory is selected in such a way that the regression matrix is persistently exciting. The new
scheme has been experimentally implemented with the aim of confirming the theoretical results.

Keywords: adaptive control, robot control, nonlinear control, output feedback, Lyapunov UGAS stability.

1. Introduction

Measurement of joint velocities in a robot manipulator
through tachometers may produce noisy signals so that its
use in a controller may not be feasible (Daly and Schwarz,
2006). Output feedback controllers deal with this problem
since they only require position measurements; therefore,
joint velocities are substituted by signals produced by an
observer or filter.

Several output feedback controllers have been
proposed for the regulation case, obtaining global
asymptotic stability results. Output feedback controllers
with gravity compensation were proposed by Berghuis
and Nijmeijer (1993), Burkov (1993) as well as Kelly
(1993), while Arimoto et al. (1994) put forward an output
feedback controller with desired gravity compensation.
An output feedback controller which compensates gravity
uncertainty effects was proposed by Ortega et al. (1995);
however, the asymptotic stability result is local. An
adaptive output-feedback controller with bounded inputs
was put forward by Lopez-Araujo et al. (2012), achieving
global convergence of position errors to zero.

Results obtained for output feedback controllers in

the tracking case are, for the most part, local. Some output
feedback tracking controllers proposed in the literature are
those by Lim et al. (1996) or Nicosia and Tomei (1990).
An output feedback controller with bounded inputs is
proposed by Loria and Nijmeijer (1998), for which
global asymptotic stability is obtained by Santibanez and
Kelly (2001) in the presence of viscous friction and a
proper bound of the desired joint speed. A proposed
solution using a variable structure observer is reported
by Abdessameud and Khelfi (2006). Other variations of
this controller are proposed by Moreno-Valenzuela et al.
(2008a; 2008b), who prove local asymptotic stability via
singular perturbations theory. A generalization of the
controller proposed by Santibanez and Kelly (2001) is
designed by Zavala-Rio et al. (2011).

Uncertainty in robot parameters is another practical
problem in robot manipulator control. Adaptive
controllers can be used when some of the parameters
of the robot dynamic model are unknown. In adaptive
controllers, an estimate of the model parameters is
computed through an update law (see, e.g., Witkowska
and Śmierzchalski, 2012; Bańka et al, 2013).

Craig et al. (1987) proposed the first adaptive
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controller with a rigorous stability proof; however, the
controller required knowledge of bounds on the robot
parameters and measurement of joint accelerations. Other
adaptive controllers were reported by Slotine and Li
(1987), Sadegh and Horowitz (1987), Middleton and
Goodwin (1988), as well as Kelly et al. (1989). An
excellent tutorial is presented by Ortega and Spong
(1989). An adaptive redesign of the PD with feedforward
compensation is reported by Santibanez and Kelly (1999).

The only known proof of uniform global asymptotic
stability for a full state feedback adaptive controller for
the tracking case is presented by Loria et al. (2005).

As for adaptive output feedback controllers, only
global convergence of tracking errors to zero has been
reported. The first output feedback tracking controller
was proposed by Zhang et al. (2000). A redesign of this
controller is presented by Zergeroglu et al. (2000), which
eliminates the need for a post-analysis transformation by
considering only position measurements. An adaptive
version of the output feedback controller reported
by Loria and Nijmeijer (1998) was presented by
Moreno-Valenzuela et al. (2010); global convergence is
proved in the case of viscous friction large enough, while
local exponential stability is proven when viscous friction
is not large enough.

As far as the authors are aware, no proof of uniform
global asymptotical stability has been presented for an
adaptive output feedback tracking controller. So far in this
paper, we prove for the first time that, for viscous friction
large enough and if the reference trajectories are selected
in such a way that the regression matrix is persistently
exciting, uniform global asymptotic stability is achieved
for the controller proposed by Moreno-Valenzuela et
al. (2010). This paper extends the results presented
in our earlier work (Yarza et al., 2011), in the sense
that experimental results are included, as well as further
details about the conditions required for UGAS theoretical
analysis.

The paper is structured as follows. Section 2
presents some preliminaries, including the robot dynamic
model and its properties, the control objective and an
important theorem on UGAS for a type of nonlinear
system. Section 3 presents the main result of the paper,
proving UGAS for an adaptive output feedback tracking
controller, Section 4 presents experimental results and
Section 5 concludes the paper.

Throughout this paper, we use the notation
λmin{A(x)} and λmax{A(x)}, to indicate the smallest
and largest eigenvalues, respectively, of a symmetric
positive definite bounded matrix A(x), for any x ∈ R

n.
Also, we define λmin{A} as the greatest lower bound
(infimum) of λmin{A(x)}, for all x ∈ R

n. Similarly,
we define λmax{A} as the least upper bound (supremum)
of λmax{A(x)}, for all x ∈ R

n. The norm of vector x

is defined as ‖x‖ =
√

xT x and that of a matrix A(x)

is defined as the corresponding induced norm ‖A(x)‖ =√
λmax{A(x)T A(x)}. We denote by R+ the space of

nonnegative real numbers. We denote by col[x1, x2] the

vector
[
xT

1 xT
2

]T
.

2. Preliminaries

2.1. Robot dynamics. The dynamics of an n-link
serial rigid robot manipulator, considering viscous
friction, can be expressed as (Spong et al., 2005)

M(q)q̈ + C(q, q̇)q̇ + Fv q̇ + g(q) = τ , (1)

where q is the n × 1 vector of joint positions, q̇ is the
n × 1 vector of joint velocities, q̈ is the n × 1 vector of
joint accelerations, M(q) is the n× n symmetric positive
definite inertia matrix, C(q, q̇) is the n × n matrix of
centrifugal and Coriolis torques, Fv is the n × n diagonal
positive definite matrix of viscous friction coefficients, τ
is the n×1 vector of applied torques, and g(q) is the n×1
vector of gravitational torques, obtained as the gradient of
the robot potential energy U(q), i.e.,

g(q) =
∂U(q)

∂q
. (2)

We assume that the links are joined together with
revolute joints. This assumption is instrumental in
Properties 2–5.

2.2. Control objective. Assume that only the robot
joint position vector q(t) ∈ R

n is available for
measurement and some of the robot parameters are
unknown. Then, the adaptive output feedback tracking
control problem consists in designing a control law to
compute the employed torques vector τ ∈ R

n together
with a parameter estimation update law so that the limit

lim
t→∞ q̃(t) = 0 (3)

is satisfied, where

q̃(t) = qd(t) − q(t) (4)

is the tracking error and qd(t) ∈ R
n is the desired joint

position trajectories vector.
We assume that the desired time-varying trajectory

qd(t) is three times differentiable and bounded for all t ≥
0 in the sense that

‖q̇d(t)‖ ≤ μ1, (5)

‖q̈d(t)‖ ≤ μ2, (6)

‖...
qd(t)‖ ≤ μ3, (7)

where μ1, μ2 and μ3 are known positive constants.
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2.3. Properties of the dynamic model. Some
important properties of the robot dynamics (1) include the
following (Kelly et al., 2005; Spong et al., 2005)

Property 1. By using Christoffel’s symbols, the matrix
C(q, q̇) and the time derivative Ṁ(q) of the inertia matrix
satisfy (Koditschek, 1984; Spong et al., 2005)

q̇T

[
1
2
Ṁ(q) − C(q, q̇)

]
q̇ = 0, ∀q, q̇ ∈ R

n

and

Ṁ(q) = C(q, q̇) + C(q, q̇)T , ∀q, q̇ ∈ R
n.

Property 2. There exists a positive constant kc such that
for all x, y ∈ R

n

‖C(x, y)z‖ ≤ kc ‖y‖ ‖z‖ .

Property 3. The gravitational torque vector g(q) is boun-
ded for all q ∈ R

n (Craig et al., 1987). This means that
there exist constants γi ≥ 0 such that

|gi(q)| ≤ γi, i = 1, 2, . . . , n,

for all q ∈ R
n, where gi(q) stands for the i-th element of

vector g(q). Equivalently, there exists a positive constant
k1 such that

‖g(q)‖ ≤ k1, ∀q ∈ R
n.

Property 4. There exists a positive constant kg such that

‖g(x) − g(y)‖ ≤ kg ‖x − y‖

for all x, y ∈ R
n.

Property 5. The so-called residual dynamics are defined
by (Arimoto, 1995a;1995b; Kelly et al., 2005)

h(q̃, ˙̃q) = [M(qd) − M(qd − q̃)]q̈d

+ [C(qd, q̇d) − C(qd − q̃, q̇d − ˙̃q)]q̇d

+ g(qd) − g(qd − q̃).

The residual dynamics satisfy the inequality

‖h(q̃, ˙̃q)‖ ≤ kc1μ1‖ ˙̃q‖+
s2s1

tanh(s2σ)
‖tanh(σq̃)‖ , (8)

where σ > 0, the constant μ1 in (5), and

s1 = kg + kMμ2 + kc2μ
2
1, (9)

s2 = 2
k1 + k2μ2 + kc1μ

2
1

s1
, (10)

where

kM ≥ n2

[
max

i,j,k,q

∥
∥
∥
∥

∂Mij(q)
∂qk

∥
∥
∥
∥

]
, (11)

kc2 ≥ n3

[
max

i,j,k,q

∥∥
∥
∥

∂cijk(q)
∂qk

∥∥
∥
∥

]
, (12)

k1 ≥ sup
q∈Rn

‖g(q)‖ , (13)

k2 ≥ λmax {M(q)} , (14)

for all q ∈ R
n, where Mij(q) is the ij-element of matrix

M(q) and cijk(q) is the ijk Christoffel symbol (Kelly et
al., 2005).

Property 6. The robot model (1) can be linearly
parameterized as

M(q)q̈ + C(q, q̇)q̇ + Fv q̇ + g(q)
= Y (q, q̇, q̈)θ + M0(q)q̈

+ C0(q, q̇)q̇ + Fv0 q̇ + g0(q) (15)

for all q, q̇, q̈ ∈ R
n, where Y (q, q̇, q̈) ∈ R

n×m is
the regression matrix and θ ∈ R

m is the vector of the
unknown parameters of the robot, which are assumed to
be constant. M0 ∈ R

n×n, C0 ∈ R
n×n, Fv0 and g0

include terms which depend only on known parameters.

Property 7. There exists a positive constant kM such
that for all y, z, ω ∈ R

n

∥
∥[M−1(y) − M−1(z)]ω

∥
∥ ≤ kM ‖y − z‖ ‖ω‖ . (16)

Property 8. Under the conditions (5), (6) and (7), there
exist positive constants ky and kdy such that

‖Y (qd(t), q̇d(t), q̈d(t))‖ ≤ ky, (17)
∥
∥
∥Ẏ (qd(t), q̇d(t), q̈d(t))

∥
∥
∥ ≤ kdy , (18)

for all t ≥ 0, with matrix Y defined in (15).

The proof of Property 7 is shown in Appendix A.

2.4. UGAS of a type of nonlinear systems. We start
by recalling the definitions of PE and Uδ-PE functions
given by Loria et al. (2002).

Definition 1. The locally integrable function Φ : R+ →
R

n×m is said to be Persistently Exciting (PE) if there exist
μ > 0 and T > 0 such that

∫ t+T

t

Φ(τ)Φ(τ)T dτ ≥ μI, ∀t ∈ R+. (19)

Let x ∈ R
n be partitioned as x = col[x1, x2], where

x1 ∈ R
n1 and x2 ∈ R

n2 . Let the column vector φ :
R+ × R

n → R
m be such that (t, x) 	→ φ(t, x) is locally

integrable. Define also D1 = {x ∈ R
n : x1 
= 0}.
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Definition 2. The function φ is said to be Uniformly
δ-Persistently Exciting (Uδ-PE) with respect to x1 if for
each x ∈ D1 there exist δ > 0, T > 0 and μ > 0 such
that, for all t ∈ R+,

‖z − x‖ ≤ δ =⇒
∫ t+T

t

‖φ(τ, z)‖ dτ ≥ μ. (20)

The property of Uδ-PE defined above roughly means
that for every fixed x 
= 0 the function Φ(t) = φ(t, x)
is PE in the sense of Definition 1 and μ and T are the
same for all neighboring points of x. For uniformly
continuous functions, we do not need to check the
condition on neighboring points. More precisely, we have
the following.

Lemma 1. If φ(t, x) is continuous uniformly in t, then
φ(t, x) is Uδ-PE with respect to x1 if and only if for each
x ∈ D1 there exist T > 0 and μ > 0 such that, for all
t ∈ R+, ∫ t+T

t

‖φ(τ, x)‖ dτ ≥ μ. (21)

In particular, a function of the form

φ(t, x) = Φ(t)T x (22)

is Uδ-PE with respect to x if and only if Φ is PE (Loria et
al., 2005).

We can now recall a useful theorem on the uniform
global asymptotic stability of nonautonomous systems,
presented by Loria et al. (2005). It applies to systems of
the form

ẋ = f(t, x) (23)

with
[
ẋ1

ẋ2

]
= f(t, x) =

[
f1(t, x1) + f2(t, x)

f3(t, x)

]
, (24)

where x =
[
xT

1 xT
2

]T
, x1 ∈ R

n1 , x2 ∈ R
n2 , f1 :

R+ × R
n1 → R

n1 , f2 : R+ × R
n → R

n1 , f3 : R+ ×
R

n → R
n2 , n = n1 + n2, and all functions vanish in the

origin x = 0. We define

f0(t, x2) = f2(t, x)|x1=0, (25)

and notice that, necessarily, f0(t,0) = 0. Suppose the
following assumptions are satisfied.

Assumption 1. There exists a continuously differentiable
function V : R+ × R

n → R+, which is positive
definite, decrescent, radially unbounded and has a
negative semidefinite time-derivative. More precisely,
assume that there exist continuous, positive definite,
radially unbounded functions V1, V2 : R

n → R+ and
U : R

n1 → R+ continuous positive definite, such that

V1(x) ≤ V (t, x) ≤ V2(x), (26)

V̇ (t, x) ≤ −U(x1), (27)

for all (t, x) ∈ R+ × R
n.

Assumption 2. The function f2(t, x) is continuously
differentiable and, moreover, it is uniformly bounded in
t on each compact set of the state x2. More precisely,
for each r2 > 0 there exist fM > 0 and continuous
nondecreasing functions pi : R+ → R+ with i = 1, 2
such that pi(0) = 0 and for all (t, x) ∈ R+ × R

n

max
‖x2‖≤r2

{
‖f0(t, x2)‖ ,

∥
∥
∥∥

∂f0

∂t

∥
∥
∥∥ ,

∥
∥
∥∥

∂f0

∂x2

∥
∥
∥∥

}
≤ fM ,

(28)

max
‖x2‖≤r2

‖f2(t, x) − f0(t, x2)‖ ≤ p1(‖x1‖),
(29)

max
‖x2‖≤r2

{‖f1(t, x1)‖ , ‖f3(t, x)‖} ≤ p2(‖x1‖).
(30)

We are now ready to cite the theorem that we will
employ to prove uniform global asymptotic stability of a
nonlinear time-varying system of the form (24).

Theorem 1. (Loria et al., 2002) The system (23), (24)
under Assumptions 1 and 2 is UGAS if and only if the
function f0(t, x2) is Uδ-PE with respect to x2. �
Remark 1. In the work of Loria et al. (2002), the
condition (26) is expressed as

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖), (31)

with α1, α2 ∈ K∞. However, the condition (26) implies
the existence of α1, α2 ∈ K∞ such that (31) is fulfilled
(see Khalil, 2002, Lemma 4.3).

3. Main result

The adaptive output feedback tracking controller,
proposed by Moreno-Valenzuela et al. (2010), is given by

τ = Y (qd, q̇d, q̈d)θ̂ + Kvtanh(ϑ̃) + Fv0 q̇d

+ Kptanh(σq̃) + M0(qd)q̈d + C0(qd, q̇d)q̇d

+ g0(qd), (32)

where q̃ = qd − q denotes the link position tracking error
vector, Kp and Kv are n × n diagonal positive definite
matrices, σ is a positive constant, M0, C0, Fv0 and g0

are defined in (15), and the reference trajectory qd(t) is
chosen such that the transpose of the regression matrix
Y (qd(t), q̇d(t), q̈d(t))T , defined in Property 6, is PE in
the sense of Definition 1.

The function tanh is defined as the hyperbolic
tangent function in vectorial form, that is, tanh(y) =
[tanh(y1) tanh(y2) · · · tanh(yn)]T , for all y ∈ R

n.
The signal ϑ̃(t) in (32) is obtained from the

following nonlinear filter:

ż = −Atanh(ϑ̃), (33)

ϑ̃ = z + Bq̃, (34)
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with z ∈ R
n, A and B are n×n diagonal positive definite

matrices.
The estimated parameter vector θ̂ is computed

through the update law

θ̂ = Γa[Y T (qd, q̇d, q̈d)q̃ −
∫ t

0

[Ẏ T (qd, q̇d, q̈d)q̃

− εY T (qd, q̇d, q̈d)tanh(σq̃)] dt], (35)

with Γa being a diagonal positive definite matrix and ε a
positive constant suitably selected.

The system (1), (32), (33), (34), (35) is expressed by
the closed loop equation:

d
dt

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

q̃

˙̃q

ϑ̃

θ̃

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

˙̃q

M(q)−1[−C(q, qd) ˙̃q − Fv
˙̃q

−Kvtanh(ϑ̃) − Kptanh(σq̃)
−h(q̃, ˙̃q) + Y (qd, q̇d, q̈d)θ̃]

−Atanh(ϑ̃) + B ˙̃q

−ΓaY (qd, q̇d, q̈d)
T

[
˙̃q + εtanh(σq̃)

]

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(36)
where the origin is an equilibrium point, and h(q̃, ˙̃q)
represents the so-called residual dynamics defined in
Property 5.

Define the constants

γ1 =
s1s2

tanh(s2σ)
, (37)

γ2 = 2kc1μ1 + λmax{Fv}, (38)

γ3 = kc1

√
n + σλmax{M(q)}λmax{Fv}. (39)

Assumption 3. Assume that the damping introduced by
the viscous friction coefficients Fv is large enough so that
it satisfies

λmin{Fv} > kc1μ1. (40)

Assumption 4. The matrix of proportional gains Kp is
large enough so that it achieves

λmin{Kp} > γ1. (41)

Assumption 5. The constant ε from the adaptive law (35)
is selected such that it satisfies

γ2
1

[1 − β][λmin{Kp} − γ1]λmin{Fv} < ε

< min
{

[λmin{Kp} − γ1][βλmin{Fv} − kc1μ1]
[λmin{Kp} − γ1]γ3 + γ2

2

,

2[λmin{Kp} − γ1]λmin{KvB
−1A}

λ2
max{Kv} ,

√
σ−1λmin{Kp}λmin{M(q)}

λmax{M(q)}

}

,

where β ∈ (0, 1), and A and B are the diagonal positive
definite matrices employed in (33) and (34).

Remark 2. Assumption 3 is a condition that refers
to the viscous friction matrix Fv and the bound on the
time-derivative of the reference trajectory μ1. Such a
condition has already been proposed in the literature (e.g.,
Santibanez and Kelly, 2001; Moreno-Valenzuela et al.,
2010; Zavala-Rio et al., 2011). As far as the authors
are aware, all the saturated output feedback tracking
controllers proposed in the literature so far require this
condition in order to achieve globality. As for Assumption
4, it is a standard condition; it requires proportional gains
to be large enough in order to overcome the torque effects
of the inertia and Coriolis matrices and gravity vector
(most saturated controllers employ similar conditions).
On the other hand, Assumption 5 bounds the parameter
ε in order to ensure positive definiteness of the Lyapunov
function and negative definiteness of its time-derivative.

Our main stability result on the origin of (36) is
summarized in the following proposition.

Proposition 1. The origin
[
q̃T ˙̃q

T
ϑ̃

T
θ̃

]
= 0 of

(36), under Assumptions 3, 4 and 5, is UGAS if and only
if the matrix Y (qd(t), q̇d(t), q̈d(t))

T is PE in the sense of
Definition 1.

3.1. Proof of Proposition 1. If we define

x1 =

⎡

⎣
q̃
˙̃q
ϑ̃

⎤

⎦ , x2 = θ̃, x =
[
x1

x2

]
, (42)

then (36) can be expressed in the form (24) as follows:

d
dt

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

q̃

˙̃q

ϑ̃

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

︸︷︷︸
x1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

˙̃q

M(q)−1[−C(q, qd) ˙̃q − Fv
˙̃q

−Kvtanh(ϑ̃) − Kptanh(σq̃)
−h(q̃, ˙̃q)]

−Atanh(ϑ̃) + B ˙̃q

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

︸ ︷︷ ︸
f 1(t,x1)

+

⎡

⎣
0

M(q)−1Y (qd, q̇d, q̈d)θ̃
0

⎤

⎦

︸ ︷︷ ︸
f 2(t,x)

, (43)

d
dt

θ̃︸︷︷︸
x2

= −ΓaY (qd, q̇d, q̈d)
T

[
˙̃q + εtanh(σq̃)

]

︸ ︷︷ ︸
f 3(t,x)

.

(44)

In order to prove the UGAS of the origin of the
system (43), (44), we will use Theorem 1. The first step
is to check that Assumption 1 is satisfied. Consider the
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Lyapunov function

V (t, x) =
1
2

˙̃q
T
M(q) ˙̃q +

n∑

i=1

kvib
−1
i ln(cosh(ϑ̃i))

+
n∑

i=1

kpiσ
−1 ln(cosh(σq̃i))

+ εtanh(σq̃)T M(q) ˙̃q

+
1
2
θ̃

T
Γ−1

a θ̃. (45)

By bounding each of the terms of V (t, x), upper and
lower bounds are given by

V1(x) ≤ V (t, x) ≤ V2(x), (46)

where

V1(x) =

[√∑n
i=1 kpiσ

−1 ln(cosh(σq̃i))∥
∥∥ ˙̃q

∥
∥∥

]T

P

×
[√∑n

i=1 kpiσ
−1 ln(cosh(σq̃i))∥
∥
∥ ˙̃q

∥
∥
∥

]

+
n∑

i=1

kvib
−1
i ln(cosh(ϑ̃i))

+
1
2
θ̃

T
Γ−1

a θ̃,

V2(x) =
1
2
λmax{M}

∥
∥∥ ˙̃q

∥
∥∥

2

+
n∑

i=1

kvib
−1
i ln(cosh(ϑ̃i))

+
n∑

i=1

kpiσ
−1 ln(cosh(σq̃i)) +

1
2
θ̃

T
Γ−1

a θ̃

+ ελmax{M} ‖tanh(q̃)‖
∥∥
∥ ˙̃q

∥∥
∥ ,

P =

[
σ−1λmin{Kp} −ε

2
√

2λmax{M}
− ε

2

√
2λmax{M} 1

2λmin{M}

]

. (47)

The matrix P is symmetric positive definite under
Assumption 5. The time derivative of V (t, x) is given
by

V̇ (t, x) = εtanh(σq̃)T [−Fv
˙̃q − Kvtanh(ϑ̃)

− Kptanh(σq̃) + C(q, q̇) ˙̃q − h(q̃, ˙̃q)]

+ εσ ˙̃q
T
M(q)Sech2(σq̃) ˙̃q

− ˙̃q
T
h(q̃, ˙̃q) − ˙̃q

T
Fv

˙̃q

− tanh(ϑ̃)T KvB
−1Atanh(ϑ̃). (48)

The time derivative (48) may be upper bounded by

V̇ (t, x) ≤ −U(x1), (49)

where

U(x1) =

[‖tanh(σq̃)‖∥
∥
∥ ˙̃q

∥
∥
∥

]T

Q1

[‖tanh(σq̃)‖∥
∥
∥ ˙̃q

∥
∥
∥

]

+

[‖tanh(σq̃)‖∥∥
∥tanh(ϑ̃)

∥∥
∥

]T

Q2

[‖tanh(σq̃)‖∥∥
∥tanh(ϑ̃)

∥∥
∥

]

,

and

Q1 =
[

ε
2 [λmin{Kp} − γ1] − 1

2γ1 − 1
2εγ2

− 1
2γ1 − 1

2εγ2 λmin{Fv} − kc1μ1

]

+
[
0 0
0 −εγ3

]
,

Q2 =
[

ε
2 [λmin{Kp} − γ1] − ε

2λmax{Kv}
− ε

2λmax{Kv} λmin{KvB
−1A}

]
.

Under Assumptions 3–5, Q1 and Q2 are positive
definite matrices. Therefore, U(x1) is a positive definite
function, and Assumption 1 is satisfied.

We will now verify that Assumption 2 holds. To this
end, notice that f i for i = 1, 2, 3 have been defined in
(43) and (44). It is clear from (25) and (43) that

f0(t, x2) =

⎡

⎣
0

M(qd)−1Y (qd, q̇d, q̈d)θ̃
0

⎤

⎦ . (50)

In Appendix B it is proven that (28)–(30) are satisfied for
functions f1, f2, f3 and f0.

Since Assumption 2 is already satisfied, it only
remains to show that f0(t, x2) is Uδ-PE with respect to
x2. Hence, we need to show that for each x2 
= 0 there
exist μ > 0 and T > 0 such that, for all t ≥ 0,

∫ t+T

t

xT
2 Y (qd(τ), q̇d(τ), q̈d(τ))T M(qd(τ))−1

× M(qd(τ))−1Y (qd(τ), q̇d(τ), q̈d(τ))x2 dτ ≥ μ.
(51)

Since M(qd(τ))−1 is full rank, then (51) holds if and
only if the function φ(t, x) = Y (qd(t), q̇d(t), q̈d(t))x2

is Uδ-PE. Since φ(t, x) is in the form (22), with
Φ(t)T = Y (qd(t), q̇d(t), q̈d(t)), it is Uδ-PE if and only if
Y (qd(t), q̇d(t), q̈d(t))T is PE in the sense of Definition 1.
Hence, from Theorem 1, the origin of (36) is UGAS.

4. Experimental results

Experimental results were carried out to show the
performance of the adaptive output feedback tracking
controller (32) and to confirm the theoretical analysis. The
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control scheme was proved in a two degrees of freedom
planar arm prototype moving in the vertical plane, whose
links are connected through revolute joints. This is the
direct drive robot manipulator used by Reyes and Kelly
(2001), built at the CICESE Research Center and located
at the Laguna Institute of Technology, Mexico. Two tests
were performed in order to observe the performance of the
proposed controller for two different desired trajectories.
Robot parameters are shown in Table 1.

Table 1. Robot parameters.
Description Notation Value Units

Mass of link 1 m1 23.902 kg
Mass of link 2 m2 3.88 kg

Length of link 1 l1 0.45 m
Length of link 2 l2 0.45 m
Distance to the lc1 0.091 m

center of mass 1
Distance to the lc2 0.048 m

center of mass 2
Inertia relative to I1 1.266 kg m2

center of mass 1
Inertia relative to I2 0.093 kg m2

center of mass 2
Gravity acceleration g 9.81 m/s2

Coefficient of viscous fv1 2.288 N m s/rad
friction 1

Coefficient of viscous fv2 0.175 N m s/rad
friction 2

For Test 1, the desired trajectory was selected as

qd1 = c1(1 − e−at3) + c2(1 − e−at3) sin(ω1t), (52)

qd2 = c3(1 − e−bt3) + c4(1 − e−bt3) sin(ω2t). (53)

For Test 2, the desired trajectory was selected as

qd1 = k1(1 − e−at3) + k2 sin(ω3t) + k3 sin(ω4t), (54)

qd2 = k4 sin(ω5t) + k5 sin(ω6t). (55)

Parameters of the desired trajectories are shown in
Table 2. Control parameters used for the experimental
tests are shown in Table 3.

The desired trajectory (52)–(53) for Test 1 has
the feature that its initial positions, velocities, and
accelerations are zero and evolve smoothly, which
prevents torque values from saturating the actuators and
the required velocities do not surpass the permitted
velocity motor limits. As for the desired trajectory
(54)–(55) used for Test 2, it is a harder one, since its initial
velocities are different from zero, which demands greater
initial torques. Besides, the trajectory for Test 2 includes
an additional sinusoidal term assuring so the persistency
of excitation.

Table 2. Parameters of the desired joint trajectory qd(t) for
Tests 1 and 2.

Desired trajectory parameters Value Unit

c1 0.7854 rad
c2 0.1745 rad
c3 1 rad
c4 0.5 rad
ω1 7.5 rad/s
ω2 1.75 rad/s
a 2 1/s3

b 1.8 1/s3

k1 1.5707 rad
k2 0.1745 rad
k3 0.1745 rad
k4 0.25 rad
k5 0.25 rad
ω3 6 rad/s
ω4 4 rad/s
ω5 0.5 rad/s
ω6 1.5 rad/s

The robot dynamics are linearly parameterized as in
(15) in the following manner:

Y (q, q̇, q̈) =
[
y11 y12 y13

y21 y22 y23

]
, (56)

M0(q) =
[
m1l

2
c1

+ I1 0
0 0

]
, (57)

C0(q, q̇) =
[
0 0
0 0

]
, (58)

Fv0 =
[
fv1 0
0 fv2

]
, (59)

g0(q) =
[
m1lc1g sin(q1)

0

]
, (60)

θ =

⎡

⎣
θ1

θ2

θ3

⎤

⎦ =

⎡

⎣
m2

m2lc2

m2l
2
c2

+ I2

⎤

⎦ , (61)

where

y11 = l21 q̈1 + l1g sin(q1), (62)

y12 = 2l1 cos(q2)q̈1 + l1 cos(q2)q̈2 − l1 sin(q2)q̇2q̇1

− l1 sin(q2)(q̇1 + q̇2)q̇2 + g sin(q1 + q2), (63)

y13 = q̈1 + q̈2, (64)

y21 = 0, (65)

y22 = l1 cos(q2)q̈1 + l1 sin(q2)q̇2
1

+ g sin(q1 + q2), (66)

y23 = q̈1 + q̈2. (67)
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From Table 1, it is possible to observe that

⎡

⎣
θ1

θ2

θ3

⎤

⎦ =

⎡

⎣
m2

m2lc2

m2l
2
c2

+ I2

⎤

⎦ =

⎡

⎣
3.88

0.18624
0.1019

⎤

⎦ . (68)

We have numerically verified that the
regression matrix Y (qd, q̇d, q̈d), given by (56), is
persistently exciting according to Definition 1, where
Φ(t)T = Y (qd(t), q̇d(t), q̈d(t)), for the desired
trajectories (52)–(53) and (54)–(55). For the reference
trajectory (52)–(53), the condition

∫ t+T

t

Φ(τ)Φ(τ)T dτ ≥ μI, ∀t ∈ R+, (69)

where Φ(t)T = Y (qd(t), q̇d(t), q̈d(t)), is satisfied with
μ = 51 and T = 2.5. For the reference trajectory
(54)–(55), the condition (69) is satisfied with μ = 6.8 and
T = 2.5.

For Test 1, Figs. 1 and 2 show the tracking errors
q̃1(t) and q̃2(t) for Joints 1 and 2, respectively. Figures
3 and 4 show the employed torques τ1(t) and τ2(t), and
Figs. 5–7 show the estimated parameters θ̂1(t), θ̂2(t), and
θ̂3(t), respectively. We have computed the Root Mean
Square (RMS) index, for the steady state position errors
of Test 1, given by

RMS =

√
1

T2 − T1

∫ T2

T1

‖q̃‖2 (t) dt, (70)

with T1 = 10 s and T2 = 60 s, obtaining a value of 0.0078
[rad].

For Test 2, Figs. 8 and 9 show tracking errors q̃1(t)
and q̃2(t) for Joints 1 and 2, respectively. Figures 10 and
11 show the employed torques τ1(t) and τ2(t), and Figs.
12–14 show the estimated parameters θ̂1(t), θ̂2(t), and
θ̂3(t), respectively. The root mean square index for the
steady state position error of Test 2 is 0.0079 [rad].

By taking into account that maximum torques that
the actuators can deliver are τmax

1 = 150 [Nm] and
τmax
2 = 15 [Nm], from Figs. 3 and 4 for Test 1 and

Figs. 10 and 11 for Test 2 one can observe that torques
evolve inside of the permitted limits.

On the other hand, we can observe that position
errors do not converge to zero in both tests, showing an
oscillatory behaviour, which is present mainly because
of uncompensated friction, unmodeled high frequency
dynamics and discretization errors due to the fact of
digitally implementing the robot control system. For
Test 2, we observe greater position errors at the beginning;
this is explained because, as mentioned above, reference 2
is harder since its initial velocities are different from
zero. For both cases we can observe that the RMS
position error index is better than or similar to that of

Table 3. Parameters used in the proposed control law.
Controller parameters Value Unit

kp1 60 N m
kp2 7 N m
kv1 10 N m
kv2 5 N m
ε 3 1/s
σ 50
a1 100 1/s2

a2 100 1/s2

b1 100 1/s
b2 100 1/s
γ1 0.64
γ2 0.08
γ3 0.05

0 10 20 30 40 50 60�0.02

0

0.02

0.04

0.06

Fig. 1. Time evolution of the tracking error for Joint 1 denoted
as q̃1(t) for Test 1.

other adaptive control systems (see, e.g., Loria et al.,
2005; Kelly et al., 2005). It can also be observed that
parameter estimators converge to values which are very
close to the real ones. So, the experimental results confirm
the theoretical stability analysis which claims uniform
global convergence to zero for all state variables: position,
velocity and parameter errors.

5. Conclusions

In this paper, the adaptive output feedback tracking
controller proposed by Moreno-Valenzuela et al. (2010)
was revised. Uniform global asymptotic stability of the

0 10 20 30 40 50 60�0.06

�0.04

�0.02

0

0.02

0.04

Fig. 2. Time evolution of the tracking error for Joint 2 denoted
by q̃2(t) for Test 1.
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Fig. 3. Time evolution of the applied torque for Joint 1 denoted
by τ1(t) for Test 1.
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Fig. 4. Time evolution of the torque applied for Joint 2 denoted
by τ2(t) for Test 1.
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Fig. 5. Time evolution of the estimated parameter θ̂1(t) for
Test 1.
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Fig. 6. Time evolution of the estimated parameter θ̂2(t) for
Test 1.
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Fig. 7. Time evolution of the estimated parameter θ̂3(t) for
Test 1.
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Fig. 8. Time evolution of the tracking error for Joint 1 denoted
by q̃1(t) for Test 2.
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Fig. 9. Time evolution of the tracking error for Joint 2 denoted
by q̃2(t) for Test 2.

0 10 20 30 40 50 60�20

0

20

40

60

80

100

Fig. 10. Time evolution of the torque applied for Joint 1 denoted
by τ1(t) for Test 2.
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Fig. 11. Time evolution of the torque applied for Joint 2 denoted
by τ2(t) for Test 2.
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Fig. 12. Time evolution of the estimated parameter θ̂1(t) for
Test 2.
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Fig. 13. Time evolution of the estimated parameter θ̂2(t) for
Test 2.
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Fig. 14. Time evolution of the estimated parameter θ̂3(t) for
Test 2.

controller was proved. As far as the authors are aware,
this is the first proof of uniform global asymptotic stability
of an adaptive output feedback tracking controller. The
stability analysis was carried out via Lyapunov theory,
complemented by a theorem proposed by Loria et al.
(2002) on the uniform global asymptotic stability of a
certain type of nonlinear systems. Experimental results
were presented in order to show the performance of the
controller and to confirm the theoretical proposal.
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at the University of Liège, Belgium, from 2004 to

2005. Currently, he is at the CITEDI-IPN Research Center. His main re-
search interests are control of electro-mechanical systems.

Appendix A

Here we present a proof for Property 7. The inverse of the
inertia matrix M(q) may be expressed as

M−1(q) =
1

det(M(q))
A(q), (A1)

where A(q) is the adjoint matrix of M(q). Based on (A1),
we may obtain the following expression for the partial
derivatives of the elements of matrix M−1(q):

∂M−1
ij (q)
∂qk

=
1

det2(M(q))

[
det(M(q))

∂aij(q)
∂qk

−aij(q)
∂ det(M(q))

∂qk

]
, (A2)

for i, j, k = 1, 2, . . . , n, where M−1
ij (q) is the ij-element

of matrix M−1(q) and aij is the ij-element of matrix
A(q). Since we are assuming robot manipulators
whose links are joined together with revolute joints,
elements aij and the determinant det(M(q)) contain
only sinusoidal functions of qk, and also their partial
derivatives. Therefore, such expressions are bounded, and
there exists a positive constant kM1 such that

∣
∣∣
∣
∣
∂M−1

ij (q)
∂qk

∣
∣∣
∣
∣
≤ kM1 , (A3)

for all i, j, k = 1, 2, . . . , n. Therefore (see Kelly et al.,
2005, Corollary A.1, p. 385)

∥∥[M−1(y) − M−1(z)]ω
∥∥ ≤ n2kM1 ‖y − z‖ ‖ω‖ .

(A4)
Property 7 is then satisfied with

kM ≥ n2kM1 . (A5)

Appendix B

Here, we will show how the conditions (28), (29) and (30)
are satisfied. From the definition of f0 in (50), we have
that

∂f0

∂t
=

⎡

⎢
⎣

0
d
dt

[M(qd)
−1]Y (qd, q̇d, q̈d)θ̃

0

⎤

⎥
⎦

+

⎡

⎣
0

M(qd)−1Ẏ (qd, q̇d, q̈d)θ̃
0

⎤

⎦ , (B1)

∂f0

∂x2
=

⎡

⎣
0

M(qd)−1Y (qd, q̇d, q̈d)
0

⎤

⎦ , (B2)

where x2 = θ̃ as is defined in (42).
The time derivative of matrix M(qd)

−1 may be
expressed in the following manner:

d
dt

[M(qd)
−1] = −M(qd)

−1Ṁ(qd)M(qd)
−1. (B3)

It can be observed from Eqn. (A1) that matrix
M(qd)−1 is bounded. On the other hand, the matrix
Ṁ(qd) is bounded under the condition (5). Therefore,
d
dt [M(qd)−1] is bounded, and under the conditions
(17) and (18), matrix [ d

dt [M(qd)−1]Y (qd, q̇d, q̈d) +
M(qd)

−1Ẏ (qd, q̇d, q̈d)] is also bounded. Therefore, if

‖x2‖ ≤ r2, or equivalently,
∥
∥
∥θ̃

∥
∥
∥ ≤ r2, then ∂f0/∂t

is bounded. On the other hand, the boundedness of
∂f0/∂x2 is straightforward from the boundedness of
matrices M(qd)−1 and Y (qd, q̇d, q̈d). Therefore, the
condition (28) is satisfied.

Notice, from the definition of function f1 in (43) that

‖f1‖2 = ‖ ˙̃q‖2 + ‖M(q)−1[−C(q, q̇) ˙̃q − Fv
˙̃q

− Kvtanh(ϑ) − Kptanh(σq̃)

− h(q̃, ˙̃q)]‖2

+ ‖ − Atanh(ϑ) + B ˙̃q‖2

≤ ‖x1‖2

[
1 +

1
λmin{M}(kc1‖x1‖ + ζ1)2

]

+ ‖x1‖2[λmax{A} + λmax{B}]2, (B4)

where

ζ1 = 2kc1μ1 + λmin{Fv} + λmax{Kv}

+ σλmax{Kp} +
s1σ

2

tanh(s2σ)
. (B5)

Therefore,

‖f1‖ ≤ ‖x1‖
√

1
λ2

min{M}(kc1 ‖x1‖ + ζ1)2 + ζ2,

(B6)
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where

ζ2 = 1 + (λmax{A} + λmax{B})2. (B7)

Also, notice that

‖f3‖ = ‖ΓaY (qd, q̇d, q̈d)
T [ ˙̃q + εtanh(σq̃)]‖

≤ λmax{Γa}ky

[
‖ ˙̃q‖ + εσ ‖q̃‖

]

≤ λmax{Γa}ky(1 + εσ) ‖x1‖ , (B8)

where we used the fact that ‖tanh(σq̃)‖ ≤ ‖σq̃‖ (Kelly
et al., 2005). Therefore, the condition (30) is satisfied with

p2(‖x1‖) = max {p21(‖x1‖), p22(‖x1‖)} , (B9)

where

p21(‖x1‖) =

√
1

λ2
min{M}(kc1 ‖x1‖ + ζ)2 + ζ2 ‖x1‖ ,

(B10)

p22(‖x1‖) = λmax{Γa}ky(1 + εσ) ‖x1‖ . (B11)

On the other hand, we have that, for all ‖x2‖ ≤ r2,
with r2 defined in Assumption 2,

‖f2 − f0‖ =
∥
∥[M(q)−1 − M(qd)

−1]×
× Y (qd, q̇d, q̈d)x2‖

≤ kMkyr2 ‖q̃‖
≤ kMkyr2 ‖x1‖ , (B12)

with f2 and f0 defined in (43) and (50), respectively,
and Property 7 applied. Therefore, the condition (29) is
satisfied with

p1(‖x1‖) = kMkyr2 ‖x1‖ . (B13)
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